ipmi application srcrev bumps

openpower-host-ipmi-flash: srcrev bump cc2fe1effe..ee3064bace

Vernon Mauery (1):
      Use new ipmid signal handling interface

phosphor-host-ipmid: srcrev bump 1bb0c7fc55..be37630691

Jia, Chunhui (2):
      Extra Bytes in response data for chassis Identify command
      [IPMI]Set/Get global enables

Kun Yi (1):
      utils: Use 5s timeout for D-Bus get/set property calls

Richard Marian Thomaiyar (1):
      Fix: User commands require channel layer lib

Vernon Mauery (16):
      ipmid: Compiler-generated unpacking and packing of messages
      ipmid: add message packing/unpacking unit tests
      ipmid: Rewrite ipmid to use the new architecture
      ipmid: Add in Native OEM and Group OEM support
      ipmid: Add command filter mechanism
      ipmid: Add whitelist filtering using the new filter registration mechanism
      Set new default ipmid provider path
      Add back an interface used by an external provider
      fix whitelist RestrictionMode lookup
      Use payload interface to unpack group/IANA from message
      errorResponse must not pack completion code in data payload
      Change linkage of ipmid_get_sdbus_plus_handler() to libipmid.so
      make utility.hpp available for external things that include ipmid/api.hpp
      Add generic signal handling API to work with boost::asio
      make ipmid respond to SIGTERM and SIGINT for clean shutdown
      Add user context parameter to legacy ipmi handler registration

Change-Id: I3a15d46177f4e4ea81106bc8637b83bcc64e1ba7
Signed-off-by: Brad Bishop <bradleyb@fuzziesquirrel.com>
2 files changed
tree: d4f5ec12e16d8dbd22a4e10feea18168dbfac2b7
  1. .github/
  2. meta-arm/
  3. meta-aspeed/
  4. meta-evb/
  5. meta-facebook/
  6. meta-google/
  7. meta-hxt/
  8. meta-ibm/
  9. meta-ingrasys/
  10. meta-inspur/
  11. meta-intel/
  12. meta-inventec/
  13. meta-mellanox/
  14. meta-nuvoton/
  15. meta-openembedded/
  16. meta-openpower/
  17. meta-phosphor/
  18. meta-portwell/
  19. meta-qualcomm/
  20. meta-quanta/
  21. meta-raspberrypi/
  22. meta-security/
  23. meta-x86/
  24. meta-xilinx/
  25. poky/
  26. .gitignore
  27. .gitreview
  28. .templateconf
  29. MAINTAINERS
  30. openbmc-env
  31. README.md
  32. setup
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 28
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake rpcgen
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. You can see all of the known targets with find meta-* -name local.conf.sample. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-ibm/meta-palmetto/conf
Zaiusmeta-ingrasys/meta-zaius/conf
Witherspoonmeta-ibm/meta-witherspoon/conf
Romulusmeta-ibm/meta-romulus/conf

As an example target Palmetto

export TEMPLATECONF=meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • Host management: Power, Cooling, LEDs, Inventory, Events, Watchdog
  • Full IPMI 2.0 Compliance with DCMI
  • Code Update Support for multiple BMC/BIOS images
  • Web-based user interface
  • REST interfaces
  • D-Bus based interfaces
  • SSH based SOL
  • Remote KVM
  • Hardware Simulation
  • Automated Testing

Features In Progress

  • OpenCompute Redfish Compliance
  • User management
  • Virtual media
  • Verified Boot

Features Requested but need help

  • OpenBMC performance monitoring

Finding out more

Dive deeper into OpenBMC by opening the docs repository.

Contact