meta-bletchley: add usbmux utility

There is a issue caused by switching USBMUX GPIO pin slowly.
For example, when user set USBMUX GPIO pin to sled1, the USBMUX will
first switch to sled3 and then switch to sled1 if there is a long
interval between each gpioset command.

1. USBMUX is set to off initially
    USB2_SEL0_A = 1
    USB2_SEL1_A = 1
    USB2_SEL0_B = 1
    USB2_SEL1_B = 1

2. Set USBMUX to sled1
    USB2_SEL0_A = 0
    USB2_SEL1_A = 0
    USB2_SEL0_B = 1
    USB2_SEL1_B = 1

```
root@bletchley:~# gpioset $(gpiofind USB2_SEL0_A)=0  --> USBMUX set to sled3 first.
root@bletchley:~# gpioset $(gpiofind USB2_SEL1_A)=0  --> then USBMUX set to sled1.
```

Add bletchley-usbmux-util to set USBMUX GPIO pins to selected sled, and
avoid USB issues with slow mux switching.

Change-Id: Id2a40b5908c1286929648cc433cb426a9c493e3a
Signed-off-by: Potin Lai <potin.lai@quantatw.com>
2 files changed
tree: 410124e048312cd5e4f8366fe07c04ddf7274c4b
  1. .github/
  2. meta-amd/
  3. meta-ampere/
  4. meta-arm/
  5. meta-aspeed/
  6. meta-asrock/
  7. meta-bytedance/
  8. meta-delta/
  9. meta-evb/
  10. meta-facebook/
  11. meta-fii/
  12. meta-google/
  13. meta-hpe/
  14. meta-ibm/
  15. meta-ingrasys/
  16. meta-inspur/
  17. meta-intel-openbmc/
  18. meta-inventec/
  19. meta-nuvoton/
  20. meta-openembedded/
  21. meta-openpower/
  22. meta-phosphor/
  23. meta-qualcomm/
  24. meta-quanta/
  25. meta-raspberrypi/
  26. meta-security/
  27. meta-supermicro/
  28. meta-tyan/
  29. meta-wistron/
  30. meta-yadro/
  31. poky/
  32. .eslintrc.json
  33. .gitignore
  34. .gitreview
  35. openbmc-env
  36. OWNERS
  37. README.md
  38. setup
README.md

OpenBMC

Build Status

OpenBMC is a Linux distribution for management controllers used in devices such as servers, top of rack switches or RAID appliances. It uses Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your platform.

Setting up your OpenBMC project

1) Prerequisite

See the Yocto documentation for the latest requirements

Ubuntu

sudo apt install git python3-distutils gcc g++ make file wget \
    gawk diffstat bzip2 cpio chrpath zstd lz4 bzip2

Fedora

sudo dnf install git python3 gcc g++ gawk which bzip2 chrpath cpio \
    hostname file diffutils diffstat lz4 wget zstd rpcgen patch

2) Download the source

git clone https://github.com/openbmc/openbmc
cd openbmc

3) Target your hardware

Any build requires an environment set up according to your hardware target. There is a special script in the root of this repository that can be used to configure the environment as needed. The script is called setup and takes the name of your hardware target as an argument.

The script needs to be sourced while in the top directory of the OpenBMC repository clone, and, if run without arguments, will display the list of supported hardware targets, see the following example:

$ . setup <machine> [build_dir]
Target machine must be specified. Use one of:

bletchley               mori                    s8036
dl360poc                mtjade                  swift
e3c246d4i               mtmitchell              tatlin-archive-x86
ethanolx                nicole                  tiogapass
evb-ast2500             olympus-nuvoton         transformers
evb-ast2600             on5263m5                vegman-n110
evb-npcm750             p10bmc                  vegman-rx20
f0b                     palmetto                vegman-sx20
fp5280g2                qcom-dc-scm-v1          witherspoon
g220a                   quanta-q71l             witherspoon-tacoma
gbs                     romed8hm3               x11spi
greatlakes              romulus                 yosemitev2
gsj                     s2600wf                 zaius
kudo                    s6q
lannister               s7106

Once you know the target (e.g. romulus), source the setup script as follows:

. setup romulus

4) Build

bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

OpenBMC Development

The OpenBMC community maintains a set of tutorials new users can go through to get up to speed on OpenBMC development out here

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Questions

First, please do a search on the internet. There's a good chance your question has already been asked.

For general questions, please use the openbmc tag on Stack Overflow. Please review the discussion on Stack Overflow licensing before posting any code.

For technical discussions, please see contact info below for Discord and mailing list information. Please don't file an issue to ask a question. You'll get faster results by using the mailing list or Discord.

Features of OpenBMC

Feature List

  • Host management: Power, Cooling, LEDs, Inventory, Events, Watchdog
  • Full IPMI 2.0 Compliance with DCMI
  • Code Update Support for multiple BMC/BIOS images
  • Web-based user interface
  • REST interfaces
  • D-Bus based interfaces
  • SSH based SOL
  • Remote KVM
  • Hardware Simulation
  • Automated Testing
  • User management
  • Virtual media

Features In Progress

  • OpenCompute Redfish Compliance
  • Verified Boot

Features Requested but need help

  • OpenBMC performance monitoring

Finding out more

Dive deeper into OpenBMC by opening the docs repository.

Technical Steering Committee

The Technical Steering Committee (TSC) guides the project. Members are:

  • Roxanne Clarke, IBM
  • Nancy Yuen, Google
  • Patrick Williams, Meta
  • Terry Duncan, Intel
  • Sagar Dharia, Microsoft
  • Samer El-Haj-Mahmoud, Arm

Contact