Add in new targets to handle bmc resets while host running

The point of this new target is to support getting
the systemd targets which boot the host into the
running state (without actually running the associated
services) when the BMC is rebooted and the host is
up and running.  This will ensure that systemd
and its targets match with the state of the system
without affecting the running host.

This commit will run the new target but nothing will
happen yet due to the discovery service being a noop.

Once the application is in for the service to call,
it will be added to the service which will enable this
new host running with bmc reset support.

Change-Id: Ia29e53de58ea7530941341b0e515e4d8fa49be6c
Signed-off-by: Andrew Geissler <>
6 files changed
tree: fdbbef1ff3eb23b2c79024a586df836d09948df7
  1. import-layers/
  2. meta-openbmc-bsp/
  3. meta-openbmc-machines/
  4. meta-phosphor/
  5. .gitignore
  6. .gitreview
  7. .templateconf
  8. openbmc-env


Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, Open-Embedded, Systemd and DBus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 23
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. OpenBMC has placed all known hardware targets in a standard directory structure meta-openbmc-machines/meta-openpower/[company]/[target]. You can see all of the known targets with find meta-openbmc-machines -type d -name conf. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet


As an example target Palmetto

export TEMPLATECONF=meta-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf

3) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC Github community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with a arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on Github. It is recommended you search through the issues before opening a new one.

Finding out more

Dive deeper in to OpenBMC by opening the docs repository