Partial reformat to kernel code style.
diff --git a/cper-utils.c b/cper-utils.c
index 0eadf10..519349f 100644
--- a/cper-utils.c
+++ b/cper-utils.c
@@ -10,288 +10,301 @@
#include "cper-utils.h"
//The available severity types for CPER.
-const char* CPER_SEVERITY_TYPES[4] = {"Recoverable", "Fatal", "Corrected", "Informational"};
+const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected",
+ "Informational" };
//Converts the given generic CPER error status to JSON IR.
-json_object* cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS* error_status)
+json_object *
+cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status)
{
- json_object* error_status_ir = json_object_new_object();
+ json_object *error_status_ir = json_object_new_object();
- //Error type.
- json_object_object_add(error_status_ir, "errorType", integer_to_readable_pair_with_desc(error_status->Type, 18,
- CPER_GENERIC_ERROR_TYPES_KEYS,
- CPER_GENERIC_ERROR_TYPES_VALUES,
- CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
- "Unknown (Reserved)"));
+ //Error type.
+ json_object_object_add(error_status_ir, "errorType",
+ integer_to_readable_pair_with_desc(
+ error_status->Type, 18,
+ CPER_GENERIC_ERROR_TYPES_KEYS,
+ CPER_GENERIC_ERROR_TYPES_VALUES,
+ CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
+ "Unknown (Reserved)"));
- //Boolean bit fields.
- json_object_object_add(error_status_ir, "addressSignal", json_object_new_boolean(error_status->AddressSignal));
- json_object_object_add(error_status_ir, "controlSignal", json_object_new_boolean(error_status->ControlSignal));
- json_object_object_add(error_status_ir, "dataSignal", json_object_new_boolean(error_status->DataSignal));
- json_object_object_add(error_status_ir, "detectedByResponder", json_object_new_boolean(error_status->DetectedByResponder));
- json_object_object_add(error_status_ir, "detectedByRequester", json_object_new_boolean(error_status->DetectedByRequester));
- json_object_object_add(error_status_ir, "firstError", json_object_new_boolean(error_status->FirstError));
- json_object_object_add(error_status_ir, "overflowDroppedLogs", json_object_new_boolean(error_status->OverflowNotLogged));
-
- return error_status_ir;
+ //Boolean bit fields.
+ json_object_object_add(
+ error_status_ir, "addressSignal",
+ json_object_new_boolean(error_status->AddressSignal));
+ json_object_object_add(
+ error_status_ir, "controlSignal",
+ json_object_new_boolean(error_status->ControlSignal));
+ json_object_object_add(
+ error_status_ir, "dataSignal",
+ json_object_new_boolean(error_status->DataSignal));
+ json_object_object_add(
+ error_status_ir, "detectedByResponder",
+ json_object_new_boolean(error_status->DetectedByResponder));
+ json_object_object_add(
+ error_status_ir, "detectedByRequester",
+ json_object_new_boolean(error_status->DetectedByRequester));
+ json_object_object_add(
+ error_status_ir, "firstError",
+ json_object_new_boolean(error_status->FirstError));
+ json_object_object_add(
+ error_status_ir, "overflowDroppedLogs",
+ json_object_new_boolean(error_status->OverflowNotLogged));
+
+ return error_status_ir;
}
//Converts the given CPER-JSON generic error status into a CPER structure.
-void ir_generic_error_status_to_cper(json_object* error_status, EFI_GENERIC_ERROR_STATUS* error_status_cper)
+void ir_generic_error_status_to_cper(
+ json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper)
{
- error_status_cper->Type = readable_pair_to_integer(json_object_object_get(error_status, "errorType"));
- error_status_cper->AddressSignal = json_object_get_boolean(json_object_object_get(error_status, "addressSignal"));
- error_status_cper->ControlSignal = json_object_get_boolean(json_object_object_get(error_status, "controlSignal"));
- error_status_cper->DataSignal = json_object_get_boolean(json_object_object_get(error_status, "dataSignal"));
- error_status_cper->DetectedByResponder = json_object_get_boolean(json_object_object_get(error_status, "detectedByResponder"));
- error_status_cper->DetectedByRequester = json_object_get_boolean(json_object_object_get(error_status, "detectedByRequester"));
- error_status_cper->FirstError = json_object_get_boolean(json_object_object_get(error_status, "firstError"));
- error_status_cper->OverflowNotLogged = json_object_get_boolean(json_object_object_get(error_status, "overflowDroppedLogs"));
+ error_status_cper->Type = readable_pair_to_integer(
+ json_object_object_get(error_status, "errorType"));
+ error_status_cper->AddressSignal = json_object_get_boolean(
+ json_object_object_get(error_status, "addressSignal"));
+ error_status_cper->ControlSignal = json_object_get_boolean(
+ json_object_object_get(error_status, "controlSignal"));
+ error_status_cper->DataSignal = json_object_get_boolean(
+ json_object_object_get(error_status, "dataSignal"));
+ error_status_cper->DetectedByResponder = json_object_get_boolean(
+ json_object_object_get(error_status, "detectedByResponder"));
+ error_status_cper->DetectedByRequester = json_object_get_boolean(
+ json_object_object_get(error_status, "detectedByRequester"));
+ error_status_cper->FirstError = json_object_get_boolean(
+ json_object_object_get(error_status, "firstError"));
+ error_status_cper->OverflowNotLogged = json_object_get_boolean(
+ json_object_object_get(error_status, "overflowDroppedLogs"));
}
//Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
-json_object* uniform_struct64_to_ir(UINT64* start, int len, const char* names[])
+json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[])
{
- json_object* result = json_object_new_object();
+ json_object *result = json_object_new_object();
- UINT64* cur = start;
- for (int i=0; i<len; i++)
- {
- json_object_object_add(result, names[i], json_object_new_uint64(*cur));
- cur++;
- }
+ UINT64 *cur = start;
+ for (int i = 0; i < len; i++) {
+ json_object_object_add(result, names[i],
+ json_object_new_uint64(*cur));
+ cur++;
+ }
- return result;
+ return result;
}
//Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
-json_object* uniform_struct_to_ir(UINT32* start, int len, const char* names[])
+json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[])
{
- json_object* result = json_object_new_object();
+ json_object *result = json_object_new_object();
- UINT32* cur = start;
- for (int i=0; i<len; i++)
- {
- json_object_object_add(result, names[i], json_object_new_uint64(*cur));
- cur++;
- }
+ UINT32 *cur = start;
+ for (int i = 0; i < len; i++) {
+ json_object_object_add(result, names[i],
+ json_object_new_uint64(*cur));
+ cur++;
+ }
- return result;
+ return result;
}
//Converts a single object containing UINT32s into a uniform struct.
-void ir_to_uniform_struct64(json_object* ir, UINT64* start, int len, const char* names[])
+void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len,
+ const char *names[])
{
- UINT64* cur = start;
- for (int i=0; i<len; i++)
- {
- *cur = json_object_get_uint64(json_object_object_get(ir, names[i]));
- cur++;
- }
+ UINT64 *cur = start;
+ for (int i = 0; i < len; i++) {
+ *cur = json_object_get_uint64(
+ json_object_object_get(ir, names[i]));
+ cur++;
+ }
}
//Converts a single object containing UINT32s into a uniform struct.
-void ir_to_uniform_struct(json_object* ir, UINT32* start, int len, const char* names[])
+void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len,
+ const char *names[])
{
- UINT32* cur = start;
- for (int i=0; i<len; i++)
- {
- *cur = (UINT32)json_object_get_uint64(json_object_object_get(ir, names[i]));
- cur++;
- }
+ UINT32 *cur = start;
+ for (int i = 0; i < len; i++) {
+ *cur = (UINT32)json_object_get_uint64(
+ json_object_object_get(ir, names[i]));
+ cur++;
+ }
}
//Converts a single integer value to an object containing a value, and a readable name if possible.
-json_object* integer_to_readable_pair(UINT64 value, int len, int keys[], const char* values[], const char* default_value)
+json_object *integer_to_readable_pair(UINT64 value, int len, int keys[],
+ const char *values[],
+ const char *default_value)
{
- json_object* result = json_object_new_object();
- json_object_object_add(result, "value", json_object_new_uint64(value));
+ json_object *result = json_object_new_object();
+ json_object_object_add(result, "value", json_object_new_uint64(value));
- //Search for human readable name, add.
- const char* name = default_value;
- for (int i=0; i<len; i++)
- {
- if (keys[i] == value)
- name = values[i];
- }
+ //Search for human readable name, add.
+ const char *name = default_value;
+ for (int i = 0; i < len; i++) {
+ if (keys[i] == value)
+ name = values[i];
+ }
- json_object_object_add(result, "name", json_object_new_string(name));
- return result;
+ json_object_object_add(result, "name", json_object_new_string(name));
+ return result;
}
//Converts a single integer value to an object containing a value, readable name and description if possible.
-json_object* integer_to_readable_pair_with_desc(int value, int len, int keys[], const char* values[],
- const char* descriptions[], const char* default_value)
+json_object *integer_to_readable_pair_with_desc(int value, int len, int keys[],
+ const char *values[],
+ const char *descriptions[],
+ const char *default_value)
{
- json_object* result = json_object_new_object();
- json_object_object_add(result, "value", json_object_new_int(value));
+ json_object *result = json_object_new_object();
+ json_object_object_add(result, "value", json_object_new_int(value));
- //Search for human readable name, add.
- const char* name = default_value;
- for (int i=0; i<len; i++)
- {
- if (keys[i] == value)
- {
- name = values[i];
- json_object_object_add(result, "description", json_object_new_string(descriptions[i]));
- }
- }
+ //Search for human readable name, add.
+ const char *name = default_value;
+ for (int i = 0; i < len; i++) {
+ if (keys[i] == value) {
+ name = values[i];
+ json_object_object_add(
+ result, "description",
+ json_object_new_string(descriptions[i]));
+ }
+ }
- json_object_object_add(result, "name", json_object_new_string(name));
- return result;
+ json_object_object_add(result, "name", json_object_new_string(name));
+ return result;
}
//Returns a single UINT64 value from the given readable pair object.
//Assumes the integer value is held in the "value" field.
-UINT64 readable_pair_to_integer(json_object* pair)
+UINT64 readable_pair_to_integer(json_object *pair)
{
- return json_object_get_uint64(json_object_object_get(pair, "value"));
+ return json_object_get_uint64(json_object_object_get(pair, "value"));
}
//Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
-json_object* bitfield_to_ir(UINT64 bitfield, int num_fields, const char* names[])
+json_object *bitfield_to_ir(UINT64 bitfield, int num_fields,
+ const char *names[])
{
- json_object* result = json_object_new_object();
- for (int i=0; i<num_fields; i++)
- {
- json_object_object_add(result, names[i], json_object_new_boolean((bitfield >> i) & 0b1));
- }
+ json_object *result = json_object_new_object();
+ for (int i = 0; i < num_fields; i++) {
+ json_object_object_add(result, names[i],
+ json_object_new_boolean((bitfield >> i) &
+ 0b1));
+ }
- return result;
+ return result;
}
//Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
-UINT64 ir_to_bitfield(json_object* ir, int num_fields, const char* names[])
+UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[])
{
- UINT64 result = 0x0;
- for (int i=0; i<num_fields; i++)
- {
- if (json_object_get_boolean(json_object_object_get(ir, names[i])))
- result |= (0x1 << i);
- }
+ UINT64 result = 0x0;
+ for (int i = 0; i < num_fields; i++) {
+ if (json_object_get_boolean(
+ json_object_object_get(ir, names[i])))
+ result |= (0x1 << i);
+ }
- return result;
+ return result;
}
//Converts the given UINT64 array into a JSON IR array, given the length.
-json_object* uint64_array_to_ir_array(UINT64* array, int len)
+json_object *uint64_array_to_ir_array(UINT64 *array, int len)
{
- json_object* array_ir = json_object_new_array();
- for (int i=0; i<len; i++)
- json_object_array_add(array_ir, json_object_new_uint64(array[i]));
- return array_ir;
+ json_object *array_ir = json_object_new_array();
+ for (int i = 0; i < len; i++)
+ json_object_array_add(array_ir,
+ json_object_new_uint64(array[i]));
+ return array_ir;
}
//Converts a single UINT16 revision number into JSON IR representation.
-json_object* revision_to_ir(UINT16 revision)
+json_object *revision_to_ir(UINT16 revision)
{
- json_object* revision_info = json_object_new_object();
- json_object_object_add(revision_info, "major", json_object_new_int(revision >> 8));
- json_object_object_add(revision_info, "minor", json_object_new_int(revision & 0xFF));
- return revision_info;
+ json_object *revision_info = json_object_new_object();
+ json_object_object_add(revision_info, "major",
+ json_object_new_int(revision >> 8));
+ json_object_object_add(revision_info, "minor",
+ json_object_new_int(revision & 0xFF));
+ return revision_info;
}
//Returns the appropriate string for the given integer severity.
-const char* severity_to_string(UINT32 severity)
+const char *severity_to_string(UINT32 severity)
{
- return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
+ return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
}
//Converts a single EFI timestamp to string, at the given output.
//Output must be at least TIMESTAMP_LENGTH bytes long.
-void timestamp_to_string(char* out, EFI_ERROR_TIME_STAMP* timestamp)
+void timestamp_to_string(char *out, EFI_ERROR_TIME_STAMP *timestamp)
{
- sprintf(out, "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu.000",
- bcd_to_int(timestamp->Century) % 100, //Cannot go to three digits.
- bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits.
- bcd_to_int(timestamp->Month),
- bcd_to_int(timestamp->Day),
- bcd_to_int(timestamp->Hours),
- bcd_to_int(timestamp->Minutes),
- bcd_to_int(timestamp->Seconds));
+ sprintf(out, "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu.000",
+ bcd_to_int(timestamp->Century) %
+ 100, //Cannot go to three digits.
+ bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits.
+ bcd_to_int(timestamp->Month), bcd_to_int(timestamp->Day),
+ bcd_to_int(timestamp->Hours), bcd_to_int(timestamp->Minutes),
+ bcd_to_int(timestamp->Seconds));
}
//Converts a single timestamp string to an EFI timestamp.
-void string_to_timestamp(EFI_ERROR_TIME_STAMP* out, const char* timestamp)
+void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp)
{
- //Ignore invalid timestamps.
- if (timestamp == NULL)
- return;
+ //Ignore invalid timestamps.
+ if (timestamp == NULL)
+ return;
- sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu.000",
- &out->Century,
- &out->Year,
- &out->Month,
- &out->Day,
- &out->Hours,
- &out->Minutes,
- &out->Seconds);
+ sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu.000",
+ &out->Century, &out->Year, &out->Month, &out->Day, &out->Hours,
+ &out->Minutes, &out->Seconds);
- //Convert back to BCD.
- out->Century = int_to_bcd(out->Century);
- out->Year = int_to_bcd(out->Year);
- out->Month = int_to_bcd(out->Month);
- out->Day = int_to_bcd(out->Day);
- out->Hours = int_to_bcd(out->Hours);
- out->Minutes = int_to_bcd(out->Minutes);
- out->Seconds = int_to_bcd(out->Seconds);
+ //Convert back to BCD.
+ out->Century = int_to_bcd(out->Century);
+ out->Year = int_to_bcd(out->Year);
+ out->Month = int_to_bcd(out->Month);
+ out->Day = int_to_bcd(out->Day);
+ out->Hours = int_to_bcd(out->Hours);
+ out->Minutes = int_to_bcd(out->Minutes);
+ out->Seconds = int_to_bcd(out->Seconds);
}
//Helper function to convert an EDK EFI GUID into a string for intermediate use.
-void guid_to_string(char* out, EFI_GUID* guid)
+void guid_to_string(char *out, EFI_GUID *guid)
{
- sprintf(out, "%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
- guid->Data1,
- guid->Data2,
- guid->Data3,
- guid->Data4[0],
- guid->Data4[1],
- guid->Data4[2],
- guid->Data4[3],
- guid->Data4[4],
- guid->Data4[5],
- guid->Data4[6],
- guid->Data4[7]);
+ sprintf(out, "%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
+ guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
+ guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
+ guid->Data4[5], guid->Data4[6], guid->Data4[7]);
}
//Helper function to convert a string into an EDK EFI GUID.
-void string_to_guid(EFI_GUID* out, const char* guid)
+void string_to_guid(EFI_GUID *out, const char *guid)
{
- //Ignore invalid GUIDs.
- if (guid == NULL)
- return;
+ //Ignore invalid GUIDs.
+ if (guid == NULL)
+ return;
- sscanf(guid, "%08x-%04hx-%04hx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
- &out->Data1,
- &out->Data2,
- &out->Data3,
- out->Data4,
- out->Data4 + 1,
- out->Data4 + 2,
- out->Data4 + 3,
- out->Data4 + 4,
- out->Data4 + 5,
- out->Data4 + 6,
- out->Data4 + 7);
+ sscanf(guid,
+ "%08x-%04hx-%04hx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
+ &out->Data1, &out->Data2, &out->Data3, out->Data4,
+ out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4,
+ out->Data4 + 5, out->Data4 + 6, out->Data4 + 7);
}
//Returns one if two EFI GUIDs are equal, zero otherwise.
-int guid_equal(EFI_GUID* a, EFI_GUID* b)
+int guid_equal(EFI_GUID *a, EFI_GUID *b)
{
- //Check top base 3 components.
- if (a->Data1 != b->Data1
- || a->Data2 != b->Data2
- || a->Data3 != b->Data3)
- {
- return 0;
- }
+ //Check top base 3 components.
+ if (a->Data1 != b->Data1 || a->Data2 != b->Data2 ||
+ a->Data3 != b->Data3) {
+ return 0;
+ }
- //Check Data4 array for equality.
- for (int i=0; i<8; i++)
- {
- if (a->Data4[i] != b->Data4[i])
- return 0;
- }
+ //Check Data4 array for equality.
+ for (int i = 0; i < 8; i++) {
+ if (a->Data4[i] != b->Data4[i])
+ return 0;
+ }
- return 1;
+ return 1;
}
\ No newline at end of file