meta-openpower: pdbg bump

New features:
 - Hardware Trace Macro support
 - Host backend
 - New command: sreset
 - Build and bug fixes

Alistair Popple (6):
      libpdbg: Add sreset command
      libpdbg/target.c: Probe all root nodes in the device-tree
      Rework POWER9 device-trees to share common definitions
      Add backend for host based debugfs
      Add indirect SCOM access
      libpdbg/device.c: Remove usage of libfdt internal functions

Cyril Bur (7):
      Add *.dtsi to .gitignore
      fake.dts: Whitespace cleanup
      Look for 'chip-id' as opposed to 'ibm,chip-id'
      Add Hardware Trace Macro (HTM) to device trees
      Hardware Trace Macro (HTM)
      docs: Add HTM to README.md
      libpdbg: Fix incorrect restore of r1 in ram_instructions()

Joel Stanley (11):
      Makefile.am: Set foreign
      configure.ac: Enable silent build rules
      build: Update to do both an in and out of tree build
      Do not redefine _LARGEFILE64_SOURCE
      Allow command line to override GIT_SHA1
      kernel: Include endian.h for htobe32 and be32toh
      device: remove use of ccan's endian
      libpdbg: Remove unused __unused from compiler.h
      Error out when no device type is specified
      lipdbg/i2c: Get bus path from device tree
      i2c: Update i2c device node in dt when specified

Thomas Petazzoni (1):
      Rework generation of .dtb.o

Change-Id: I382bfb0d3aacdf03495450acfc0c0792835d5f36
Signed-off-by: Joel Stanley <joel@jms.id.au>
1 file changed
tree: 6c29ac28107de0b3c9543ace23f2ba7efa248d8a
  1. import-layers/
  2. meta-openbmc-bsp/
  3. meta-openbmc-machines/
  4. meta-phosphor/
  5. .gitignore
  6. .gitreview
  7. .templateconf
  8. openbmc-env
  9. README.md
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, Open-Embedded, Systemd and DBus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 23
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. OpenBMC has placed all known hardware targets in a standard directory structure meta-openbmc-machines/meta-openpower/[company]/[target]. You can see all of the known targets with find meta-openbmc-machines -type d -name conf. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf
Barreleyemeta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/conf
Zaiusmeta-openbmc-machines/meta-openpower/meta-ingrasys/meta-zaius/conf
Witherspoonmeta-openbmc-machines/meta-openpower/meta-ibm/meta-witherspoon/conf

As an example target Palmetto

export TEMPLATECONF=meta-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf

3) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC Github community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with a arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on Github. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • REST Management
  • IPMI
  • SSH based SOL
  • Power and Cooling Management
  • Event Logs
  • Zeroconf discoverable
  • Sensors
  • Inventory
  • LED Management
  • Host Watchdog
  • Simulation

Features In Progress

  • Code Update Support for multiple BMC/BIOS images
  • POWER On Chip Controller (OCC) Support
  • Full IPMI 2.0 Compliance with DCMI
  • Verified Boot
  • HTML5 Java Script Web User Interface
  • BMC RAS

Features Requested but need help

  • OpenCompute Redfish Compliance
  • OpenBMC performance monitoring
  • cgroup user management and policies
  • Remote KVM
  • Remote USB
  • OpenStack Ironic Integration
  • QEMU enhancements

Finding out more

Dive deeper in to OpenBMC by opening the docs repository

Contact