Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame^] | 1 | #pragma once |
| 2 | |
| 3 | #include <cstdint> |
| 4 | #include <array> |
| 5 | #include <aspeed/JTABLES.H> |
| 6 | #include <vector> |
| 7 | |
| 8 | #include <ast_video_types.hpp> |
| 9 | #include <iostream> |
| 10 | |
| 11 | namespace AstVideo { |
| 12 | |
| 13 | static const uint32_t VQ_HEADER_MASK = 0x01; |
| 14 | static const uint32_t VQ_NO_UPDATE_HEADER = 0x00; |
| 15 | static const uint32_t VQ_UPDATE_HEADER = 0x01; |
| 16 | static const int VQ_NO_UPDATE_LENGTH = 0x03; |
| 17 | static const int VQ_UPDATE_LENGTH = 0x1B; |
| 18 | static const uint32_t VQ_INDEX_MASK = 0x03; |
| 19 | static const uint32_t VQ_COLOR_MASK = 0xFFFFFF; |
| 20 | |
| 21 | static const int BLOCK_AST2100_START_LENGTH = 0x04; |
| 22 | static const int BLOCK_AST2100_SKIP_LENGTH = 20; // S:1 H:3 X:8 Y:8 |
| 23 | |
| 24 | struct COLOR_CACHE { |
| 25 | unsigned long Color[4]; |
| 26 | unsigned char Index[4]; |
| 27 | unsigned char BitMapBits; |
| 28 | }; |
| 29 | |
| 30 | struct RGB { |
| 31 | unsigned char B; |
| 32 | unsigned char G; |
| 33 | unsigned char R; |
| 34 | unsigned char Reserved; |
| 35 | }; |
| 36 | |
| 37 | enum class JpgBlock { |
| 38 | JPEG_NO_SKIP_CODE = 0x00, |
| 39 | JPEG_SKIP_CODE = 0x08, |
| 40 | |
| 41 | JPEG_PASS2_CODE = 0x02, |
| 42 | JPEG_SKIP_PASS2_CODE = 0x0A, |
| 43 | |
| 44 | LOW_JPEG_NO_SKIP_CODE = 0x04, |
| 45 | LOW_JPEG_SKIP_CODE = 0x0C, |
| 46 | |
| 47 | VQ_NO_SKIP_1_COLOR_CODE = 0x05, |
| 48 | VQ_SKIP_1_COLOR_CODE = 0x0D, |
| 49 | |
| 50 | VQ_NO_SKIP_2_COLOR_CODE = 0x06, |
| 51 | VQ_SKIP_2_COLOR_CODE = 0x0E, |
| 52 | |
| 53 | VQ_NO_SKIP_4_COLOR_CODE = 0x07, |
| 54 | VQ_SKIP_4_COLOR_CODE = 0x0F, |
| 55 | |
| 56 | FRAME_END_CODE = 0x09, |
| 57 | |
| 58 | }; |
| 59 | |
| 60 | class AstJpegDecoder { |
| 61 | public: |
| 62 | AstJpegDecoder() { |
| 63 | // TODO(ed) figure out how to init this in the constructor |
| 64 | YUVBuffer.resize(800 * 600); |
| 65 | OutBuffer.resize(800 * 600); |
| 66 | for (auto &r : OutBuffer) { |
| 67 | r.R = 0x00; |
| 68 | r.G = 0x00; |
| 69 | r.B = 0x00; |
| 70 | r.Reserved = 0xAA; |
| 71 | } |
| 72 | init_jpg_table(); |
| 73 | } |
| 74 | |
| 75 | void load_quant_table(std::array<long, 64> &quant_table) { |
| 76 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 77 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| 78 | uint8_t j, row, col; |
| 79 | uint8_t tempQT[64]; |
| 80 | |
| 81 | // Load quantization coefficients from JPG file, scale them for DCT and |
| 82 | // reorder |
| 83 | // from zig-zag order |
| 84 | switch (Y_selector) { |
| 85 | case 0: |
| 86 | std_luminance_qt = Tbl_000Y; |
| 87 | break; |
| 88 | case 1: |
| 89 | std_luminance_qt = Tbl_014Y; |
| 90 | break; |
| 91 | case 2: |
| 92 | std_luminance_qt = Tbl_029Y; |
| 93 | break; |
| 94 | case 3: |
| 95 | std_luminance_qt = Tbl_043Y; |
| 96 | break; |
| 97 | case 4: |
| 98 | std_luminance_qt = Tbl_057Y; |
| 99 | break; |
| 100 | case 5: |
| 101 | std_luminance_qt = Tbl_071Y; |
| 102 | break; |
| 103 | case 6: |
| 104 | std_luminance_qt = Tbl_086Y; |
| 105 | break; |
| 106 | case 7: |
| 107 | std_luminance_qt = Tbl_100Y; |
| 108 | break; |
| 109 | } |
| 110 | set_quant_table(std_luminance_qt, (uint8_t)SCALEFACTOR, tempQT); |
| 111 | |
| 112 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; |
| 113 | j = 0; |
| 114 | for (row = 0; row <= 7; row++) |
| 115 | for (col = 0; col <= 7; col++) { |
| 116 | quant_table[j] = |
| 117 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 118 | 65536); |
| 119 | j++; |
| 120 | } |
| 121 | byte_pos += 64; |
| 122 | } |
| 123 | |
| 124 | void load_quant_tableCb(std::array<long, 64> &quant_table) { |
| 125 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 126 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| 127 | uint8_t j, row, col; |
| 128 | uint8_t tempQT[64]; |
| 129 | |
| 130 | // Load quantization coefficients from JPG file, scale them for DCT and |
| 131 | // reorder from zig-zag order |
| 132 | if (Mapping == 0) { |
| 133 | switch (UV_selector) { |
| 134 | case 0: |
| 135 | std_chrominance_qt = Tbl_000Y; |
| 136 | break; |
| 137 | case 1: |
| 138 | std_chrominance_qt = Tbl_014Y; |
| 139 | break; |
| 140 | case 2: |
| 141 | std_chrominance_qt = Tbl_029Y; |
| 142 | break; |
| 143 | case 3: |
| 144 | std_chrominance_qt = Tbl_043Y; |
| 145 | break; |
| 146 | case 4: |
| 147 | std_chrominance_qt = Tbl_057Y; |
| 148 | break; |
| 149 | case 5: |
| 150 | std_chrominance_qt = Tbl_071Y; |
| 151 | break; |
| 152 | case 6: |
| 153 | std_chrominance_qt = Tbl_086Y; |
| 154 | break; |
| 155 | case 7: |
| 156 | std_chrominance_qt = Tbl_100Y; |
| 157 | break; |
| 158 | } |
| 159 | } else { |
| 160 | switch (UV_selector) { |
| 161 | case 0: |
| 162 | std_chrominance_qt = Tbl_000UV; |
| 163 | break; |
| 164 | case 1: |
| 165 | std_chrominance_qt = Tbl_014UV; |
| 166 | break; |
| 167 | case 2: |
| 168 | std_chrominance_qt = Tbl_029UV; |
| 169 | break; |
| 170 | case 3: |
| 171 | std_chrominance_qt = Tbl_043UV; |
| 172 | break; |
| 173 | case 4: |
| 174 | std_chrominance_qt = Tbl_057UV; |
| 175 | break; |
| 176 | case 5: |
| 177 | std_chrominance_qt = Tbl_071UV; |
| 178 | break; |
| 179 | case 6: |
| 180 | std_chrominance_qt = Tbl_086UV; |
| 181 | break; |
| 182 | case 7: |
| 183 | std_chrominance_qt = Tbl_100UV; |
| 184 | break; |
| 185 | } |
| 186 | } |
| 187 | set_quant_table(std_chrominance_qt, (uint8_t)SCALEFACTORUV, tempQT); |
| 188 | |
| 189 | for (j = 0; j <= 63; j++) { |
| 190 | quant_table[j] = tempQT[zigzag[j]]; |
| 191 | } |
| 192 | j = 0; |
| 193 | for (row = 0; row <= 7; row++) { |
| 194 | for (col = 0; col <= 7; col++) { |
| 195 | quant_table[j] = |
| 196 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 197 | 65536); |
| 198 | j++; |
| 199 | } |
| 200 | } |
| 201 | byte_pos += 64; |
| 202 | } |
| 203 | // Note: Added for Dual_JPEG |
| 204 | void load_advance_quant_table(std::array<long, 64> &quant_table) { |
| 205 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 206 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| 207 | uint8_t j, row, col; |
| 208 | uint8_t tempQT[64]; |
| 209 | |
| 210 | // Load quantization coefficients from JPG file, scale them for DCT and |
| 211 | // reorder |
| 212 | // from zig-zag order |
| 213 | switch (advance_selector) { |
| 214 | case 0: |
| 215 | std_luminance_qt = Tbl_000Y; |
| 216 | break; |
| 217 | case 1: |
| 218 | std_luminance_qt = Tbl_014Y; |
| 219 | break; |
| 220 | case 2: |
| 221 | std_luminance_qt = Tbl_029Y; |
| 222 | break; |
| 223 | case 3: |
| 224 | std_luminance_qt = Tbl_043Y; |
| 225 | break; |
| 226 | case 4: |
| 227 | std_luminance_qt = Tbl_057Y; |
| 228 | break; |
| 229 | case 5: |
| 230 | std_luminance_qt = Tbl_071Y; |
| 231 | break; |
| 232 | case 6: |
| 233 | std_luminance_qt = Tbl_086Y; |
| 234 | break; |
| 235 | case 7: |
| 236 | std_luminance_qt = Tbl_100Y; |
| 237 | break; |
| 238 | } |
| 239 | // Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG |
| 240 | set_quant_table(std_luminance_qt, (uint8_t)ADVANCESCALEFACTOR, tempQT); |
| 241 | |
| 242 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; |
| 243 | j = 0; |
| 244 | for (row = 0; row <= 7; row++) |
| 245 | for (col = 0; col <= 7; col++) { |
| 246 | quant_table[j] = |
| 247 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 248 | 65536); |
| 249 | j++; |
| 250 | } |
| 251 | byte_pos += 64; |
| 252 | } |
| 253 | |
| 254 | // Note: Added for Dual-JPEG |
| 255 | void load_advance_quant_tableCb(std::array<long, 64> &quant_table) { |
| 256 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 257 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| 258 | uint8_t j, row, col; |
| 259 | uint8_t tempQT[64]; |
| 260 | |
| 261 | // Load quantization coefficients from JPG file, scale them for DCT and |
| 262 | // reorder |
| 263 | // from zig-zag order |
| 264 | if (Mapping == 1) { |
| 265 | switch (advance_selector) { |
| 266 | case 0: |
| 267 | std_chrominance_qt = Tbl_000Y; |
| 268 | break; |
| 269 | case 1: |
| 270 | std_chrominance_qt = Tbl_014Y; |
| 271 | break; |
| 272 | case 2: |
| 273 | std_chrominance_qt = Tbl_029Y; |
| 274 | break; |
| 275 | case 3: |
| 276 | std_chrominance_qt = Tbl_043Y; |
| 277 | break; |
| 278 | case 4: |
| 279 | std_chrominance_qt = Tbl_057Y; |
| 280 | break; |
| 281 | case 5: |
| 282 | std_chrominance_qt = Tbl_071Y; |
| 283 | break; |
| 284 | case 6: |
| 285 | std_chrominance_qt = Tbl_086Y; |
| 286 | break; |
| 287 | case 7: |
| 288 | std_chrominance_qt = Tbl_100Y; |
| 289 | break; |
| 290 | } |
| 291 | } else { |
| 292 | switch (advance_selector) { |
| 293 | case 0: |
| 294 | std_chrominance_qt = Tbl_000UV; |
| 295 | break; |
| 296 | case 1: |
| 297 | std_chrominance_qt = Tbl_014UV; |
| 298 | break; |
| 299 | case 2: |
| 300 | std_chrominance_qt = Tbl_029UV; |
| 301 | break; |
| 302 | case 3: |
| 303 | std_chrominance_qt = Tbl_043UV; |
| 304 | break; |
| 305 | case 4: |
| 306 | std_chrominance_qt = Tbl_057UV; |
| 307 | break; |
| 308 | case 5: |
| 309 | std_chrominance_qt = Tbl_071UV; |
| 310 | break; |
| 311 | case 6: |
| 312 | std_chrominance_qt = Tbl_086UV; |
| 313 | break; |
| 314 | case 7: |
| 315 | std_chrominance_qt = Tbl_100UV; |
| 316 | break; |
| 317 | } |
| 318 | } |
| 319 | // Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG |
| 320 | set_quant_table(std_chrominance_qt, (uint8_t)ADVANCESCALEFACTORUV, tempQT); |
| 321 | |
| 322 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; |
| 323 | j = 0; |
| 324 | for (row = 0; row <= 7; row++) |
| 325 | for (col = 0; col <= 7; col++) { |
| 326 | quant_table[j] = |
| 327 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 328 | 65536); |
| 329 | j++; |
| 330 | } |
| 331 | byte_pos += 64; |
| 332 | } |
| 333 | |
| 334 | void IDCT_transform(short *coef, uint8_t *data, uint8_t nBlock) { |
| 335 | #define FIX_1_082392200 ((int)277) /* FIX(1.082392200) */ |
| 336 | #define FIX_1_414213562 ((int)362) /* FIX(1.414213562) */ |
| 337 | #define FIX_1_847759065 ((int)473) /* FIX(1.847759065) */ |
| 338 | #define FIX_2_613125930 ((int)669) /* FIX(2.613125930) */ |
| 339 | |
| 340 | #define MULTIPLY(var, cons) ((int)((var) * (cons)) >> 8) |
| 341 | |
| 342 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 343 | int tmp10, tmp11, tmp12, tmp13; |
| 344 | int z5, z10, z11, z12, z13; |
| 345 | int workspace[64]; /* buffers data between passes */ |
| 346 | |
| 347 | short *inptr = coef; |
| 348 | long *quantptr; |
| 349 | int *wsptr = workspace; |
| 350 | unsigned char *outptr; |
| 351 | unsigned char *r_limit = rlimit_table + 128; |
| 352 | int ctr, dcval, DCTSIZE = 8; |
| 353 | |
| 354 | quantptr = &QT[nBlock][0]; |
| 355 | |
| 356 | // Pass 1: process columns from input (inptr), store into work array(wsptr) |
| 357 | |
| 358 | for (ctr = 8; ctr > 0; ctr--) { |
| 359 | /* Due to quantization, we will usually find that many of the input |
| 360 | * coefficients are zero, especially the AC terms. We can exploit this |
| 361 | * by short-circuiting the IDCT calculation for any column in which all |
| 362 | * the AC terms are zero. In that case each output is equal to the |
| 363 | * DC coefficient (with scale factor as needed). |
| 364 | * With typical images and quantization tables, half or more of the |
| 365 | * column DCT calculations can be simplified this way. |
| 366 | */ |
| 367 | |
| 368 | if ((inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] | |
| 369 | inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] | |
| 370 | inptr[DCTSIZE * 7]) == 0) { |
| 371 | /* AC terms all zero */ |
| 372 | dcval = (int)((inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16); |
| 373 | |
| 374 | wsptr[DCTSIZE * 0] = dcval; |
| 375 | wsptr[DCTSIZE * 1] = dcval; |
| 376 | wsptr[DCTSIZE * 2] = dcval; |
| 377 | wsptr[DCTSIZE * 3] = dcval; |
| 378 | wsptr[DCTSIZE * 4] = dcval; |
| 379 | wsptr[DCTSIZE * 5] = dcval; |
| 380 | wsptr[DCTSIZE * 6] = dcval; |
| 381 | wsptr[DCTSIZE * 7] = dcval; |
| 382 | |
| 383 | inptr++; /* advance pointers to next column */ |
| 384 | quantptr++; |
| 385 | wsptr++; |
| 386 | continue; |
| 387 | } |
| 388 | |
| 389 | /* Even part */ |
| 390 | |
| 391 | tmp0 = (inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16; |
| 392 | tmp1 = (inptr[DCTSIZE * 2] * quantptr[DCTSIZE * 2]) >> 16; |
| 393 | tmp2 = (inptr[DCTSIZE * 4] * quantptr[DCTSIZE * 4]) >> 16; |
| 394 | tmp3 = (inptr[DCTSIZE * 6] * quantptr[DCTSIZE * 6]) >> 16; |
| 395 | |
| 396 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
| 397 | tmp11 = tmp0 - tmp2; |
| 398 | |
| 399 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
| 400 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
| 401 | |
| 402 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
| 403 | tmp3 = tmp10 - tmp13; |
| 404 | tmp1 = tmp11 + tmp12; |
| 405 | tmp2 = tmp11 - tmp12; |
| 406 | |
| 407 | /* Odd part */ |
| 408 | |
| 409 | tmp4 = (inptr[DCTSIZE * 1] * quantptr[DCTSIZE * 1]) >> 16; |
| 410 | tmp5 = (inptr[DCTSIZE * 3] * quantptr[DCTSIZE * 3]) >> 16; |
| 411 | tmp6 = (inptr[DCTSIZE * 5] * quantptr[DCTSIZE * 5]) >> 16; |
| 412 | tmp7 = (inptr[DCTSIZE * 7] * quantptr[DCTSIZE * 7]) >> 16; |
| 413 | |
| 414 | z13 = tmp6 + tmp5; /* phase 6 */ |
| 415 | z10 = tmp6 - tmp5; |
| 416 | z11 = tmp4 + tmp7; |
| 417 | z12 = tmp4 - tmp7; |
| 418 | |
| 419 | tmp7 = z11 + z13; /* phase 5 */ |
| 420 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
| 421 | |
| 422 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
| 423 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
| 424 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
| 425 | |
| 426 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
| 427 | tmp5 = tmp11 - tmp6; |
| 428 | tmp4 = tmp10 + tmp5; |
| 429 | |
| 430 | wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); |
| 431 | wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); |
| 432 | wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); |
| 433 | wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); |
| 434 | wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); |
| 435 | wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); |
| 436 | wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); |
| 437 | wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); |
| 438 | |
| 439 | inptr++; /* advance pointers to next column */ |
| 440 | quantptr++; |
| 441 | wsptr++; |
| 442 | } |
| 443 | |
| 444 | /* Pass 2: process rows from work array, store into output array. */ |
| 445 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
| 446 | /* and also undo the PASS1_BITS scaling. */ |
| 447 | |
| 448 | //#define RANGE_MASK 1023; //2 bits wider than legal samples |
| 449 | #define PASS1_BITS 0 |
| 450 | #define IDESCALE(x, n) ((int)((x) >> n)) |
| 451 | |
| 452 | wsptr = workspace; |
| 453 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| 454 | outptr = data + ctr * 8; |
| 455 | |
| 456 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
| 457 | * However, the column calculation has created many nonzero AC terms, so |
| 458 | * the simplification applies less often (typically 5% to 10% of the time). |
| 459 | * On machines with very fast multiplication, it's possible that the |
| 460 | * test takes more time than it's worth. In that case this section |
| 461 | * may be commented out. |
| 462 | */ |
| 463 | /* Even part */ |
| 464 | |
| 465 | tmp10 = ((int)wsptr[0] + (int)wsptr[4]); |
| 466 | tmp11 = ((int)wsptr[0] - (int)wsptr[4]); |
| 467 | |
| 468 | tmp13 = ((int)wsptr[2] + (int)wsptr[6]); |
| 469 | tmp12 = MULTIPLY((int)wsptr[2] - (int)wsptr[6], FIX_1_414213562) - tmp13; |
| 470 | |
| 471 | tmp0 = tmp10 + tmp13; |
| 472 | tmp3 = tmp10 - tmp13; |
| 473 | tmp1 = tmp11 + tmp12; |
| 474 | tmp2 = tmp11 - tmp12; |
| 475 | |
| 476 | /* Odd part */ |
| 477 | |
| 478 | z13 = (int)wsptr[5] + (int)wsptr[3]; |
| 479 | z10 = (int)wsptr[5] - (int)wsptr[3]; |
| 480 | z11 = (int)wsptr[1] + (int)wsptr[7]; |
| 481 | z12 = (int)wsptr[1] - (int)wsptr[7]; |
| 482 | |
| 483 | tmp7 = z11 + z13; /* phase 5 */ |
| 484 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
| 485 | |
| 486 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
| 487 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
| 488 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
| 489 | |
| 490 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
| 491 | tmp5 = tmp11 - tmp6; |
| 492 | tmp4 = tmp10 + tmp5; |
| 493 | |
| 494 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
| 495 | |
| 496 | outptr[0] = r_limit[IDESCALE((tmp0 + tmp7), (PASS1_BITS + 3)) & 1023L]; |
| 497 | outptr[7] = r_limit[IDESCALE((tmp0 - tmp7), (PASS1_BITS + 3)) & 1023L]; |
| 498 | outptr[1] = r_limit[IDESCALE((tmp1 + tmp6), (PASS1_BITS + 3)) & 1023L]; |
| 499 | outptr[6] = r_limit[IDESCALE((tmp1 - tmp6), (PASS1_BITS + 3)) & 1023L]; |
| 500 | outptr[2] = r_limit[IDESCALE((tmp2 + tmp5), (PASS1_BITS + 3)) & 1023L]; |
| 501 | outptr[5] = r_limit[IDESCALE((tmp2 - tmp5), (PASS1_BITS + 3)) & 1023L]; |
| 502 | outptr[4] = r_limit[IDESCALE((tmp3 + tmp4), (PASS1_BITS + 3)) & 1023L]; |
| 503 | outptr[3] = r_limit[IDESCALE((tmp3 - tmp4), (PASS1_BITS + 3)) & 1023L]; |
| 504 | |
| 505 | wsptr += DCTSIZE; /* advance pointer to next row */ |
| 506 | } |
| 507 | } |
| 508 | void YUVToRGB( |
| 509 | int txb, int tyb, |
| 510 | unsigned char |
| 511 | *pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| 512 | struct RGB *pYUV, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| 513 | unsigned char |
| 514 | *pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| 515 | ) { |
| 516 | int i, j, pos, m, n; |
| 517 | unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; |
| 518 | int y; |
| 519 | struct RGB *pByte; |
| 520 | int nBlocksInMcu = 6; |
| 521 | unsigned int pixel_x, pixel_y; |
| 522 | |
| 523 | pByte = (struct RGB *)pBgr; |
| 524 | if (yuvmode == YuvMode::YUV444) { |
| 525 | py = pYCbCr; |
| 526 | pcb = pYCbCr + 64; |
| 527 | pcr = pcb + 64; |
| 528 | |
| 529 | pixel_x = txb * 8; |
| 530 | pixel_y = tyb * 8; |
| 531 | pos = (pixel_y * WIDTH) + pixel_x; |
| 532 | |
| 533 | for (j = 0; j < 8; j++) { |
| 534 | for (i = 0; i < 8; i++) { |
| 535 | m = ((j << 3) + i); |
| 536 | y = py[m]; |
| 537 | cb = pcb[m]; |
| 538 | cr = pcr[m]; |
| 539 | n = pos + i; |
| 540 | // For 2Pass. Save the YUV value |
| 541 | pYUV[n].B = cb; |
| 542 | pYUV[n].G = y; |
| 543 | pYUV[n].R = cr; |
| 544 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; |
| 545 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; |
| 546 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; |
| 547 | /* |
| 548 | std::cout << "set y:" << n / 800 << " x:" << n % 800 << " to " |
| 549 | << " B:" << static_cast<uint32_t>(pByte[n].B) |
| 550 | << " G:" << static_cast<uint32_t>(pByte[n].G) |
| 551 | << " R:" << static_cast<uint32_t>(pByte[n].R) << "\n"; |
| 552 | */ |
| 553 | } |
| 554 | pos += WIDTH; |
| 555 | } |
| 556 | } else { |
| 557 | for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64; |
| 558 | pcb = pYCbCr + (nBlocksInMcu - 2) * 64; |
| 559 | pcr = pcb + 64; |
| 560 | |
| 561 | pixel_x = txb * 16; |
| 562 | pixel_y = tyb * 16; |
| 563 | pos = (pixel_y * WIDTH) + pixel_x; |
| 564 | |
| 565 | for (j = 0; j < 16; j++) { |
| 566 | for (i = 0; i < 16; i++) { |
| 567 | // block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} |
| 568 | y = *(py420[(j >> 3) * 2 + (i >> 3)]++); |
| 569 | m = ((j >> 1) << 3) + (i >> 1); |
| 570 | cb = pcb[m]; |
| 571 | cr = pcr[m]; |
| 572 | n = pos + i; |
| 573 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; |
| 574 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; |
| 575 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; |
| 576 | } |
| 577 | pos += WIDTH; |
| 578 | } |
| 579 | } |
| 580 | } |
| 581 | void YUVToBuffer( |
| 582 | int txb, int tyb, |
| 583 | unsigned char |
| 584 | *pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| 585 | struct RGB |
| 586 | *pYUV, // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| 587 | unsigned char |
| 588 | *pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| 589 | ) { |
| 590 | int i, j, pos, m, n; |
| 591 | unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; |
| 592 | int y; |
| 593 | struct RGB *pByte; |
| 594 | int nBlocksInMcu = 6; |
| 595 | unsigned int pixel_x, pixel_y; |
| 596 | |
| 597 | pByte = (struct RGB *)pBgr; |
| 598 | if (yuvmode == YuvMode::YUV444) { |
| 599 | py = pYCbCr; |
| 600 | pcb = pYCbCr + 64; |
| 601 | pcr = pcb + 64; |
| 602 | |
| 603 | pixel_x = txb * 8; |
| 604 | pixel_y = tyb * 8; |
| 605 | pos = (pixel_y * WIDTH) + pixel_x; |
| 606 | |
| 607 | for (j = 0; j < 8; j++) { |
| 608 | for (i = 0; i < 8; i++) { |
| 609 | m = ((j << 3) + i); |
| 610 | n = pos + i; |
| 611 | y = pYUV[n].G + (py[m] - 128); |
| 612 | cb = pYUV[n].B + (pcb[m] - 128); |
| 613 | cr = pYUV[n].R + (pcr[m] - 128); |
| 614 | pYUV[n].B = cb; |
| 615 | pYUV[n].G = y; |
| 616 | pYUV[n].R = cr; |
| 617 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; |
| 618 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; |
| 619 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; |
| 620 | } |
| 621 | pos += WIDTH; |
| 622 | } |
| 623 | } else { |
| 624 | for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64; |
| 625 | pcb = pYCbCr + (nBlocksInMcu - 2) * 64; |
| 626 | pcr = pcb + 64; |
| 627 | |
| 628 | pixel_x = txb * 16; |
| 629 | pixel_y = tyb * 16; |
| 630 | pos = (pixel_y * WIDTH) + pixel_x; |
| 631 | |
| 632 | for (j = 0; j < 16; j++) { |
| 633 | for (i = 0; i < 16; i++) { |
| 634 | // block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} |
| 635 | y = *(py420[(j >> 3) * 2 + (i >> 3)]++); |
| 636 | m = ((j >> 1) << 3) + (i >> 1); |
| 637 | cb = pcb[m]; |
| 638 | cr = pcr[m]; |
| 639 | n = pos + i; |
| 640 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; |
| 641 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; |
| 642 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; |
| 643 | } |
| 644 | pos += WIDTH; |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | int Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection) { |
| 649 | unsigned char *ptr; |
| 650 | unsigned char byTileYuv[768] = {}; |
| 651 | |
| 652 | memset(DCT_coeff, 0, 384 * 2); |
| 653 | ptr = byTileYuv; |
| 654 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0); |
| 655 | IDCT_transform(DCT_coeff, ptr, QT_TableSelection); |
| 656 | ptr += 64; |
| 657 | |
| 658 | if (yuvmode == YuvMode::YUV420) { |
| 659 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 64); |
| 660 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection); |
| 661 | ptr += 64; |
| 662 | |
| 663 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 128); |
| 664 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection); |
| 665 | ptr += 64; |
| 666 | |
| 667 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 192); |
| 668 | IDCT_transform(DCT_coeff + 192, ptr, QT_TableSelection); |
| 669 | ptr += 64; |
| 670 | |
| 671 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 256); |
| 672 | IDCT_transform(DCT_coeff + 256, ptr, QT_TableSelection + 1); |
| 673 | ptr += 64; |
| 674 | |
| 675 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 320); |
| 676 | IDCT_transform(DCT_coeff + 320, ptr, QT_TableSelection + 1); |
| 677 | } else { |
| 678 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64); |
| 679 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1); |
| 680 | ptr += 64; |
| 681 | |
| 682 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128); |
| 683 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1); |
| 684 | } |
| 685 | |
| 686 | // YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| 687 | // YUVBuffer for YUV record |
| 688 | YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); |
| 689 | if (txb == 0 && tyb == 0) { |
| 690 | for (int i=0; i < 10; i++) { |
| 691 | auto pixel = YUVBuffer[i]; |
| 692 | std::cout << "YUBuffer " << static_cast<int>(pixel.R) << " " |
| 693 | << static_cast<int>(pixel.G) << static_cast<int>(pixel.B) |
| 694 | << "\n"; |
| 695 | } |
| 696 | } |
| 697 | return 1; |
| 698 | } |
| 699 | |
| 700 | int Decompress_2PASS(int txb, int tyb, char *outBuf, |
| 701 | uint8_t QT_TableSelection) { |
| 702 | unsigned char *ptr; |
| 703 | unsigned char byTileYuv[768]; |
| 704 | memset(DCT_coeff, 0, 384 * 2); |
| 705 | |
| 706 | ptr = byTileYuv; |
| 707 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0); |
| 708 | IDCT_transform(DCT_coeff, ptr, QT_TableSelection); |
| 709 | ptr += 64; |
| 710 | |
| 711 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64); |
| 712 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1); |
| 713 | ptr += 64; |
| 714 | |
| 715 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128); |
| 716 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1); |
| 717 | |
| 718 | YUVToBuffer(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); |
| 719 | // YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| 720 | |
| 721 | return 1; |
| 722 | } |
| 723 | |
| 724 | int VQ_Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection, |
| 725 | struct COLOR_CACHE *VQ) { |
| 726 | unsigned char *ptr, i; |
| 727 | unsigned char byTileYuv[192]; |
| 728 | int Data; |
| 729 | |
| 730 | ptr = byTileYuv; |
| 731 | if (VQ->BitMapBits == 0) { |
| 732 | for (i = 0; i < 64; i++) { |
| 733 | ptr[0] = (VQ->Color[VQ->Index[0]] & 0xFF0000) >> 16; |
| 734 | ptr[64] = (VQ->Color[VQ->Index[0]] & 0x00FF00) >> 8; |
| 735 | ptr[128] = VQ->Color[VQ->Index[0]] & 0x0000FF; |
| 736 | ptr += 1; |
| 737 | } |
| 738 | } else { |
| 739 | for (i = 0; i < 64; i++) { |
| 740 | Data = (int)lookKbits(VQ->BitMapBits); |
| 741 | ptr[0] = (VQ->Color[VQ->Index[Data]] & 0xFF0000) >> 16; |
| 742 | ptr[64] = (VQ->Color[VQ->Index[Data]] & 0x00FF00) >> 8; |
| 743 | ptr[128] = VQ->Color[VQ->Index[Data]] & 0x0000FF; |
| 744 | ptr += 1; |
| 745 | skipKbits(VQ->BitMapBits); |
| 746 | } |
| 747 | } |
| 748 | // YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| 749 | YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); |
| 750 | |
| 751 | return 1; |
| 752 | } |
| 753 | |
| 754 | void MoveBlockIndex(void) { |
| 755 | if (yuvmode == YuvMode::YUV444) { |
| 756 | txb++; |
| 757 | if (txb >= (int)(tmp_WIDTH / 8)) { |
| 758 | tyb++; |
| 759 | if (tyb >= (int)(tmp_HEIGHT / 8)) tyb = 0; |
| 760 | txb = 0; |
| 761 | } |
| 762 | } else { |
| 763 | txb++; |
| 764 | if (txb >= (int)(tmp_WIDTH / 16)) { |
| 765 | tyb++; |
| 766 | if (tyb >= (int)(tmp_HEIGHT / 16)) tyb = 0; |
| 767 | txb = 0; |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | void VQ_Initialize(struct COLOR_CACHE *VQ) { |
| 773 | int i; |
| 774 | |
| 775 | for (i = 0; i < 4; i++) { |
| 776 | VQ->Index[i] = i; |
| 777 | } |
| 778 | VQ->Color[0] = 0x008080; |
| 779 | VQ->Color[1] = 0xFF8080; |
| 780 | VQ->Color[2] = 0x808080; |
| 781 | VQ->Color[3] = 0xC08080; |
| 782 | } |
| 783 | void init_QT() {} |
| 784 | |
| 785 | void Init_Color_Table() { |
| 786 | int i, x; |
| 787 | int nScale = 1L << 16; // equal to power(2,16) |
| 788 | int nHalf = nScale >> 1; |
| 789 | |
| 790 | #define FIX(x) ((int)((x)*nScale + 0.5)) |
| 791 | |
| 792 | /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
| 793 | /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
| 794 | /* Cr=>R value is nearest int to 1.597656 * x */ |
| 795 | /* Cb=>B value is nearest int to 2.015625 * x */ |
| 796 | /* Cr=>G value is scaled-up -0.8125 * x */ |
| 797 | /* Cb=>G value is scaled-up -0.390625 * x */ |
| 798 | for (i = 0, x = -128; i < 256; i++, x++) { |
| 799 | m_CrToR[i] = (int)(FIX(1.597656) * x + nHalf) >> 16; |
| 800 | m_CbToB[i] = (int)(FIX(2.015625) * x + nHalf) >> 16; |
| 801 | m_CrToG[i] = (int)(-FIX(0.8125) * x + nHalf) >> 16; |
| 802 | m_CbToG[i] = (int)(-FIX(0.390625) * x + nHalf) >> 16; |
| 803 | } |
| 804 | for (i = 0, x = -16; i < 256; i++, x++) { |
| 805 | m_Y[i] = (int)(FIX(1.164) * x + nHalf) >> 16; |
| 806 | } |
| 807 | // For Color Text Enchance Y Re-map. Recommend to disable in default |
| 808 | /* |
| 809 | for (i = 0; i < (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); |
| 810 | i++) { |
| 811 | temp = (double)i / |
| 812 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate; |
| 813 | temp1 = 1.0 / VideoEngineInfo->INFData.Gamma1Parameter; |
| 814 | m_Y[i] = |
| 815 | (BYTE)(VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate * pow (temp, |
| 816 | temp1)); |
| 817 | if (m_Y[i] > 255) m_Y[i] = 255; |
| 818 | } |
| 819 | for (i = (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); i < 256; |
| 820 | i++) { |
| 821 | m_Y[i] = |
| 822 | (BYTE)((VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) + (256 - |
| 823 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) * ( pow((double)((i - |
| 824 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) / (256 - |
| 825 | (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate))), (1.0 / |
| 826 | VideoEngineInfo->INFData.Gamma2Parameter)) )); |
| 827 | if (m_Y[i] > 255) m_Y[i] = 255; |
| 828 | } |
| 829 | */ |
| 830 | } |
| 831 | void load_Huffman_table(Huffman_table *HT, unsigned char *nrcode, |
| 832 | unsigned char *value, unsigned short int *Huff_code) { |
| 833 | unsigned char k, j, i; |
| 834 | unsigned int code, code_index; |
| 835 | |
| 836 | for (j = 1; j <= 16; j++) { |
| 837 | HT->Length[j] = nrcode[j]; |
| 838 | } |
| 839 | for (i = 0, k = 1; k <= 16; k++) |
| 840 | for (j = 0; j < HT->Length[k]; j++) { |
| 841 | HT->V[WORD_hi_lo(k, j)] = value[i]; |
| 842 | i++; |
| 843 | } |
| 844 | |
| 845 | code = 0; |
| 846 | for (k = 1; k <= 16; k++) { |
| 847 | HT->minor_code[k] = (unsigned short int)code; |
| 848 | for (j = 1; j <= HT->Length[k]; j++) code++; |
| 849 | HT->major_code[k] = (unsigned short int)(code - 1); |
| 850 | code *= 2; |
| 851 | if (HT->Length[k] == 0) { |
| 852 | HT->minor_code[k] = 0xFFFF; |
| 853 | HT->major_code[k] = 0; |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | HT->Len[0] = 2; |
| 858 | i = 2; |
| 859 | |
| 860 | for (code_index = 1; code_index < 65535; code_index++) { |
| 861 | if (code_index < Huff_code[i]) { |
| 862 | HT->Len[code_index] = (unsigned char)Huff_code[i + 1]; |
| 863 | } else { |
| 864 | i = i + 2; |
| 865 | HT->Len[code_index] = (unsigned char)Huff_code[i + 1]; |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | void init_jpg_table() { |
| 870 | init_QT(); |
| 871 | Init_Color_Table(); |
| 872 | prepare_range_limit_table(); |
| 873 | load_Huffman_table(&HTDC[0], std_dc_luminance_nrcodes, |
| 874 | std_dc_luminance_values, DC_LUMINANCE_HUFFMANCODE); |
| 875 | load_Huffman_table(&HTAC[0], std_ac_luminance_nrcodes, |
| 876 | std_ac_luminance_values, AC_LUMINANCE_HUFFMANCODE); |
| 877 | load_Huffman_table(&HTDC[1], std_dc_chrominance_nrcodes, |
| 878 | std_dc_chrominance_values, DC_CHROMINANCE_HUFFMANCODE); |
| 879 | load_Huffman_table(&HTAC[1], std_ac_chrominance_nrcodes, |
| 880 | std_ac_chrominance_values, AC_CHROMINANCE_HUFFMANCODE); |
| 881 | } |
| 882 | |
| 883 | void prepare_range_limit_table() |
| 884 | /* Allocate and fill in the sample_range_limit table */ |
| 885 | { |
| 886 | int j; |
| 887 | rlimit_table = (unsigned char *)malloc(5 * 256L + 128); |
| 888 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ |
| 889 | memset((void *)rlimit_table, 0, 256); |
| 890 | rlimit_table += 256; /* allow negative subscripts of simple table */ |
| 891 | /* Main part of "simple" table: limit[x] = x */ |
| 892 | for (j = 0; j < 256; j++) rlimit_table[j] = j; |
| 893 | /* End of simple table, rest of first half of post-IDCT table */ |
| 894 | for (j = 256; j < 640; j++) rlimit_table[j] = 255; |
| 895 | |
| 896 | /* Second half of post-IDCT table */ |
| 897 | memset((void *)(rlimit_table + 640), 0, 384); |
| 898 | for (j = 0; j < 128; j++) rlimit_table[j + 1024] = j; |
| 899 | } |
| 900 | |
| 901 | inline unsigned short int WORD_hi_lo(uint8_t byte_high, uint8_t byte_low) { |
| 902 | return (byte_high << 8) + byte_low; |
| 903 | } |
| 904 | |
| 905 | // river |
| 906 | void process_Huffman_data_unit(uint8_t DC_nr, uint8_t AC_nr, |
| 907 | signed short int *previous_DC, |
| 908 | unsigned short int position) { |
| 909 | uint8_t nr = 0; |
| 910 | uint8_t k; |
| 911 | unsigned short int tmp_Hcode; |
| 912 | uint8_t size_val, count_0; |
| 913 | unsigned short int *min_code; |
| 914 | uint8_t *huff_values; |
| 915 | uint8_t byte_temp; |
| 916 | |
| 917 | min_code = HTDC[DC_nr].minor_code; |
| 918 | // maj_code=HTDC[DC_nr].major_code; |
| 919 | huff_values = HTDC[DC_nr].V; |
| 920 | |
| 921 | // DC |
| 922 | k = HTDC[DC_nr].Len[(unsigned short int)(codebuf >> 16)]; |
| 923 | // river |
| 924 | // tmp_Hcode=lookKbits(k); |
| 925 | tmp_Hcode = (unsigned short int)(codebuf >> (32 - k)); |
| 926 | skipKbits(k); |
| 927 | size_val = huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))]; |
| 928 | if (size_val == 0) |
| 929 | DCT_coeff[position + 0] = *previous_DC; |
| 930 | else { |
| 931 | DCT_coeff[position + 0] = *previous_DC + getKbits(size_val); |
| 932 | *previous_DC = DCT_coeff[position + 0]; |
| 933 | } |
| 934 | |
| 935 | // Second, AC coefficient decoding |
| 936 | min_code = HTAC[AC_nr].minor_code; |
| 937 | // maj_code=HTAC[AC_nr].major_code; |
| 938 | huff_values = HTAC[AC_nr].V; |
| 939 | |
| 940 | nr = 1; // AC coefficient |
| 941 | do { |
| 942 | k = HTAC[AC_nr].Len[(unsigned short int)(codebuf >> 16)]; |
| 943 | tmp_Hcode = (unsigned short int)(codebuf >> (32 - k)); |
| 944 | skipKbits(k); |
| 945 | |
| 946 | byte_temp = |
| 947 | huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))]; |
| 948 | size_val = byte_temp & 0xF; |
| 949 | count_0 = byte_temp >> 4; |
| 950 | if (size_val == 0) { |
| 951 | if (count_0 != 0xF) { |
| 952 | break; |
| 953 | } |
| 954 | nr += 16; |
| 955 | } else { |
| 956 | nr += count_0; // skip count_0 zeroes |
| 957 | DCT_coeff[position + dezigzag[nr++]] = getKbits(size_val); |
| 958 | } |
| 959 | } while (nr < 64); |
| 960 | } |
| 961 | |
| 962 | unsigned short int lookKbits(uint8_t k) { |
| 963 | unsigned short int revcode; |
| 964 | |
| 965 | revcode = (unsigned short int)(codebuf >> (32 - k)); |
| 966 | |
| 967 | return (revcode); |
| 968 | } |
| 969 | |
| 970 | void skipKbits(uint8_t k) { |
| 971 | unsigned long readbuf; |
| 972 | |
| 973 | if ((newbits - k) <= 0) { |
| 974 | readbuf = Buffer[buffer_index]; |
| 975 | buffer_index++; |
| 976 | codebuf = |
| 977 | (codebuf << k) | ((newbuf | (readbuf >> (newbits))) >> (32 - k)); |
| 978 | newbuf = readbuf << (k - newbits); |
| 979 | newbits = 32 + newbits - k; |
| 980 | } else { |
| 981 | codebuf = (codebuf << k) | (newbuf >> (32 - k)); |
| 982 | newbuf = newbuf << k; |
| 983 | newbits -= k; |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | signed short int getKbits(uint8_t k) { |
| 988 | signed short int signed_wordvalue; |
| 989 | |
| 990 | // river |
| 991 | // signed_wordvalue=lookKbits(k); |
| 992 | signed_wordvalue = (unsigned short int)(codebuf >> (32 - k)); |
| 993 | if (((1L << (k - 1)) & signed_wordvalue) == 0) { |
| 994 | // neg_pow2 was previously defined as the below. It seemed silly to keep |
| 995 | // a table of values around for something |
| 996 | // THat's relatively easy to compute, so it was replaced with the |
| 997 | // appropriate math |
| 998 | // signed_wordvalue = signed_wordvalue - (0xFFFF >> (16 - k)); |
| 999 | std::array<signed short int, 17> neg_pow2 = { |
| 1000 | 0, -1, -3, -7, -15, -31, -63, -127, |
| 1001 | -255, -511, -1023, -2047, -4095, -8191, -16383, -32767}; |
| 1002 | |
| 1003 | signed_wordvalue = signed_wordvalue + neg_pow2[k]; |
| 1004 | } |
| 1005 | skipKbits(k); |
| 1006 | return signed_wordvalue; |
| 1007 | } |
| 1008 | int init_JPG_decoding() { |
| 1009 | byte_pos = 0; |
| 1010 | load_quant_table(QT[0]); |
| 1011 | load_quant_tableCb(QT[1]); |
| 1012 | // Note: Added for Dual-JPEG |
| 1013 | load_advance_quant_table(QT[2]); |
| 1014 | load_advance_quant_tableCb(QT[3]); |
| 1015 | return 1; |
| 1016 | } |
| 1017 | |
| 1018 | void set_quant_table(uint8_t *basic_table, uint8_t scale_factor, |
| 1019 | uint8_t *newtable) |
| 1020 | // Set quantization table and zigzag reorder it |
| 1021 | { |
| 1022 | uint8_t i; |
| 1023 | long temp; |
| 1024 | for (i = 0; i < 64; i++) { |
| 1025 | temp = ((long)(basic_table[i] * 16) / scale_factor); |
| 1026 | /* limit the values to the valid range */ |
| 1027 | if (temp <= 0L) temp = 1L; |
| 1028 | if (temp > 255L) temp = 255L; /* limit to baseline range if requested */ |
| 1029 | newtable[zigzag[i]] = (uint8_t)temp; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | void updatereadbuf(uint32_t *codebuf, uint32_t *newbuf, int walks, |
| 1034 | int *newbits, std::vector<uint32_t> &Buffer) { |
| 1035 | unsigned long readbuf; |
| 1036 | |
| 1037 | if ((*newbits - walks) <= 0) { |
| 1038 | readbuf = Buffer[buffer_index]; |
| 1039 | buffer_index++; |
| 1040 | *codebuf = (*codebuf << walks) | |
| 1041 | ((*newbuf | (readbuf >> (*newbits))) >> (32 - walks)); |
| 1042 | *newbuf = readbuf << (walks - *newbits); |
| 1043 | *newbits = 32 + *newbits - walks; |
| 1044 | } else { |
| 1045 | *codebuf = (*codebuf << walks) | (*newbuf >> (32 - walks)); |
| 1046 | *newbuf = *newbuf << walks; |
| 1047 | *newbits -= walks; |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | uint32_t decode(std::vector<uint32_t> &buffer, unsigned long width, |
| 1052 | unsigned long height, YuvMode yuvmode_in, int y_selector, |
| 1053 | int uv_selector) { |
| 1054 | uint32_t i; |
| 1055 | COLOR_CACHE Decode_Color; |
| 1056 | |
| 1057 | // TODO(ed) use the enum everywhere, not just externally |
| 1058 | yuvmode = yuvmode_in; // 0 = YUV444, 1 = YUV420 |
| 1059 | Y_selector = y_selector; // 0-7 |
| 1060 | UV_selector = uv_selector; // 0-7 |
| 1061 | |
| 1062 | // TODO(ed) Magic number section. Document appropriately |
| 1063 | advance_selector = 0; // 0-7 |
| 1064 | First_Frame = 1; // 0 or 1 |
| 1065 | Mapping = 0; // 0 or 1 |
| 1066 | /* |
| 1067 | if (yuvmode == YuvMode::YUV420) { |
| 1068 | Y_selector = 4; |
| 1069 | UV_selector = 7; |
| 1070 | Mapping = 0; |
| 1071 | } else { // YUV444 |
| 1072 | Y_selector = 7; |
| 1073 | UV_selector = 7; |
| 1074 | Mapping = 0; |
| 1075 | } |
| 1076 | */ |
| 1077 | auto test = static_cast<int>(yuvmode); |
| 1078 | std::cout << "YUVmode " << test << " " << static_cast<int>(Y_selector) << static_cast<int>(UV_selector) << "\n"; |
| 1079 | |
| 1080 | tmp_WIDTH = width; |
| 1081 | tmp_HEIGHT = height; |
| 1082 | WIDTH = width; |
| 1083 | HEIGHT = height; |
| 1084 | |
| 1085 | VQ_Initialize(&Decode_Color); |
| 1086 | // OutputDebugString ("In decode\n"); |
| 1087 | // GetINFData (VideoEngineInfo); |
| 1088 | // WIDTH = VideoEngineInfo->SourceModeInfo.X = 640; |
| 1089 | // HEIGHT = VideoEngineInfo->SourceModeInfo.Y = 480; |
| 1090 | // AST2000 JPEG block is 16x16(pixels) base |
| 1091 | if (yuvmode == YuvMode::YUV420) { |
| 1092 | if (WIDTH % 16) { |
| 1093 | WIDTH = WIDTH + 16 - (WIDTH % 16); |
| 1094 | } |
| 1095 | if (HEIGHT % 16) { |
| 1096 | HEIGHT = HEIGHT + 16 - (HEIGHT % 16); |
| 1097 | } |
| 1098 | } else { |
| 1099 | if (WIDTH % 8) { |
| 1100 | WIDTH = WIDTH + 8 - (WIDTH % 8); |
| 1101 | } |
| 1102 | if (HEIGHT % 8) { |
| 1103 | HEIGHT = HEIGHT + 8 - (HEIGHT % 8); |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | // tmp_WDITH, tmp_HEIGHT are for block position |
| 1108 | // tmp_WIDTH = VideoEngineInfo->DestinationModeInfo.X; |
| 1109 | // tmp_HEIGHT = VideoEngineInfo->DestinationModeInfo.Y; |
| 1110 | if (yuvmode == YuvMode::YUV420) { |
| 1111 | if (tmp_WIDTH % 16) { |
| 1112 | tmp_WIDTH = tmp_WIDTH + 16 - (tmp_WIDTH % 16); |
| 1113 | } |
| 1114 | if (tmp_HEIGHT % 16) { |
| 1115 | tmp_HEIGHT = tmp_HEIGHT + 16 - (tmp_HEIGHT % 16); |
| 1116 | } |
| 1117 | } else { |
| 1118 | if (tmp_WIDTH % 8) { |
| 1119 | tmp_WIDTH = tmp_WIDTH + 8 - (tmp_WIDTH % 8); |
| 1120 | } |
| 1121 | if (tmp_HEIGHT % 8) { |
| 1122 | tmp_HEIGHT = tmp_HEIGHT + 8 - (tmp_HEIGHT % 8); |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | int qfactor = 16; |
| 1127 | |
| 1128 | SCALEFACTOR = qfactor; |
| 1129 | SCALEFACTORUV = qfactor; |
| 1130 | ADVANCESCALEFACTOR = 16; |
| 1131 | ADVANCESCALEFACTORUV = 16; |
| 1132 | |
| 1133 | if (First_Frame == 1) { |
| 1134 | init_jpg_table(); |
| 1135 | init_JPG_decoding(); |
| 1136 | } |
| 1137 | // TODO(ed) cleanup cruft |
| 1138 | Buffer = buffer.data(); |
| 1139 | |
| 1140 | codebuf = buffer[0]; |
| 1141 | newbuf = buffer[1]; |
| 1142 | buffer_index = 2; |
| 1143 | |
| 1144 | txb = tyb = 0; |
| 1145 | newbits = 32; |
| 1146 | DCY = DCCb = DCCr = 0; |
| 1147 | |
| 1148 | do { |
| 1149 | auto block_header = static_cast<JpgBlock>((codebuf >> 28) & 0xFF); |
| 1150 | switch (block_header) { |
| 1151 | case JpgBlock::JPEG_NO_SKIP_CODE: |
| 1152 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, |
| 1153 | buffer); |
| 1154 | Decompress(txb, tyb, (char *)OutBuffer.data(), 0); |
| 1155 | break; |
| 1156 | case JpgBlock::FRAME_END_CODE: |
| 1157 | return 0; |
| 1158 | break; |
| 1159 | case JpgBlock::JPEG_SKIP_CODE: |
| 1160 | |
| 1161 | txb = (codebuf & 0x0FF00000) >> 20; |
| 1162 | tyb = (codebuf & 0x0FF000) >> 12; |
| 1163 | |
| 1164 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, |
| 1165 | buffer); |
| 1166 | Decompress(txb, tyb, (char *)OutBuffer.data(), 0); |
| 1167 | break; |
| 1168 | case JpgBlock::VQ_NO_SKIP_1_COLOR_CODE: |
| 1169 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, |
| 1170 | buffer); |
| 1171 | Decode_Color.BitMapBits = 0; |
| 1172 | |
| 1173 | for (i = 0; i < 1; i++) { |
| 1174 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1175 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1176 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1177 | buffer); |
| 1178 | } else { |
| 1179 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1180 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1181 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1182 | buffer); |
| 1183 | } |
| 1184 | } |
| 1185 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1186 | break; |
| 1187 | case JpgBlock::VQ_SKIP_1_COLOR_CODE: |
| 1188 | txb = (codebuf & 0x0FF00000) >> 20; |
| 1189 | tyb = (codebuf & 0x0FF000) >> 12; |
| 1190 | |
| 1191 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, |
| 1192 | buffer); |
| 1193 | Decode_Color.BitMapBits = 0; |
| 1194 | |
| 1195 | for (i = 0; i < 1; i++) { |
| 1196 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1197 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1198 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1199 | buffer); |
| 1200 | } else { |
| 1201 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1202 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1203 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1204 | buffer); |
| 1205 | } |
| 1206 | } |
| 1207 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1208 | break; |
| 1209 | |
| 1210 | case JpgBlock::VQ_NO_SKIP_2_COLOR_CODE: |
| 1211 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, |
| 1212 | buffer); |
| 1213 | Decode_Color.BitMapBits = 1; |
| 1214 | |
| 1215 | for (i = 0; i < 2; i++) { |
| 1216 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1217 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1218 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1219 | buffer); |
| 1220 | } else { |
| 1221 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1222 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1223 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1224 | buffer); |
| 1225 | } |
| 1226 | } |
| 1227 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1228 | break; |
| 1229 | case JpgBlock::VQ_SKIP_2_COLOR_CODE: |
| 1230 | txb = (codebuf & 0x0FF00000) >> 20; |
| 1231 | tyb = (codebuf & 0x0FF000) >> 12; |
| 1232 | |
| 1233 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, |
| 1234 | buffer); |
| 1235 | Decode_Color.BitMapBits = 1; |
| 1236 | |
| 1237 | for (i = 0; i < 2; i++) { |
| 1238 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1239 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1240 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1241 | buffer); |
| 1242 | } else { |
| 1243 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1244 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1245 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1246 | buffer); |
| 1247 | } |
| 1248 | } |
| 1249 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1250 | |
| 1251 | break; |
| 1252 | case JpgBlock::VQ_NO_SKIP_4_COLOR_CODE: |
| 1253 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, |
| 1254 | buffer); |
| 1255 | Decode_Color.BitMapBits = 2; |
| 1256 | |
| 1257 | for (i = 0; i < 4; i++) { |
| 1258 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1259 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1260 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1261 | buffer); |
| 1262 | } else { |
| 1263 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1264 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1265 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1266 | buffer); |
| 1267 | } |
| 1268 | } |
| 1269 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1270 | |
| 1271 | break; |
| 1272 | |
| 1273 | case JpgBlock::VQ_SKIP_4_COLOR_CODE: |
| 1274 | txb = (codebuf & 0x0FF00000) >> 20; |
| 1275 | tyb = (codebuf & 0x0FF000) >> 12; |
| 1276 | |
| 1277 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, |
| 1278 | buffer); |
| 1279 | Decode_Color.BitMapBits = 2; |
| 1280 | |
| 1281 | for (i = 0; i < 4; i++) { |
| 1282 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); |
| 1283 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { |
| 1284 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, |
| 1285 | buffer); |
| 1286 | } else { |
| 1287 | Decode_Color.Color[Decode_Color.Index[i]] = |
| 1288 | ((codebuf >> 5) & VQ_COLOR_MASK); |
| 1289 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, |
| 1290 | buffer); |
| 1291 | } |
| 1292 | } |
| 1293 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); |
| 1294 | |
| 1295 | break; |
| 1296 | case JpgBlock::JPEG_SKIP_PASS2_CODE: |
| 1297 | txb = (codebuf & 0x0FF00000) >> 20; |
| 1298 | tyb = (codebuf & 0x0FF000) >> 12; |
| 1299 | |
| 1300 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, |
| 1301 | buffer); |
| 1302 | Decompress_2PASS(txb, tyb, (char *)OutBuffer.data(), 2); |
| 1303 | |
| 1304 | break; |
| 1305 | default: |
| 1306 | // TODO(ed) propogate errors upstream |
| 1307 | return -1; |
| 1308 | break; |
| 1309 | } |
| 1310 | MoveBlockIndex(); |
| 1311 | |
| 1312 | } while (buffer_index <= buffer.size()); |
| 1313 | |
| 1314 | return -1; |
| 1315 | } |
| 1316 | |
| 1317 | #ifdef cimg_version |
| 1318 | void dump_to_bitmap_file() { |
| 1319 | cimg_library::CImg<unsigned char> image(WIDTH, HEIGHT, 1, 3); |
| 1320 | for (int y = 0; y < WIDTH; y++) { |
| 1321 | for (int x = 0; x < HEIGHT; x++) { |
| 1322 | auto pixel = OutBuffer[x + (y * WIDTH)]; |
| 1323 | image(x, y, 0) = pixel.R; |
| 1324 | image(x, y, 1) = pixel.G; |
| 1325 | image(x, y, 2) = pixel.B; |
| 1326 | } |
| 1327 | } |
| 1328 | image.save("/tmp/file2.bmp"); |
| 1329 | } |
| 1330 | #endif |
| 1331 | |
| 1332 | private: |
| 1333 | YuvMode yuvmode; |
| 1334 | // WIDTH and HEIGHT are the modes your display used |
| 1335 | unsigned long WIDTH; |
| 1336 | unsigned long HEIGHT; |
| 1337 | unsigned long tmp_HEIGHT; |
| 1338 | unsigned long tmp_WIDTH; |
| 1339 | unsigned char Y_selector; |
| 1340 | int SCALEFACTOR; |
| 1341 | int SCALEFACTORUV; |
| 1342 | int ADVANCESCALEFACTOR; |
| 1343 | int ADVANCESCALEFACTORUV; |
| 1344 | int Mapping; |
| 1345 | unsigned char UV_selector; |
| 1346 | unsigned char advance_selector; |
| 1347 | unsigned char First_Frame; |
| 1348 | int byte_pos; // current byte position |
| 1349 | |
| 1350 | // quantization tables, no more than 4 quantization tables |
| 1351 | std::array<std::array<long, 64>, 4> QT; |
| 1352 | |
| 1353 | // DC huffman tables , no more than 4 (0..3) |
| 1354 | std::array<Huffman_table, 4> HTDC; |
| 1355 | // AC huffman tables (0..3) |
| 1356 | std::array<Huffman_table, 4> HTAC; |
| 1357 | std::array<int, 256> m_CrToR; |
| 1358 | std::array<int, 256> m_CbToB; |
| 1359 | std::array<int, 256> m_CrToG; |
| 1360 | std::array<int, 256> m_CbToG; |
| 1361 | std::array<int, 256> m_Y; |
| 1362 | unsigned long buffer_index; |
| 1363 | uint32_t codebuf, newbuf, readbuf; |
| 1364 | uint8_t *std_luminance_qt; |
| 1365 | uint8_t *std_chrominance_qt; |
| 1366 | |
| 1367 | signed short int DCY, DCCb, DCCr; // Coeficientii DC pentru Y,Cb,Cr |
| 1368 | signed short int DCT_coeff[384]; |
| 1369 | // std::vector<signed short int> DCT_coeff; // Current DCT_coefficients |
| 1370 | // quantization table number for Y, Cb, Cr |
| 1371 | uint8_t YQ_nr = 0, CbQ_nr = 1, CrQ_nr = 1; |
| 1372 | // DC Huffman table number for Y,Cb, Cr |
| 1373 | uint8_t YDC_nr = 0, CbDC_nr = 1, CrDC_nr = 1; |
| 1374 | // AC Huffman table number for Y,Cb, Cr |
| 1375 | uint8_t YAC_nr = 0, CbAC_nr = 1, CrAC_nr = 1; |
| 1376 | int txb, tyb; |
| 1377 | int newbits; |
| 1378 | uint8_t *rlimit_table; |
| 1379 | std::vector<RGB> YUVBuffer; |
| 1380 | // TODO(ed) this shouldn't exist. It is cruft that needs cleaning up' |
| 1381 | uint32_t *Buffer; |
| 1382 | |
| 1383 | public: |
| 1384 | std::vector<RGB> OutBuffer; |
| 1385 | }; |
| 1386 | } |