subtree updates

meta-raspberrypi: b112816e95..2634621374:
  Vincenzo Pacella (1):
        linux-raspberrypi: add linux-raspberrypi-rt 4.19

meta-xilinx: f3c8b1c9a8..68eacd5636:
  Alejandro Enedino Hernandez Samaniego (4): Disable PIE (ASLR) for Microblaze
        meta-xilinx-bsp: Update layer compatibility to warrior release
        meta-xilinx-contrib: Update layer compatibility to warrior release
        meta-xilinx-standalone: Update layer compatibility to warrior release

  Jaewon Lee (2):
        microblaze-kc705-Convert-microblaze-generic-to-k.patch:update patch
        Update recipes for Xilinx v2019.1 release

  Manjukumar Matha (7):
        microblaze: Update to v11.0 Add bison-native dependency for 2019.01 Recipe to create u-boot.scr for Xilinx devices
        microblazeel*.conf: Add microblaze generic machines
        -generic.conf: Add generic machines for Zynq and ZU+
        layer.conf: Add warning for dangling bbappends
        conf/machine/*-zynq7.conf: Fix UBOOT_ELF for upstream u-boot version

  Michael Monaghan (1):
        kernel-simpleimage.bbclass: Fix do_prep_simpleimage `[[: not found`

  Swagath Gadde (1):
        zcu1285-zynqmp.conf: Add support for zcu1285 board

Change-Id: I0e3c5e57b0316f438d3f1fd80bd047dcbbac384e
Signed-off-by: Brad Bishop <>
53 files changed
tree: 18b232b2b4835f94564d81d48c8f2578198480e4
  1. .github/
  2. meta-arm/
  3. meta-aspeed/
  4. meta-evb/
  5. meta-facebook/
  6. meta-google/
  7. meta-hxt/
  8. meta-ibm/
  9. meta-ingrasys/
  10. meta-inspur/
  11. meta-intel/
  12. meta-inventec/
  13. meta-lenovo/
  14. meta-mellanox/
  15. meta-microsoft/
  16. meta-nuvoton/
  17. meta-openembedded/
  18. meta-openpower/
  19. meta-phosphor/
  20. meta-portwell/
  21. meta-qualcomm/
  22. meta-quanta/
  23. meta-raspberrypi/
  24. meta-security/
  25. meta-x86/
  26. meta-xilinx/
  27. meta-yadro/
  28. poky/
  29. .gitignore
  30. .gitreview
  31. .templateconf
  33. openbmc-env
  35. setup


Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 28
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake \
    rpcgen perl-Thread-Queue perl-bignum perl-Crypt-OpenSSL-Bignum
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. You can see all of the known targets with find meta-* -name local.conf.sample. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet


As an example target Palmetto

export TEMPLATECONF=meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • Host management: Power, Cooling, LEDs, Inventory, Events, Watchdog
  • Full IPMI 2.0 Compliance with DCMI
  • Code Update Support for multiple BMC/BIOS images
  • Web-based user interface
  • REST interfaces
  • D-Bus based interfaces
  • SSH based SOL
  • Remote KVM
  • Hardware Simulation
  • Automated Testing

Features In Progress

  • OpenCompute Redfish Compliance
  • User management
  • Virtual media
  • Verified Boot

Features Requested but need help

  • OpenBMC performance monitoring

Finding out more

Dive deeper into OpenBMC by opening the docs repository.