| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1 | #pragma once | 
|  | 2 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 3 | #include <array> | 
|  | 4 | #include <aspeed/JTABLES.H> | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 5 | #include <ast_video_types.hpp> | 
|  | 6 | #include <cassert> | 
|  | 7 | #include <cstdint> | 
|  | 8 | #include <iostream> | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 9 | #include <string.h> | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 10 | #include <vector> | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 11 | #include <g3log/g3log.hpp> | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 12 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 13 | /* | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 14 | template <class T, class Compare> | 
|  | 15 | constexpr const T &clamp(const T &v, const T &lo, const T &hi, Compare comp) { | 
|  | 16 | return assert(!comp(hi, lo)), comp(v, lo) ? lo : comp(hi, v) ? hi : v; | 
|  | 17 | } | 
|  | 18 |  | 
|  | 19 | template <class T> | 
|  | 20 | constexpr const T &clamp(const T &v, const T &lo, const T &hi) { | 
|  | 21 | return clamp(v, lo, hi, std::less<>()); | 
|  | 22 | } | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 23 | */ | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 24 | namespace AstVideo { | 
|  | 25 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 26 | struct COLOR_CACHE { | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 27 | COLOR_CACHE() { | 
|  | 28 | for (int i = 0; i < 4; i++) { | 
|  | 29 | Index[i] = i; | 
|  | 30 | } | 
|  | 31 | Color[0] = 0x008080; | 
|  | 32 | Color[1] = 0xFF8080; | 
|  | 33 | Color[2] = 0x808080; | 
|  | 34 | Color[3] = 0xC08080; | 
|  | 35 | } | 
|  | 36 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 37 | unsigned long Color[4]; | 
|  | 38 | unsigned char Index[4]; | 
|  | 39 | unsigned char BitMapBits; | 
|  | 40 | }; | 
|  | 41 |  | 
|  | 42 | struct RGB { | 
|  | 43 | unsigned char B; | 
|  | 44 | unsigned char G; | 
|  | 45 | unsigned char R; | 
|  | 46 | unsigned char Reserved; | 
|  | 47 | }; | 
|  | 48 |  | 
|  | 49 | enum class JpgBlock { | 
|  | 50 | JPEG_NO_SKIP_CODE = 0x00, | 
|  | 51 | JPEG_SKIP_CODE = 0x08, | 
|  | 52 |  | 
|  | 53 | JPEG_PASS2_CODE = 0x02, | 
|  | 54 | JPEG_SKIP_PASS2_CODE = 0x0A, | 
|  | 55 |  | 
|  | 56 | LOW_JPEG_NO_SKIP_CODE = 0x04, | 
|  | 57 | LOW_JPEG_SKIP_CODE = 0x0C, | 
|  | 58 |  | 
|  | 59 | VQ_NO_SKIP_1_COLOR_CODE = 0x05, | 
|  | 60 | VQ_SKIP_1_COLOR_CODE = 0x0D, | 
|  | 61 |  | 
|  | 62 | VQ_NO_SKIP_2_COLOR_CODE = 0x06, | 
|  | 63 | VQ_SKIP_2_COLOR_CODE = 0x0E, | 
|  | 64 |  | 
|  | 65 | VQ_NO_SKIP_4_COLOR_CODE = 0x07, | 
|  | 66 | VQ_SKIP_4_COLOR_CODE = 0x0F, | 
|  | 67 |  | 
|  | 68 | FRAME_END_CODE = 0x09, | 
|  | 69 |  | 
|  | 70 | }; | 
|  | 71 |  | 
|  | 72 | class AstJpegDecoder { | 
|  | 73 | public: | 
|  | 74 | AstJpegDecoder() { | 
|  | 75 | // TODO(ed) figure out how to init this in the constructor | 
|  | 76 | YUVBuffer.resize(800 * 600); | 
|  | 77 | OutBuffer.resize(800 * 600); | 
|  | 78 | for (auto &r : OutBuffer) { | 
|  | 79 | r.R = 0x00; | 
|  | 80 | r.G = 0x00; | 
|  | 81 | r.B = 0x00; | 
|  | 82 | r.Reserved = 0xAA; | 
|  | 83 | } | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 84 |  | 
|  | 85 | int qfactor = 16; | 
|  | 86 |  | 
|  | 87 | SCALEFACTOR = qfactor; | 
|  | 88 | SCALEFACTORUV = qfactor; | 
|  | 89 | ADVANCESCALEFACTOR = 16; | 
|  | 90 | ADVANCESCALEFACTORUV = 16; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 91 | init_jpg_table(); | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | void load_quant_table(std::array<long, 64> &quant_table) { | 
|  | 95 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, | 
|  | 96 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; | 
|  | 97 | uint8_t j, row, col; | 
|  | 98 | uint8_t tempQT[64]; | 
|  | 99 |  | 
|  | 100 | // Load quantization coefficients from JPG file, scale them for DCT and | 
|  | 101 | // reorder | 
|  | 102 | // from zig-zag order | 
|  | 103 | switch (Y_selector) { | 
|  | 104 | case 0: | 
|  | 105 | std_luminance_qt = Tbl_000Y; | 
|  | 106 | break; | 
|  | 107 | case 1: | 
|  | 108 | std_luminance_qt = Tbl_014Y; | 
|  | 109 | break; | 
|  | 110 | case 2: | 
|  | 111 | std_luminance_qt = Tbl_029Y; | 
|  | 112 | break; | 
|  | 113 | case 3: | 
|  | 114 | std_luminance_qt = Tbl_043Y; | 
|  | 115 | break; | 
|  | 116 | case 4: | 
|  | 117 | std_luminance_qt = Tbl_057Y; | 
|  | 118 | break; | 
|  | 119 | case 5: | 
|  | 120 | std_luminance_qt = Tbl_071Y; | 
|  | 121 | break; | 
|  | 122 | case 6: | 
|  | 123 | std_luminance_qt = Tbl_086Y; | 
|  | 124 | break; | 
|  | 125 | case 7: | 
|  | 126 | std_luminance_qt = Tbl_100Y; | 
|  | 127 | break; | 
|  | 128 | } | 
|  | 129 | set_quant_table(std_luminance_qt, (uint8_t)SCALEFACTOR, tempQT); | 
|  | 130 |  | 
|  | 131 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; | 
|  | 132 | j = 0; | 
|  | 133 | for (row = 0; row <= 7; row++) | 
|  | 134 | for (col = 0; col <= 7; col++) { | 
|  | 135 | quant_table[j] = | 
|  | 136 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * | 
|  | 137 | 65536); | 
|  | 138 | j++; | 
|  | 139 | } | 
|  | 140 | byte_pos += 64; | 
|  | 141 | } | 
|  | 142 |  | 
|  | 143 | void load_quant_tableCb(std::array<long, 64> &quant_table) { | 
|  | 144 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, | 
|  | 145 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; | 
|  | 146 | uint8_t j, row, col; | 
|  | 147 | uint8_t tempQT[64]; | 
|  | 148 |  | 
|  | 149 | // Load quantization coefficients from JPG file, scale them for DCT and | 
|  | 150 | // reorder from zig-zag order | 
|  | 151 | if (Mapping == 0) { | 
|  | 152 | switch (UV_selector) { | 
|  | 153 | case 0: | 
|  | 154 | std_chrominance_qt = Tbl_000Y; | 
|  | 155 | break; | 
|  | 156 | case 1: | 
|  | 157 | std_chrominance_qt = Tbl_014Y; | 
|  | 158 | break; | 
|  | 159 | case 2: | 
|  | 160 | std_chrominance_qt = Tbl_029Y; | 
|  | 161 | break; | 
|  | 162 | case 3: | 
|  | 163 | std_chrominance_qt = Tbl_043Y; | 
|  | 164 | break; | 
|  | 165 | case 4: | 
|  | 166 | std_chrominance_qt = Tbl_057Y; | 
|  | 167 | break; | 
|  | 168 | case 5: | 
|  | 169 | std_chrominance_qt = Tbl_071Y; | 
|  | 170 | break; | 
|  | 171 | case 6: | 
|  | 172 | std_chrominance_qt = Tbl_086Y; | 
|  | 173 | break; | 
|  | 174 | case 7: | 
|  | 175 | std_chrominance_qt = Tbl_100Y; | 
|  | 176 | break; | 
|  | 177 | } | 
|  | 178 | } else { | 
|  | 179 | switch (UV_selector) { | 
|  | 180 | case 0: | 
|  | 181 | std_chrominance_qt = Tbl_000UV; | 
|  | 182 | break; | 
|  | 183 | case 1: | 
|  | 184 | std_chrominance_qt = Tbl_014UV; | 
|  | 185 | break; | 
|  | 186 | case 2: | 
|  | 187 | std_chrominance_qt = Tbl_029UV; | 
|  | 188 | break; | 
|  | 189 | case 3: | 
|  | 190 | std_chrominance_qt = Tbl_043UV; | 
|  | 191 | break; | 
|  | 192 | case 4: | 
|  | 193 | std_chrominance_qt = Tbl_057UV; | 
|  | 194 | break; | 
|  | 195 | case 5: | 
|  | 196 | std_chrominance_qt = Tbl_071UV; | 
|  | 197 | break; | 
|  | 198 | case 6: | 
|  | 199 | std_chrominance_qt = Tbl_086UV; | 
|  | 200 | break; | 
|  | 201 | case 7: | 
|  | 202 | std_chrominance_qt = Tbl_100UV; | 
|  | 203 | break; | 
|  | 204 | } | 
|  | 205 | } | 
|  | 206 | set_quant_table(std_chrominance_qt, (uint8_t)SCALEFACTORUV, tempQT); | 
|  | 207 |  | 
|  | 208 | for (j = 0; j <= 63; j++) { | 
|  | 209 | quant_table[j] = tempQT[zigzag[j]]; | 
|  | 210 | } | 
|  | 211 | j = 0; | 
|  | 212 | for (row = 0; row <= 7; row++) { | 
|  | 213 | for (col = 0; col <= 7; col++) { | 
|  | 214 | quant_table[j] = | 
|  | 215 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * | 
|  | 216 | 65536); | 
|  | 217 | j++; | 
|  | 218 | } | 
|  | 219 | } | 
|  | 220 | byte_pos += 64; | 
|  | 221 | } | 
|  | 222 | //  Note: Added for Dual_JPEG | 
|  | 223 | void load_advance_quant_table(std::array<long, 64> &quant_table) { | 
|  | 224 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, | 
|  | 225 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; | 
|  | 226 | uint8_t j, row, col; | 
|  | 227 | uint8_t tempQT[64]; | 
|  | 228 |  | 
|  | 229 | // Load quantization coefficients from JPG file, scale them for DCT and | 
|  | 230 | // reorder | 
|  | 231 | // from zig-zag order | 
|  | 232 | switch (advance_selector) { | 
|  | 233 | case 0: | 
|  | 234 | std_luminance_qt = Tbl_000Y; | 
|  | 235 | break; | 
|  | 236 | case 1: | 
|  | 237 | std_luminance_qt = Tbl_014Y; | 
|  | 238 | break; | 
|  | 239 | case 2: | 
|  | 240 | std_luminance_qt = Tbl_029Y; | 
|  | 241 | break; | 
|  | 242 | case 3: | 
|  | 243 | std_luminance_qt = Tbl_043Y; | 
|  | 244 | break; | 
|  | 245 | case 4: | 
|  | 246 | std_luminance_qt = Tbl_057Y; | 
|  | 247 | break; | 
|  | 248 | case 5: | 
|  | 249 | std_luminance_qt = Tbl_071Y; | 
|  | 250 | break; | 
|  | 251 | case 6: | 
|  | 252 | std_luminance_qt = Tbl_086Y; | 
|  | 253 | break; | 
|  | 254 | case 7: | 
|  | 255 | std_luminance_qt = Tbl_100Y; | 
|  | 256 | break; | 
|  | 257 | } | 
|  | 258 | //  Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG | 
|  | 259 | set_quant_table(std_luminance_qt, (uint8_t)ADVANCESCALEFACTOR, tempQT); | 
|  | 260 |  | 
|  | 261 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; | 
|  | 262 | j = 0; | 
|  | 263 | for (row = 0; row <= 7; row++) | 
|  | 264 | for (col = 0; col <= 7; col++) { | 
|  | 265 | quant_table[j] = | 
|  | 266 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * | 
|  | 267 | 65536); | 
|  | 268 | j++; | 
|  | 269 | } | 
|  | 270 | byte_pos += 64; | 
|  | 271 | } | 
|  | 272 |  | 
|  | 273 | //  Note: Added for Dual-JPEG | 
|  | 274 | void load_advance_quant_tableCb(std::array<long, 64> &quant_table) { | 
|  | 275 | float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, | 
|  | 276 | 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; | 
|  | 277 | uint8_t j, row, col; | 
|  | 278 | uint8_t tempQT[64]; | 
|  | 279 |  | 
|  | 280 | // Load quantization coefficients from JPG file, scale them for DCT and | 
|  | 281 | // reorder | 
|  | 282 | // from zig-zag order | 
|  | 283 | if (Mapping == 1) { | 
|  | 284 | switch (advance_selector) { | 
|  | 285 | case 0: | 
|  | 286 | std_chrominance_qt = Tbl_000Y; | 
|  | 287 | break; | 
|  | 288 | case 1: | 
|  | 289 | std_chrominance_qt = Tbl_014Y; | 
|  | 290 | break; | 
|  | 291 | case 2: | 
|  | 292 | std_chrominance_qt = Tbl_029Y; | 
|  | 293 | break; | 
|  | 294 | case 3: | 
|  | 295 | std_chrominance_qt = Tbl_043Y; | 
|  | 296 | break; | 
|  | 297 | case 4: | 
|  | 298 | std_chrominance_qt = Tbl_057Y; | 
|  | 299 | break; | 
|  | 300 | case 5: | 
|  | 301 | std_chrominance_qt = Tbl_071Y; | 
|  | 302 | break; | 
|  | 303 | case 6: | 
|  | 304 | std_chrominance_qt = Tbl_086Y; | 
|  | 305 | break; | 
|  | 306 | case 7: | 
|  | 307 | std_chrominance_qt = Tbl_100Y; | 
|  | 308 | break; | 
|  | 309 | } | 
|  | 310 | } else { | 
|  | 311 | switch (advance_selector) { | 
|  | 312 | case 0: | 
|  | 313 | std_chrominance_qt = Tbl_000UV; | 
|  | 314 | break; | 
|  | 315 | case 1: | 
|  | 316 | std_chrominance_qt = Tbl_014UV; | 
|  | 317 | break; | 
|  | 318 | case 2: | 
|  | 319 | std_chrominance_qt = Tbl_029UV; | 
|  | 320 | break; | 
|  | 321 | case 3: | 
|  | 322 | std_chrominance_qt = Tbl_043UV; | 
|  | 323 | break; | 
|  | 324 | case 4: | 
|  | 325 | std_chrominance_qt = Tbl_057UV; | 
|  | 326 | break; | 
|  | 327 | case 5: | 
|  | 328 | std_chrominance_qt = Tbl_071UV; | 
|  | 329 | break; | 
|  | 330 | case 6: | 
|  | 331 | std_chrominance_qt = Tbl_086UV; | 
|  | 332 | break; | 
|  | 333 | case 7: | 
|  | 334 | std_chrominance_qt = Tbl_100UV; | 
|  | 335 | break; | 
|  | 336 | } | 
|  | 337 | } | 
|  | 338 | //  Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG | 
|  | 339 | set_quant_table(std_chrominance_qt, (uint8_t)ADVANCESCALEFACTORUV, tempQT); | 
|  | 340 |  | 
|  | 341 | for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]]; | 
|  | 342 | j = 0; | 
|  | 343 | for (row = 0; row <= 7; row++) | 
|  | 344 | for (col = 0; col <= 7; col++) { | 
|  | 345 | quant_table[j] = | 
|  | 346 | (long)((quant_table[j] * scalefactor[row] * scalefactor[col]) * | 
|  | 347 | 65536); | 
|  | 348 | j++; | 
|  | 349 | } | 
|  | 350 | byte_pos += 64; | 
|  | 351 | } | 
|  | 352 |  | 
|  | 353 | void IDCT_transform(short *coef, uint8_t *data, uint8_t nBlock) { | 
|  | 354 | #define FIX_1_082392200 ((int)277) /* FIX(1.082392200) */ | 
|  | 355 | #define FIX_1_414213562 ((int)362) /* FIX(1.414213562) */ | 
|  | 356 | #define FIX_1_847759065 ((int)473) /* FIX(1.847759065) */ | 
|  | 357 | #define FIX_2_613125930 ((int)669) /* FIX(2.613125930) */ | 
|  | 358 |  | 
|  | 359 | #define MULTIPLY(var, cons) ((int)((var) * (cons)) >> 8) | 
|  | 360 |  | 
|  | 361 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 
|  | 362 | int tmp10, tmp11, tmp12, tmp13; | 
|  | 363 | int z5, z10, z11, z12, z13; | 
|  | 364 | int workspace[64]; /* buffers data between passes */ | 
|  | 365 |  | 
|  | 366 | short *inptr = coef; | 
|  | 367 | long *quantptr; | 
|  | 368 | int *wsptr = workspace; | 
|  | 369 | unsigned char *outptr; | 
|  | 370 | unsigned char *r_limit = rlimit_table + 128; | 
|  | 371 | int ctr, dcval, DCTSIZE = 8; | 
|  | 372 |  | 
|  | 373 | quantptr = &QT[nBlock][0]; | 
|  | 374 |  | 
|  | 375 | // Pass 1: process columns from input (inptr), store into work array(wsptr) | 
|  | 376 |  | 
|  | 377 | for (ctr = 8; ctr > 0; ctr--) { | 
|  | 378 | /* Due to quantization, we will usually find that many of the input | 
|  | 379 | * coefficients are zero, especially the AC terms.  We can exploit this | 
|  | 380 | * by short-circuiting the IDCT calculation for any column in which all | 
|  | 381 | * the AC terms are zero.  In that case each output is equal to the | 
|  | 382 | * DC coefficient (with scale factor as needed). | 
|  | 383 | * With typical images and quantization tables, half or more of the | 
|  | 384 | * column DCT calculations can be simplified this way. | 
|  | 385 | */ | 
|  | 386 |  | 
|  | 387 | if ((inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] | | 
|  | 388 | inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] | | 
|  | 389 | inptr[DCTSIZE * 7]) == 0) { | 
|  | 390 | /* AC terms all zero */ | 
|  | 391 | dcval = (int)((inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16); | 
|  | 392 |  | 
|  | 393 | wsptr[DCTSIZE * 0] = dcval; | 
|  | 394 | wsptr[DCTSIZE * 1] = dcval; | 
|  | 395 | wsptr[DCTSIZE * 2] = dcval; | 
|  | 396 | wsptr[DCTSIZE * 3] = dcval; | 
|  | 397 | wsptr[DCTSIZE * 4] = dcval; | 
|  | 398 | wsptr[DCTSIZE * 5] = dcval; | 
|  | 399 | wsptr[DCTSIZE * 6] = dcval; | 
|  | 400 | wsptr[DCTSIZE * 7] = dcval; | 
|  | 401 |  | 
|  | 402 | inptr++; /* advance pointers to next column */ | 
|  | 403 | quantptr++; | 
|  | 404 | wsptr++; | 
|  | 405 | continue; | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | /* Even part */ | 
|  | 409 |  | 
|  | 410 | tmp0 = (inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16; | 
|  | 411 | tmp1 = (inptr[DCTSIZE * 2] * quantptr[DCTSIZE * 2]) >> 16; | 
|  | 412 | tmp2 = (inptr[DCTSIZE * 4] * quantptr[DCTSIZE * 4]) >> 16; | 
|  | 413 | tmp3 = (inptr[DCTSIZE * 6] * quantptr[DCTSIZE * 6]) >> 16; | 
|  | 414 |  | 
|  | 415 | tmp10 = tmp0 + tmp2; /* phase 3 */ | 
|  | 416 | tmp11 = tmp0 - tmp2; | 
|  | 417 |  | 
|  | 418 | tmp13 = tmp1 + tmp3;                                    /* phases 5-3 */ | 
|  | 419 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | 
|  | 420 |  | 
|  | 421 | tmp0 = tmp10 + tmp13; /* phase 2 */ | 
|  | 422 | tmp3 = tmp10 - tmp13; | 
|  | 423 | tmp1 = tmp11 + tmp12; | 
|  | 424 | tmp2 = tmp11 - tmp12; | 
|  | 425 |  | 
|  | 426 | /* Odd part */ | 
|  | 427 |  | 
|  | 428 | tmp4 = (inptr[DCTSIZE * 1] * quantptr[DCTSIZE * 1]) >> 16; | 
|  | 429 | tmp5 = (inptr[DCTSIZE * 3] * quantptr[DCTSIZE * 3]) >> 16; | 
|  | 430 | tmp6 = (inptr[DCTSIZE * 5] * quantptr[DCTSIZE * 5]) >> 16; | 
|  | 431 | tmp7 = (inptr[DCTSIZE * 7] * quantptr[DCTSIZE * 7]) >> 16; | 
|  | 432 |  | 
|  | 433 | z13 = tmp6 + tmp5; /* phase 6 */ | 
|  | 434 | z10 = tmp6 - tmp5; | 
|  | 435 | z11 = tmp4 + tmp7; | 
|  | 436 | z12 = tmp4 - tmp7; | 
|  | 437 |  | 
|  | 438 | tmp7 = z11 + z13;                             /* phase 5 */ | 
|  | 439 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 
|  | 440 |  | 
|  | 441 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065);    /* 2*c2 */ | 
|  | 442 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;  /* 2*(c2-c6) */ | 
|  | 443 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 
|  | 444 |  | 
|  | 445 | tmp6 = tmp12 - tmp7; /* phase 2 */ | 
|  | 446 | tmp5 = tmp11 - tmp6; | 
|  | 447 | tmp4 = tmp10 + tmp5; | 
|  | 448 |  | 
|  | 449 | wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); | 
|  | 450 | wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); | 
|  | 451 | wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); | 
|  | 452 | wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); | 
|  | 453 | wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); | 
|  | 454 | wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); | 
|  | 455 | wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); | 
|  | 456 | wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); | 
|  | 457 |  | 
|  | 458 | inptr++; /* advance pointers to next column */ | 
|  | 459 | quantptr++; | 
|  | 460 | wsptr++; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | /* Pass 2: process rows from work array, store into output array. */ | 
|  | 464 | /* Note that we must descale the results by a factor of 8 == 2**3, */ | 
|  | 465 | /* and also undo the PASS1_BITS scaling. */ | 
|  | 466 |  | 
|  | 467 | //#define RANGE_MASK 1023; //2 bits wider than legal samples | 
|  | 468 | #define PASS1_BITS 0 | 
|  | 469 | #define IDESCALE(x, n) ((int)((x) >> n)) | 
|  | 470 |  | 
|  | 471 | wsptr = workspace; | 
|  | 472 | for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
|  | 473 | outptr = data + ctr * 8; | 
|  | 474 |  | 
|  | 475 | /* Rows of zeroes can be exploited in the same way as we did with columns. | 
|  | 476 | * However, the column calculation has created many nonzero AC terms, so | 
|  | 477 | * the simplification applies less often (typically 5% to 10% of the time). | 
|  | 478 | * On machines with very fast multiplication, it's possible that the | 
|  | 479 | * test takes more time than it's worth.  In that case this section | 
|  | 480 | * may be commented out. | 
|  | 481 | */ | 
|  | 482 | /* Even part */ | 
|  | 483 |  | 
|  | 484 | tmp10 = ((int)wsptr[0] + (int)wsptr[4]); | 
|  | 485 | tmp11 = ((int)wsptr[0] - (int)wsptr[4]); | 
|  | 486 |  | 
|  | 487 | tmp13 = ((int)wsptr[2] + (int)wsptr[6]); | 
|  | 488 | tmp12 = MULTIPLY((int)wsptr[2] - (int)wsptr[6], FIX_1_414213562) - tmp13; | 
|  | 489 |  | 
|  | 490 | tmp0 = tmp10 + tmp13; | 
|  | 491 | tmp3 = tmp10 - tmp13; | 
|  | 492 | tmp1 = tmp11 + tmp12; | 
|  | 493 | tmp2 = tmp11 - tmp12; | 
|  | 494 |  | 
|  | 495 | /* Odd part */ | 
|  | 496 |  | 
|  | 497 | z13 = (int)wsptr[5] + (int)wsptr[3]; | 
|  | 498 | z10 = (int)wsptr[5] - (int)wsptr[3]; | 
|  | 499 | z11 = (int)wsptr[1] + (int)wsptr[7]; | 
|  | 500 | z12 = (int)wsptr[1] - (int)wsptr[7]; | 
|  | 501 |  | 
|  | 502 | tmp7 = z11 + z13;                             /* phase 5 */ | 
|  | 503 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 
|  | 504 |  | 
|  | 505 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065);    /* 2*c2 */ | 
|  | 506 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;  /* 2*(c2-c6) */ | 
|  | 507 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 
|  | 508 |  | 
|  | 509 | tmp6 = tmp12 - tmp7; /* phase 2 */ | 
|  | 510 | tmp5 = tmp11 - tmp6; | 
|  | 511 | tmp4 = tmp10 + tmp5; | 
|  | 512 |  | 
|  | 513 | /* Final output stage: scale down by a factor of 8 and range-limit */ | 
|  | 514 |  | 
|  | 515 | outptr[0] = r_limit[IDESCALE((tmp0 + tmp7), (PASS1_BITS + 3)) & 1023L]; | 
|  | 516 | outptr[7] = r_limit[IDESCALE((tmp0 - tmp7), (PASS1_BITS + 3)) & 1023L]; | 
|  | 517 | outptr[1] = r_limit[IDESCALE((tmp1 + tmp6), (PASS1_BITS + 3)) & 1023L]; | 
|  | 518 | outptr[6] = r_limit[IDESCALE((tmp1 - tmp6), (PASS1_BITS + 3)) & 1023L]; | 
|  | 519 | outptr[2] = r_limit[IDESCALE((tmp2 + tmp5), (PASS1_BITS + 3)) & 1023L]; | 
|  | 520 | outptr[5] = r_limit[IDESCALE((tmp2 - tmp5), (PASS1_BITS + 3)) & 1023L]; | 
|  | 521 | outptr[4] = r_limit[IDESCALE((tmp3 + tmp4), (PASS1_BITS + 3)) & 1023L]; | 
|  | 522 | outptr[3] = r_limit[IDESCALE((tmp3 - tmp4), (PASS1_BITS + 3)) & 1023L]; | 
|  | 523 |  | 
|  | 524 | wsptr += DCTSIZE; /* advance pointer to next row */ | 
|  | 525 | } | 
|  | 526 | } | 
|  | 527 | void YUVToRGB( | 
|  | 528 | int txb, int tyb, | 
|  | 529 | unsigned char | 
|  | 530 | *pYCbCr,       // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes | 
|  | 531 | struct RGB *pYUV,  // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes | 
|  | 532 | unsigned char | 
|  | 533 | *pBgr  // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes | 
|  | 534 | ) { | 
|  | 535 | int i, j, pos, m, n; | 
|  | 536 | unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; | 
|  | 537 | int y; | 
|  | 538 | struct RGB *pByte; | 
|  | 539 | int nBlocksInMcu = 6; | 
|  | 540 | unsigned int pixel_x, pixel_y; | 
|  | 541 |  | 
|  | 542 | pByte = (struct RGB *)pBgr; | 
|  | 543 | if (yuvmode == YuvMode::YUV444) { | 
|  | 544 | py = pYCbCr; | 
|  | 545 | pcb = pYCbCr + 64; | 
|  | 546 | pcr = pcb + 64; | 
|  | 547 |  | 
|  | 548 | pixel_x = txb * 8; | 
|  | 549 | pixel_y = tyb * 8; | 
|  | 550 | pos = (pixel_y * WIDTH) + pixel_x; | 
|  | 551 |  | 
|  | 552 | for (j = 0; j < 8; j++) { | 
|  | 553 | for (i = 0; i < 8; i++) { | 
|  | 554 | m = ((j << 3) + i); | 
|  | 555 | y = py[m]; | 
|  | 556 | cb = pcb[m]; | 
|  | 557 | cr = pcr[m]; | 
|  | 558 | n = pos + i; | 
|  | 559 | // For 2Pass. Save the YUV value | 
|  | 560 | pYUV[n].B = cb; | 
|  | 561 | pYUV[n].G = y; | 
|  | 562 | pYUV[n].R = cr; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 563 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; | 
|  | 564 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; | 
|  | 565 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 566 | } | 
|  | 567 | pos += WIDTH; | 
|  | 568 | } | 
|  | 569 | } else { | 
|  | 570 | for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64; | 
|  | 571 | pcb = pYCbCr + (nBlocksInMcu - 2) * 64; | 
|  | 572 | pcr = pcb + 64; | 
|  | 573 |  | 
|  | 574 | pixel_x = txb * 16; | 
|  | 575 | pixel_y = tyb * 16; | 
|  | 576 | pos = (pixel_y * WIDTH) + pixel_x; | 
|  | 577 |  | 
|  | 578 | for (j = 0; j < 16; j++) { | 
|  | 579 | for (i = 0; i < 16; i++) { | 
|  | 580 | //	block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} | 
|  | 581 | y = *(py420[(j >> 3) * 2 + (i >> 3)]++); | 
|  | 582 | m = ((j >> 1) << 3) + (i >> 1); | 
|  | 583 | cb = pcb[m]; | 
|  | 584 | cr = pcr[m]; | 
|  | 585 | n = pos + i; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 586 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; | 
|  | 587 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; | 
|  | 588 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; | 
|  | 589 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 590 | } | 
|  | 591 | pos += WIDTH; | 
|  | 592 | } | 
|  | 593 | } | 
|  | 594 | } | 
|  | 595 | void YUVToBuffer( | 
|  | 596 | int txb, int tyb, | 
|  | 597 | unsigned char | 
|  | 598 | *pYCbCr,  // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes | 
|  | 599 | struct RGB | 
|  | 600 | *pYUV,  // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes | 
|  | 601 | unsigned char | 
|  | 602 | *pBgr  // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes | 
|  | 603 | ) { | 
|  | 604 | int i, j, pos, m, n; | 
|  | 605 | unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; | 
|  | 606 | int y; | 
|  | 607 | struct RGB *pByte; | 
|  | 608 | int nBlocksInMcu = 6; | 
|  | 609 | unsigned int pixel_x, pixel_y; | 
|  | 610 |  | 
|  | 611 | pByte = (struct RGB *)pBgr; | 
|  | 612 | if (yuvmode == YuvMode::YUV444) { | 
|  | 613 | py = pYCbCr; | 
|  | 614 | pcb = pYCbCr + 64; | 
|  | 615 | pcr = pcb + 64; | 
|  | 616 |  | 
|  | 617 | pixel_x = txb * 8; | 
|  | 618 | pixel_y = tyb * 8; | 
|  | 619 | pos = (pixel_y * WIDTH) + pixel_x; | 
|  | 620 |  | 
|  | 621 | for (j = 0; j < 8; j++) { | 
|  | 622 | for (i = 0; i < 8; i++) { | 
|  | 623 | m = ((j << 3) + i); | 
|  | 624 | n = pos + i; | 
|  | 625 | y = pYUV[n].G + (py[m] - 128); | 
|  | 626 | cb = pYUV[n].B + (pcb[m] - 128); | 
|  | 627 | cr = pYUV[n].R + (pcr[m] - 128); | 
|  | 628 | pYUV[n].B = cb; | 
|  | 629 | pYUV[n].G = y; | 
|  | 630 | pYUV[n].R = cr; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 631 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; | 
|  | 632 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; | 
|  | 633 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; | 
|  | 634 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 635 | } | 
|  | 636 | pos += WIDTH; | 
|  | 637 | } | 
|  | 638 | } else { | 
|  | 639 | for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64; | 
|  | 640 | pcb = pYCbCr + (nBlocksInMcu - 2) * 64; | 
|  | 641 | pcr = pcb + 64; | 
|  | 642 |  | 
|  | 643 | pixel_x = txb * 16; | 
|  | 644 | pixel_y = tyb * 16; | 
|  | 645 | pos = (pixel_y * WIDTH) + pixel_x; | 
|  | 646 |  | 
|  | 647 | for (j = 0; j < 16; j++) { | 
|  | 648 | for (i = 0; i < 16; i++) { | 
|  | 649 | //	block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} | 
|  | 650 | y = *(py420[(j >> 3) * 2 + (i >> 3)]++); | 
|  | 651 | m = ((j >> 1) << 3) + (i >> 1); | 
|  | 652 | cb = pcb[m]; | 
|  | 653 | cr = pcr[m]; | 
|  | 654 | n = pos + i; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 655 | pByte[n].B = rlimit_table[m_Y[y] + m_CbToB[cb]]; | 
|  | 656 | pByte[n].G = rlimit_table[m_Y[y] + m_CbToG[cb] + m_CrToG[cr]]; | 
|  | 657 | pByte[n].R = rlimit_table[m_Y[y] + m_CrToR[cr]]; | 
|  | 658 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 659 | } | 
|  | 660 | pos += WIDTH; | 
|  | 661 | } | 
|  | 662 | } | 
|  | 663 | } | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 664 | void Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 665 | unsigned char *ptr; | 
|  | 666 | unsigned char byTileYuv[768] = {}; | 
|  | 667 |  | 
|  | 668 | memset(DCT_coeff, 0, 384 * 2); | 
|  | 669 | ptr = byTileYuv; | 
|  | 670 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0); | 
|  | 671 | IDCT_transform(DCT_coeff, ptr, QT_TableSelection); | 
|  | 672 | ptr += 64; | 
|  | 673 |  | 
|  | 674 | if (yuvmode == YuvMode::YUV420) { | 
|  | 675 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 64); | 
|  | 676 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection); | 
|  | 677 | ptr += 64; | 
|  | 678 |  | 
|  | 679 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 128); | 
|  | 680 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection); | 
|  | 681 | ptr += 64; | 
|  | 682 |  | 
|  | 683 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 192); | 
|  | 684 | IDCT_transform(DCT_coeff + 192, ptr, QT_TableSelection); | 
|  | 685 | ptr += 64; | 
|  | 686 |  | 
|  | 687 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 256); | 
|  | 688 | IDCT_transform(DCT_coeff + 256, ptr, QT_TableSelection + 1); | 
|  | 689 | ptr += 64; | 
|  | 690 |  | 
|  | 691 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 320); | 
|  | 692 | IDCT_transform(DCT_coeff + 320, ptr, QT_TableSelection + 1); | 
|  | 693 | } else { | 
|  | 694 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64); | 
|  | 695 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1); | 
|  | 696 | ptr += 64; | 
|  | 697 |  | 
|  | 698 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128); | 
|  | 699 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1); | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | //    YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); | 
|  | 703 | //  YUVBuffer for YUV record | 
|  | 704 | YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 705 | } | 
|  | 706 |  | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 707 | void Decompress_2PASS(int txb, int tyb, char *outBuf, | 
|  | 708 | uint8_t QT_TableSelection) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 709 | unsigned char *ptr; | 
|  | 710 | unsigned char byTileYuv[768]; | 
|  | 711 | memset(DCT_coeff, 0, 384 * 2); | 
|  | 712 |  | 
|  | 713 | ptr = byTileYuv; | 
|  | 714 | process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0); | 
|  | 715 | IDCT_transform(DCT_coeff, ptr, QT_TableSelection); | 
|  | 716 | ptr += 64; | 
|  | 717 |  | 
|  | 718 | process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64); | 
|  | 719 | IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1); | 
|  | 720 | ptr += 64; | 
|  | 721 |  | 
|  | 722 | process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128); | 
|  | 723 | IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1); | 
|  | 724 |  | 
|  | 725 | YUVToBuffer(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); | 
|  | 726 | //    YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 727 | } | 
|  | 728 |  | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 729 | void VQ_Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection, | 
|  | 730 | struct COLOR_CACHE *VQ) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 731 | unsigned char *ptr, i; | 
|  | 732 | unsigned char byTileYuv[192]; | 
|  | 733 | int Data; | 
|  | 734 |  | 
|  | 735 | ptr = byTileYuv; | 
|  | 736 | if (VQ->BitMapBits == 0) { | 
|  | 737 | for (i = 0; i < 64; i++) { | 
|  | 738 | ptr[0] = (VQ->Color[VQ->Index[0]] & 0xFF0000) >> 16; | 
|  | 739 | ptr[64] = (VQ->Color[VQ->Index[0]] & 0x00FF00) >> 8; | 
|  | 740 | ptr[128] = VQ->Color[VQ->Index[0]] & 0x0000FF; | 
|  | 741 | ptr += 1; | 
|  | 742 | } | 
|  | 743 | } else { | 
|  | 744 | for (i = 0; i < 64; i++) { | 
|  | 745 | Data = (int)lookKbits(VQ->BitMapBits); | 
|  | 746 | ptr[0] = (VQ->Color[VQ->Index[Data]] & 0xFF0000) >> 16; | 
|  | 747 | ptr[64] = (VQ->Color[VQ->Index[Data]] & 0x00FF00) >> 8; | 
|  | 748 | ptr[128] = VQ->Color[VQ->Index[Data]] & 0x0000FF; | 
|  | 749 | ptr += 1; | 
|  | 750 | skipKbits(VQ->BitMapBits); | 
|  | 751 | } | 
|  | 752 | } | 
|  | 753 | //    YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf); | 
|  | 754 | YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf); | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 755 | } | 
|  | 756 |  | 
|  | 757 | void MoveBlockIndex(void) { | 
|  | 758 | if (yuvmode == YuvMode::YUV444) { | 
|  | 759 | txb++; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 760 | if (txb >= (int)(tmp_WIDTH / 8)) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 761 | tyb++; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 762 | if (tyb >= (int)(tmp_HEIGHT / 8)) tyb = 0; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 763 | txb = 0; | 
|  | 764 | } | 
|  | 765 | } else { | 
|  | 766 | txb++; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 767 | if (txb >= (int)(tmp_WIDTH / 16)) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 768 | tyb++; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 769 | if (tyb >= (int)(tmp_HEIGHT / 16)) tyb = 0; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 770 | txb = 0; | 
|  | 771 | } | 
|  | 772 | } | 
|  | 773 | } | 
|  | 774 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 775 | void Init_Color_Table() { | 
|  | 776 | int i, x; | 
|  | 777 | int nScale = 1L << 16;  // equal to power(2,16) | 
|  | 778 | int nHalf = nScale >> 1; | 
|  | 779 |  | 
|  | 780 | #define FIX(x) ((int)((x)*nScale + 0.5)) | 
|  | 781 |  | 
|  | 782 | /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | 
|  | 783 | /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | 
|  | 784 | /* Cr=>R value is nearest int to 1.597656 * x */ | 
|  | 785 | /* Cb=>B value is nearest int to 2.015625 * x */ | 
|  | 786 | /* Cr=>G value is scaled-up -0.8125 * x */ | 
|  | 787 | /* Cb=>G value is scaled-up -0.390625 * x */ | 
|  | 788 | for (i = 0, x = -128; i < 256; i++, x++) { | 
|  | 789 | m_CrToR[i] = (int)(FIX(1.597656) * x + nHalf) >> 16; | 
|  | 790 | m_CbToB[i] = (int)(FIX(2.015625) * x + nHalf) >> 16; | 
|  | 791 | m_CrToG[i] = (int)(-FIX(0.8125) * x + nHalf) >> 16; | 
|  | 792 | m_CbToG[i] = (int)(-FIX(0.390625) * x + nHalf) >> 16; | 
|  | 793 | } | 
|  | 794 | for (i = 0, x = -16; i < 256; i++, x++) { | 
|  | 795 | m_Y[i] = (int)(FIX(1.164) * x + nHalf) >> 16; | 
|  | 796 | } | 
|  | 797 | // For Color Text Enchance Y Re-map. Recommend to disable in default | 
|  | 798 | /* | 
|  | 799 | for (i = 0; i < (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); | 
|  | 800 | i++) { | 
|  | 801 | temp = (double)i / | 
|  | 802 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate; | 
|  | 803 | temp1 = 1.0 / VideoEngineInfo->INFData.Gamma1Parameter; | 
|  | 804 | m_Y[i] = | 
|  | 805 | (BYTE)(VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate * pow (temp, | 
|  | 806 | temp1)); | 
|  | 807 | if (m_Y[i] > 255) m_Y[i] = 255; | 
|  | 808 | } | 
|  | 809 | for (i = (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); i < 256; | 
|  | 810 | i++) { | 
|  | 811 | m_Y[i] = | 
|  | 812 | (BYTE)((VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) + (256 - | 
|  | 813 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) * ( pow((double)((i - | 
|  | 814 | VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) / (256 - | 
|  | 815 | (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate))), (1.0 / | 
|  | 816 | VideoEngineInfo->INFData.Gamma2Parameter)) )); | 
|  | 817 | if (m_Y[i] > 255) m_Y[i] = 255; | 
|  | 818 | } | 
|  | 819 | */ | 
|  | 820 | } | 
|  | 821 | void load_Huffman_table(Huffman_table *HT, unsigned char *nrcode, | 
|  | 822 | unsigned char *value, unsigned short int *Huff_code) { | 
|  | 823 | unsigned char k, j, i; | 
|  | 824 | unsigned int code, code_index; | 
|  | 825 |  | 
|  | 826 | for (j = 1; j <= 16; j++) { | 
|  | 827 | HT->Length[j] = nrcode[j]; | 
|  | 828 | } | 
|  | 829 | for (i = 0, k = 1; k <= 16; k++) | 
|  | 830 | for (j = 0; j < HT->Length[k]; j++) { | 
|  | 831 | HT->V[WORD_hi_lo(k, j)] = value[i]; | 
|  | 832 | i++; | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | code = 0; | 
|  | 836 | for (k = 1; k <= 16; k++) { | 
|  | 837 | HT->minor_code[k] = (unsigned short int)code; | 
|  | 838 | for (j = 1; j <= HT->Length[k]; j++) code++; | 
|  | 839 | HT->major_code[k] = (unsigned short int)(code - 1); | 
|  | 840 | code *= 2; | 
|  | 841 | if (HT->Length[k] == 0) { | 
|  | 842 | HT->minor_code[k] = 0xFFFF; | 
|  | 843 | HT->major_code[k] = 0; | 
|  | 844 | } | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | HT->Len[0] = 2; | 
|  | 848 | i = 2; | 
|  | 849 |  | 
|  | 850 | for (code_index = 1; code_index < 65535; code_index++) { | 
|  | 851 | if (code_index < Huff_code[i]) { | 
|  | 852 | HT->Len[code_index] = (unsigned char)Huff_code[i + 1]; | 
|  | 853 | } else { | 
|  | 854 | i = i + 2; | 
|  | 855 | HT->Len[code_index] = (unsigned char)Huff_code[i + 1]; | 
|  | 856 | } | 
|  | 857 | } | 
|  | 858 | } | 
|  | 859 | void init_jpg_table() { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 860 | Init_Color_Table(); | 
|  | 861 | prepare_range_limit_table(); | 
|  | 862 | load_Huffman_table(&HTDC[0], std_dc_luminance_nrcodes, | 
|  | 863 | std_dc_luminance_values, DC_LUMINANCE_HUFFMANCODE); | 
|  | 864 | load_Huffman_table(&HTAC[0], std_ac_luminance_nrcodes, | 
|  | 865 | std_ac_luminance_values, AC_LUMINANCE_HUFFMANCODE); | 
|  | 866 | load_Huffman_table(&HTDC[1], std_dc_chrominance_nrcodes, | 
|  | 867 | std_dc_chrominance_values, DC_CHROMINANCE_HUFFMANCODE); | 
|  | 868 | load_Huffman_table(&HTAC[1], std_ac_chrominance_nrcodes, | 
|  | 869 | std_ac_chrominance_values, AC_CHROMINANCE_HUFFMANCODE); | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | void prepare_range_limit_table() | 
|  | 873 | /* Allocate and fill in the sample_range_limit table */ | 
|  | 874 | { | 
|  | 875 | int j; | 
|  | 876 | rlimit_table = (unsigned char *)malloc(5 * 256L + 128); | 
|  | 877 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | 
|  | 878 | memset((void *)rlimit_table, 0, 256); | 
|  | 879 | rlimit_table += 256; /* allow negative subscripts of simple table */ | 
|  | 880 | /* Main part of "simple" table: limit[x] = x */ | 
|  | 881 | for (j = 0; j < 256; j++) rlimit_table[j] = j; | 
|  | 882 | /* End of simple table, rest of first half of post-IDCT table */ | 
|  | 883 | for (j = 256; j < 640; j++) rlimit_table[j] = 255; | 
|  | 884 |  | 
|  | 885 | /* Second half of post-IDCT table */ | 
|  | 886 | memset((void *)(rlimit_table + 640), 0, 384); | 
|  | 887 | for (j = 0; j < 128; j++) rlimit_table[j + 1024] = j; | 
|  | 888 | } | 
|  | 889 |  | 
|  | 890 | inline unsigned short int WORD_hi_lo(uint8_t byte_high, uint8_t byte_low) { | 
|  | 891 | return (byte_high << 8) + byte_low; | 
|  | 892 | } | 
|  | 893 |  | 
|  | 894 | // river | 
|  | 895 | void process_Huffman_data_unit(uint8_t DC_nr, uint8_t AC_nr, | 
|  | 896 | signed short int *previous_DC, | 
|  | 897 | unsigned short int position) { | 
|  | 898 | uint8_t nr = 0; | 
|  | 899 | uint8_t k; | 
|  | 900 | unsigned short int tmp_Hcode; | 
|  | 901 | uint8_t size_val, count_0; | 
|  | 902 | unsigned short int *min_code; | 
|  | 903 | uint8_t *huff_values; | 
|  | 904 | uint8_t byte_temp; | 
|  | 905 |  | 
|  | 906 | min_code = HTDC[DC_nr].minor_code; | 
|  | 907 | //   maj_code=HTDC[DC_nr].major_code; | 
|  | 908 | huff_values = HTDC[DC_nr].V; | 
|  | 909 |  | 
|  | 910 | // DC | 
|  | 911 | k = HTDC[DC_nr].Len[(unsigned short int)(codebuf >> 16)]; | 
|  | 912 | // river | 
|  | 913 | //	 tmp_Hcode=lookKbits(k); | 
|  | 914 | tmp_Hcode = (unsigned short int)(codebuf >> (32 - k)); | 
|  | 915 | skipKbits(k); | 
|  | 916 | size_val = huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))]; | 
|  | 917 | if (size_val == 0) | 
|  | 918 | DCT_coeff[position + 0] = *previous_DC; | 
|  | 919 | else { | 
|  | 920 | DCT_coeff[position + 0] = *previous_DC + getKbits(size_val); | 
|  | 921 | *previous_DC = DCT_coeff[position + 0]; | 
|  | 922 | } | 
|  | 923 |  | 
|  | 924 | // Second, AC coefficient decoding | 
|  | 925 | min_code = HTAC[AC_nr].minor_code; | 
|  | 926 | //   maj_code=HTAC[AC_nr].major_code; | 
|  | 927 | huff_values = HTAC[AC_nr].V; | 
|  | 928 |  | 
|  | 929 | nr = 1;  // AC coefficient | 
|  | 930 | do { | 
|  | 931 | k = HTAC[AC_nr].Len[(unsigned short int)(codebuf >> 16)]; | 
|  | 932 | tmp_Hcode = (unsigned short int)(codebuf >> (32 - k)); | 
|  | 933 | skipKbits(k); | 
|  | 934 |  | 
|  | 935 | byte_temp = | 
|  | 936 | huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))]; | 
|  | 937 | size_val = byte_temp & 0xF; | 
|  | 938 | count_0 = byte_temp >> 4; | 
|  | 939 | if (size_val == 0) { | 
|  | 940 | if (count_0 != 0xF) { | 
|  | 941 | break; | 
|  | 942 | } | 
|  | 943 | nr += 16; | 
|  | 944 | } else { | 
|  | 945 | nr += count_0;  // skip count_0 zeroes | 
|  | 946 | DCT_coeff[position + dezigzag[nr++]] = getKbits(size_val); | 
|  | 947 | } | 
|  | 948 | } while (nr < 64); | 
|  | 949 | } | 
|  | 950 |  | 
|  | 951 | unsigned short int lookKbits(uint8_t k) { | 
|  | 952 | unsigned short int revcode; | 
|  | 953 |  | 
|  | 954 | revcode = (unsigned short int)(codebuf >> (32 - k)); | 
|  | 955 |  | 
|  | 956 | return (revcode); | 
|  | 957 | } | 
|  | 958 |  | 
|  | 959 | void skipKbits(uint8_t k) { | 
|  | 960 | unsigned long readbuf; | 
|  | 961 |  | 
|  | 962 | if ((newbits - k) <= 0) { | 
|  | 963 | readbuf = Buffer[buffer_index]; | 
|  | 964 | buffer_index++; | 
|  | 965 | codebuf = | 
|  | 966 | (codebuf << k) | ((newbuf | (readbuf >> (newbits))) >> (32 - k)); | 
|  | 967 | newbuf = readbuf << (k - newbits); | 
|  | 968 | newbits = 32 + newbits - k; | 
|  | 969 | } else { | 
|  | 970 | codebuf = (codebuf << k) | (newbuf >> (32 - k)); | 
|  | 971 | newbuf = newbuf << k; | 
|  | 972 | newbits -= k; | 
|  | 973 | } | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | signed short int getKbits(uint8_t k) { | 
|  | 977 | signed short int signed_wordvalue; | 
|  | 978 |  | 
|  | 979 | // river | 
|  | 980 | // signed_wordvalue=lookKbits(k); | 
|  | 981 | signed_wordvalue = (unsigned short int)(codebuf >> (32 - k)); | 
|  | 982 | if (((1L << (k - 1)) & signed_wordvalue) == 0) { | 
|  | 983 | // neg_pow2 was previously defined as the below.  It seemed silly to keep | 
|  | 984 | // a table of values around for something | 
|  | 985 | // THat's relatively easy to compute, so it was replaced with the | 
|  | 986 | // appropriate math | 
|  | 987 | // signed_wordvalue = signed_wordvalue - (0xFFFF >> (16 - k)); | 
|  | 988 | std::array<signed short int, 17> neg_pow2 = { | 
|  | 989 | 0,    -1,   -3,    -7,    -15,   -31,   -63,    -127, | 
|  | 990 | -255, -511, -1023, -2047, -4095, -8191, -16383, -32767}; | 
|  | 991 |  | 
|  | 992 | signed_wordvalue = signed_wordvalue + neg_pow2[k]; | 
|  | 993 | } | 
|  | 994 | skipKbits(k); | 
|  | 995 | return signed_wordvalue; | 
|  | 996 | } | 
|  | 997 | int init_JPG_decoding() { | 
|  | 998 | byte_pos = 0; | 
|  | 999 | load_quant_table(QT[0]); | 
|  | 1000 | load_quant_tableCb(QT[1]); | 
|  | 1001 | //  Note: Added for Dual-JPEG | 
|  | 1002 | load_advance_quant_table(QT[2]); | 
|  | 1003 | load_advance_quant_tableCb(QT[3]); | 
|  | 1004 | return 1; | 
|  | 1005 | } | 
|  | 1006 |  | 
|  | 1007 | void set_quant_table(uint8_t *basic_table, uint8_t scale_factor, | 
|  | 1008 | uint8_t *newtable) | 
|  | 1009 | // Set quantization table and zigzag reorder it | 
|  | 1010 | { | 
|  | 1011 | uint8_t i; | 
|  | 1012 | long temp; | 
|  | 1013 | for (i = 0; i < 64; i++) { | 
|  | 1014 | temp = ((long)(basic_table[i] * 16) / scale_factor); | 
|  | 1015 | /* limit the values to the valid range */ | 
|  | 1016 | if (temp <= 0L) temp = 1L; | 
|  | 1017 | if (temp > 255L) temp = 255L; /* limit to baseline range if requested */ | 
|  | 1018 | newtable[zigzag[i]] = (uint8_t)temp; | 
|  | 1019 | } | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | void updatereadbuf(uint32_t *codebuf, uint32_t *newbuf, int walks, | 
|  | 1023 | int *newbits, std::vector<uint32_t> &Buffer) { | 
|  | 1024 | unsigned long readbuf; | 
|  | 1025 |  | 
|  | 1026 | if ((*newbits - walks) <= 0) { | 
|  | 1027 | readbuf = Buffer[buffer_index]; | 
|  | 1028 | buffer_index++; | 
|  | 1029 | *codebuf = (*codebuf << walks) | | 
|  | 1030 | ((*newbuf | (readbuf >> (*newbits))) >> (32 - walks)); | 
|  | 1031 | *newbuf = readbuf << (walks - *newbits); | 
|  | 1032 | *newbits = 32 + *newbits - walks; | 
|  | 1033 | } else { | 
|  | 1034 | *codebuf = (*codebuf << walks) | (*newbuf >> (32 - walks)); | 
|  | 1035 | *newbuf = *newbuf << walks; | 
|  | 1036 | *newbits -= walks; | 
|  | 1037 | } | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | uint32_t decode(std::vector<uint32_t> &buffer, unsigned long width, | 
|  | 1041 | unsigned long height, YuvMode yuvmode_in, int y_selector, | 
|  | 1042 | int uv_selector) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1043 | COLOR_CACHE Decode_Color; | 
|  | 1044 |  | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1045 | // TODO(ed) use the enum everywhere, not just externally | 
|  | 1046 | yuvmode = yuvmode_in;          // 0 = YUV444, 1 = YUV420 | 
|  | 1047 | Y_selector = y_selector;    // 0-7 | 
|  | 1048 | UV_selector = uv_selector;  // 0-7 | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 1049 |  | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1050 | // TODO(ed) Magic number section.  Document appropriately | 
|  | 1051 | advance_selector = 0;  // 0-7 | 
|  | 1052 | First_Frame = 1;       // 0 or 1 | 
|  | 1053 | Mapping = 0;           // 0 or 1 | 
|  | 1054 | /* | 
|  | 1055 | if (yuvmode == YuvMode::YUV420) { | 
|  | 1056 | Y_selector = 4; | 
|  | 1057 | UV_selector = 7; | 
|  | 1058 | Mapping = 0; | 
|  | 1059 | } else {  // YUV444 | 
|  | 1060 | Y_selector = 7; | 
|  | 1061 | UV_selector = 7; | 
|  | 1062 | Mapping = 0; | 
|  | 1063 | } | 
|  | 1064 | */ | 
|  | 1065 | auto test = static_cast<int>(yuvmode); | 
|  | 1066 | std::cout << "YUVmode " << test << " " << static_cast<int>(Y_selector) << static_cast<int>(UV_selector) << "\n"; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1067 |  | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1068 | tmp_WIDTH = width; | 
|  | 1069 | tmp_HEIGHT = height; | 
|  | 1070 | WIDTH = width; | 
|  | 1071 | HEIGHT = height; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1072 |  | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1073 | //VQ_Initialize(&Decode_Color); | 
|  | 1074 | // OutputDebugString  ("In decode\n"); | 
|  | 1075 | //            GetINFData (VideoEngineInfo); | 
|  | 1076 | //  WIDTH = VideoEngineInfo->SourceModeInfo.X = 640; | 
|  | 1077 | //  HEIGHT = VideoEngineInfo->SourceModeInfo.Y = 480; | 
|  | 1078 | //  AST2000 JPEG block is 16x16(pixels) base | 
|  | 1079 | if (yuvmode == YuvMode::YUV420) { | 
|  | 1080 | if (WIDTH % 16) { | 
|  | 1081 | WIDTH = WIDTH + 16 - (WIDTH % 16); | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1082 | } | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1083 | if (HEIGHT % 16) { | 
|  | 1084 | HEIGHT = HEIGHT + 16 - (HEIGHT % 16); | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1085 | } | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1086 | } else { | 
|  | 1087 | if (WIDTH % 8) { | 
|  | 1088 | WIDTH = WIDTH + 8 - (WIDTH % 8); | 
|  | 1089 | } | 
|  | 1090 | if (HEIGHT % 8) { | 
|  | 1091 | HEIGHT = HEIGHT + 8 - (HEIGHT % 8); | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1092 | } | 
|  | 1093 | } | 
|  | 1094 |  | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1095 | //  tmp_WDITH, tmp_HEIGHT are for block position | 
|  | 1096 | //  tmp_WIDTH = VideoEngineInfo->DestinationModeInfo.X; | 
|  | 1097 | //  tmp_HEIGHT = VideoEngineInfo->DestinationModeInfo.Y; | 
|  | 1098 | if (yuvmode == YuvMode::YUV420) { | 
|  | 1099 | if (tmp_WIDTH % 16) { | 
|  | 1100 | tmp_WIDTH = tmp_WIDTH + 16 - (tmp_WIDTH % 16); | 
|  | 1101 | } | 
|  | 1102 | if (tmp_HEIGHT % 16) { | 
|  | 1103 | tmp_HEIGHT = tmp_HEIGHT + 16 - (tmp_HEIGHT % 16); | 
|  | 1104 | } | 
|  | 1105 | } else { | 
|  | 1106 | if (tmp_WIDTH % 8) { | 
|  | 1107 | tmp_WIDTH = tmp_WIDTH + 8 - (tmp_WIDTH % 8); | 
|  | 1108 | } | 
|  | 1109 | if (tmp_HEIGHT % 8) { | 
|  | 1110 | tmp_HEIGHT = tmp_HEIGHT + 8 - (tmp_HEIGHT % 8); | 
|  | 1111 | } | 
|  | 1112 | } | 
|  | 1113 |  | 
|  | 1114 | int qfactor = 16; | 
|  | 1115 |  | 
|  | 1116 | SCALEFACTOR = qfactor; | 
|  | 1117 | SCALEFACTORUV = qfactor; | 
|  | 1118 | ADVANCESCALEFACTOR = 16; | 
|  | 1119 | ADVANCESCALEFACTORUV = 16; | 
|  | 1120 |  | 
|  | 1121 | if (First_Frame == 1) { | 
|  | 1122 | //init_jpg_table(); | 
|  | 1123 | init_JPG_decoding(); | 
|  | 1124 | } | 
|  | 1125 | // TODO(ed) cleanup cruft | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1126 | Buffer = buffer.data(); | 
|  | 1127 |  | 
|  | 1128 | codebuf = buffer[0]; | 
|  | 1129 | newbuf = buffer[1]; | 
|  | 1130 | buffer_index = 2; | 
|  | 1131 |  | 
|  | 1132 | txb = tyb = 0; | 
|  | 1133 | newbits = 32; | 
|  | 1134 | DCY = DCCb = DCCr = 0; | 
|  | 1135 |  | 
| Ed Tanous | 1ff4878 | 2017-04-18 12:45:08 -0700 | [diff] [blame] | 1136 | static const uint32_t VQ_HEADER_MASK = 0x01; | 
|  | 1137 | static const uint32_t VQ_NO_UPDATE_HEADER = 0x00; | 
|  | 1138 | static const uint32_t VQ_UPDATE_HEADER = 0x01; | 
|  | 1139 | static const int VQ_NO_UPDATE_LENGTH = 0x03; | 
|  | 1140 | static const int VQ_UPDATE_LENGTH = 0x1B; | 
|  | 1141 | static const uint32_t VQ_INDEX_MASK = 0x03; | 
|  | 1142 | static const uint32_t VQ_COLOR_MASK = 0xFFFFFF; | 
|  | 1143 |  | 
|  | 1144 | static const int BLOCK_AST2100_START_LENGTH = 0x04; | 
|  | 1145 | static const int BLOCK_AST2100_SKIP_LENGTH = 20;  // S:1 H:3 X:8 Y:8 | 
|  | 1146 |  | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1147 | do { | 
|  | 1148 | auto block_header = static_cast<JpgBlock>((codebuf >> 28) & 0xFF); | 
|  | 1149 | switch (block_header) { | 
|  | 1150 | case JpgBlock::JPEG_NO_SKIP_CODE: | 
|  | 1151 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, | 
|  | 1152 | buffer); | 
|  | 1153 | Decompress(txb, tyb, (char *)OutBuffer.data(), 0); | 
|  | 1154 | break; | 
|  | 1155 | case JpgBlock::FRAME_END_CODE: | 
|  | 1156 | return 0; | 
|  | 1157 | break; | 
|  | 1158 | case JpgBlock::JPEG_SKIP_CODE: | 
|  | 1159 |  | 
|  | 1160 | txb = (codebuf & 0x0FF00000) >> 20; | 
|  | 1161 | tyb = (codebuf & 0x0FF000) >> 12; | 
|  | 1162 |  | 
|  | 1163 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, | 
|  | 1164 | buffer); | 
|  | 1165 | Decompress(txb, tyb, (char *)OutBuffer.data(), 0); | 
|  | 1166 | break; | 
|  | 1167 | case JpgBlock::VQ_NO_SKIP_1_COLOR_CODE: | 
|  | 1168 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, | 
|  | 1169 | buffer); | 
|  | 1170 | Decode_Color.BitMapBits = 0; | 
|  | 1171 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1172 | for (int i = 0; i < 1; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1173 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1174 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1175 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1176 | buffer); | 
|  | 1177 | } else { | 
|  | 1178 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1179 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1180 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1181 | buffer); | 
|  | 1182 | } | 
|  | 1183 | } | 
|  | 1184 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1185 | break; | 
|  | 1186 | case JpgBlock::VQ_SKIP_1_COLOR_CODE: | 
|  | 1187 | txb = (codebuf & 0x0FF00000) >> 20; | 
|  | 1188 | tyb = (codebuf & 0x0FF000) >> 12; | 
|  | 1189 |  | 
|  | 1190 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, | 
|  | 1191 | buffer); | 
|  | 1192 | Decode_Color.BitMapBits = 0; | 
|  | 1193 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1194 | for (int i = 0; i < 1; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1195 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1196 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1197 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1198 | buffer); | 
|  | 1199 | } else { | 
|  | 1200 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1201 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1202 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1203 | buffer); | 
|  | 1204 | } | 
|  | 1205 | } | 
|  | 1206 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1207 | break; | 
|  | 1208 |  | 
|  | 1209 | case JpgBlock::VQ_NO_SKIP_2_COLOR_CODE: | 
|  | 1210 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, | 
|  | 1211 | buffer); | 
|  | 1212 | Decode_Color.BitMapBits = 1; | 
|  | 1213 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1214 | for (int i = 0; i < 2; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1215 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1216 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1217 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1218 | buffer); | 
|  | 1219 | } else { | 
|  | 1220 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1221 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1222 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1223 | buffer); | 
|  | 1224 | } | 
|  | 1225 | } | 
|  | 1226 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1227 | break; | 
|  | 1228 | case JpgBlock::VQ_SKIP_2_COLOR_CODE: | 
|  | 1229 | txb = (codebuf & 0x0FF00000) >> 20; | 
|  | 1230 | tyb = (codebuf & 0x0FF000) >> 12; | 
|  | 1231 |  | 
|  | 1232 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, | 
|  | 1233 | buffer); | 
|  | 1234 | Decode_Color.BitMapBits = 1; | 
|  | 1235 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1236 | for (int i = 0; i < 2; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1237 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1238 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1239 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1240 | buffer); | 
|  | 1241 | } else { | 
|  | 1242 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1243 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1244 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1245 | buffer); | 
|  | 1246 | } | 
|  | 1247 | } | 
|  | 1248 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1249 |  | 
|  | 1250 | break; | 
|  | 1251 | case JpgBlock::VQ_NO_SKIP_4_COLOR_CODE: | 
|  | 1252 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits, | 
|  | 1253 | buffer); | 
|  | 1254 | Decode_Color.BitMapBits = 2; | 
|  | 1255 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1256 | for (int i = 0; i < 4; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1257 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1258 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1259 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1260 | buffer); | 
|  | 1261 | } else { | 
|  | 1262 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1263 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1264 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1265 | buffer); | 
|  | 1266 | } | 
|  | 1267 | } | 
|  | 1268 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1269 |  | 
|  | 1270 | break; | 
|  | 1271 |  | 
|  | 1272 | case JpgBlock::VQ_SKIP_4_COLOR_CODE: | 
|  | 1273 | txb = (codebuf & 0x0FF00000) >> 20; | 
|  | 1274 | tyb = (codebuf & 0x0FF000) >> 12; | 
|  | 1275 |  | 
|  | 1276 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, | 
|  | 1277 | buffer); | 
|  | 1278 | Decode_Color.BitMapBits = 2; | 
|  | 1279 |  | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1280 | for (int i = 0; i < 4; i++) { | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1281 | Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK); | 
|  | 1282 | if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) { | 
|  | 1283 | updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits, | 
|  | 1284 | buffer); | 
|  | 1285 | } else { | 
|  | 1286 | Decode_Color.Color[Decode_Color.Index[i]] = | 
|  | 1287 | ((codebuf >> 5) & VQ_COLOR_MASK); | 
|  | 1288 | updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits, | 
|  | 1289 | buffer); | 
|  | 1290 | } | 
|  | 1291 | } | 
|  | 1292 | VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color); | 
|  | 1293 |  | 
|  | 1294 | break; | 
|  | 1295 | case JpgBlock::JPEG_SKIP_PASS2_CODE: | 
|  | 1296 | txb = (codebuf & 0x0FF00000) >> 20; | 
|  | 1297 | tyb = (codebuf & 0x0FF000) >> 12; | 
|  | 1298 |  | 
|  | 1299 | updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits, | 
|  | 1300 | buffer); | 
|  | 1301 | Decompress_2PASS(txb, tyb, (char *)OutBuffer.data(), 2); | 
|  | 1302 |  | 
|  | 1303 | break; | 
|  | 1304 | default: | 
|  | 1305 | // TODO(ed) propogate errors upstream | 
|  | 1306 | return -1; | 
|  | 1307 | break; | 
|  | 1308 | } | 
|  | 1309 | MoveBlockIndex(); | 
|  | 1310 |  | 
|  | 1311 | } while (buffer_index <= buffer.size()); | 
|  | 1312 |  | 
|  | 1313 | return -1; | 
|  | 1314 | } | 
|  | 1315 |  | 
|  | 1316 | #ifdef cimg_version | 
|  | 1317 | void dump_to_bitmap_file() { | 
|  | 1318 | cimg_library::CImg<unsigned char> image(WIDTH, HEIGHT, 1, 3); | 
|  | 1319 | for (int y = 0; y < WIDTH; y++) { | 
|  | 1320 | for (int x = 0; x < HEIGHT; x++) { | 
|  | 1321 | auto pixel = OutBuffer[x + (y * WIDTH)]; | 
|  | 1322 | image(x, y, 0) = pixel.R; | 
|  | 1323 | image(x, y, 1) = pixel.G; | 
|  | 1324 | image(x, y, 2) = pixel.B; | 
|  | 1325 | } | 
|  | 1326 | } | 
|  | 1327 | image.save("/tmp/file2.bmp"); | 
|  | 1328 | } | 
|  | 1329 | #endif | 
|  | 1330 |  | 
|  | 1331 | private: | 
|  | 1332 | YuvMode yuvmode; | 
|  | 1333 | // WIDTH and HEIGHT are the modes your display used | 
|  | 1334 | unsigned long WIDTH; | 
|  | 1335 | unsigned long HEIGHT; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1336 | unsigned long tmp_HEIGHT; | 
|  | 1337 | unsigned long tmp_WIDTH; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1338 | unsigned char Y_selector; | 
|  | 1339 | int SCALEFACTOR; | 
|  | 1340 | int SCALEFACTORUV; | 
|  | 1341 | int ADVANCESCALEFACTOR; | 
|  | 1342 | int ADVANCESCALEFACTORUV; | 
|  | 1343 | int Mapping; | 
|  | 1344 | unsigned char UV_selector; | 
|  | 1345 | unsigned char advance_selector; | 
| Ed Tanous | cc9e2c2 | 2017-04-18 14:32:02 -0700 | [diff] [blame^] | 1346 | unsigned char First_Frame; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1347 | int byte_pos;  // current byte position | 
|  | 1348 |  | 
|  | 1349 | // quantization tables, no more than 4 quantization tables | 
|  | 1350 | std::array<std::array<long, 64>, 4> QT; | 
|  | 1351 |  | 
|  | 1352 | // DC huffman tables , no more than 4 (0..3) | 
|  | 1353 | std::array<Huffman_table, 4> HTDC; | 
|  | 1354 | // AC huffman tables (0..3) | 
|  | 1355 | std::array<Huffman_table, 4> HTAC; | 
|  | 1356 | std::array<int, 256> m_CrToR; | 
|  | 1357 | std::array<int, 256> m_CbToB; | 
|  | 1358 | std::array<int, 256> m_CrToG; | 
|  | 1359 | std::array<int, 256> m_CbToG; | 
|  | 1360 | std::array<int, 256> m_Y; | 
|  | 1361 | unsigned long buffer_index; | 
|  | 1362 | uint32_t codebuf, newbuf, readbuf; | 
|  | 1363 | uint8_t *std_luminance_qt; | 
|  | 1364 | uint8_t *std_chrominance_qt; | 
|  | 1365 |  | 
|  | 1366 | signed short int DCY, DCCb, DCCr;  // Coeficientii DC pentru Y,Cb,Cr | 
|  | 1367 | signed short int DCT_coeff[384]; | 
|  | 1368 | // std::vector<signed short int> DCT_coeff;  // Current DCT_coefficients | 
|  | 1369 | // quantization table number for Y, Cb, Cr | 
|  | 1370 | uint8_t YQ_nr = 0, CbQ_nr = 1, CrQ_nr = 1; | 
|  | 1371 | // DC Huffman table number for Y,Cb, Cr | 
|  | 1372 | uint8_t YDC_nr = 0, CbDC_nr = 1, CrDC_nr = 1; | 
|  | 1373 | // AC Huffman table number for Y,Cb, Cr | 
|  | 1374 | uint8_t YAC_nr = 0, CbAC_nr = 1, CrAC_nr = 1; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1375 | int txb = 0; | 
|  | 1376 | int tyb = 0; | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1377 | int newbits; | 
|  | 1378 | uint8_t *rlimit_table; | 
|  | 1379 | std::vector<RGB> YUVBuffer; | 
| Ed Tanous | d5f3999 | 2017-04-18 13:41:22 -0700 | [diff] [blame] | 1380 | // TODO(ed) this shouldn't exist.  It is cruft that needs cleaning up | 
| Ed Tanous | 93f987d | 2017-04-17 17:52:36 -0700 | [diff] [blame] | 1381 | uint32_t *Buffer; | 
|  | 1382 |  | 
|  | 1383 | public: | 
|  | 1384 | std::vector<RGB> OutBuffer; | 
|  | 1385 | }; | 
|  | 1386 | } |