meta-raspberrypi: refresh thud: d5d92f2cb7..c71d79efc5

Update meta-raspberrypi to thud HEAD.

Andrei Gherzan (2):
      raspberrypi-cm3.conf: Define it as a stand alone machine
      docs/ raspberrypi-cm3 is a stand alone machine now

Drew Moseley (1):
      linux-raspberrypi: Update to 4.14.85

Hugo Hromic (1):
      docs: improve the contributing section

Khem Raj (8):
      dynamic-layers/qt5-layer: Append to oe-device-extra.pri instead of rewriting
      bpftool: Disable for rpi until kernel is not > 4.14
      packagegroup-meta-oe.bbappend: remove bpftool for rpi
      Add meta-oe to dynamic-layers
      layer.conf: Fix typo for openembedded-layer dynamic layer addition
      bpftool: Move under meta-oe dynamic layer
      qtbase: Get eglfs/kms working with vc4graphics
      userland: Use original name libegl-mesa in rdeps

Marek Belisko (1):
      devtools: Added raspi-gpio

Ming Liu (2): use virtual/libgbm instead of libgbm
      userland: do not provide libgl1

Pepijn de Vos (2): Update to 20181211
      linux-raspberrypi: Update to 4.14.87

Ricardo Salveti (1):
      bluez-firmware-rpidistro: update bluez-firmware

Richard Osterloh (1):
      sdcard_image-rpi: Format boot partition as FAT32

Zahari Petkov (2):
      linux-raspberrypi: Update to 4.14.98 Update to 20190212

memox_5 (1):
      rpi-config: used printf to escape properly

Change-Id: I36c776929c0ca91f06ab0f9bd93f1e2ce19cdf8b
Signed-off-by: Andrew Geissler <>
15 files changed
tree: 8e059236d8738039f5b37a16b42b060a31398e60
  1. meta-arm/
  2. meta-aspeed/
  3. meta-evb/
  4. meta-facebook/
  5. meta-google/
  6. meta-hxt/
  7. meta-ibm/
  8. meta-ingrasys/
  9. meta-inspur/
  10. meta-intel/
  11. meta-inventec/
  12. meta-mellanox/
  13. meta-nuvoton/
  14. meta-openembedded/
  15. meta-openpower/
  16. meta-phosphor/
  17. meta-portwell/
  18. meta-qualcomm/
  19. meta-quanta/
  20. meta-raspberrypi/
  21. meta-security/
  22. meta-x86/
  23. meta-xilinx/
  24. poky/
  25. .gitignore
  26. .gitreview
  27. .templateconf
  29. openbmc-env
  31. setup


Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 28
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake rpcgen
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. You can see all of the known targets with find meta-* -name local.conf.sample. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet


As an example target Palmetto

export TEMPLATECONF=meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • REST Management
  • IPMI
  • SSH based SOL
  • Power and Cooling Management
  • Event Logs
  • Zeroconf discoverable
  • Sensors
  • Inventory
  • LED Management
  • Host Watchdog
  • Simulation
  • Code Update Support for multiple BMC/BIOS images

Features In Progress

  • Full IPMI 2.0 Compliance with DCMI
  • Verified Boot
  • HTML5 Java Script Web User Interface

Features Requested but need help

  • OpenCompute Redfish Compliance
  • OpenBMC performance monitoring
  • cgroup user management and policies
  • Remote KVM
  • Remote USB
  • OpenStack Ironic Integration
  • QEMU enhancements

Finding out more

Dive deeper in to OpenBMC by opening the docs repository.