phosphor-fan-presence: srcrev bump d9a580aa50..014f07c7b5

Lei YU (1):
      monitor: use signed value for factor and offset

Matthew Barth (24):
      Move signal matches to triggers section
      Preconditions use signal triggers
      Have timers be a trigger type in microseconds
      Call event triggers on initialization
      Move signals to event triggers
      Converge generating signal and handler params
      Convert event group to a vector of tuples
      Add event init trigger
      Separate handlers for signals and method calls
      Optimize event group property handling
      Allow event groups to be empty
      Add event name to SetSpeedEvent data
      Provide event name to triggers
      Add/Remove event signals by event name
      Add/Remove event timers by event name
      Event groups are optional
      Create empty action groups
      Generate groups defined on actions
      Remove events with no groups defined
      Remove service name checking
      Restructure preconditions layout
      Add missing owner services precondition
      Correct precondition generation
      Fan floor by median sensor value within a range

(From meta-phosphor rev: 1c599b2742aa369086c4844f8ca4818b18d29980)

Change-Id: I41828bda56c0bc67efd595fd6fa2a2f746e03046
Signed-off-by: Andrew Geissler <openbmcbump-github@yahoo.com>
Signed-off-by: Brad Bishop <bradleyb@fuzziesquirrel.com>
1 file changed
tree: c7a3bee23fd86d677fc12d570b151aa6fd51ceb9
  1. .github/
  2. meta-arm/
  3. meta-aspeed/
  4. meta-evb/
  5. meta-facebook/
  6. meta-google/
  7. meta-hxt/
  8. meta-ibm/
  9. meta-ingrasys/
  10. meta-inspur/
  11. meta-intel/
  12. meta-inventec/
  13. meta-lenovo/
  14. meta-mellanox/
  15. meta-nuvoton/
  16. meta-openembedded/
  17. meta-openpower/
  18. meta-phosphor/
  19. meta-portwell/
  20. meta-qualcomm/
  21. meta-quanta/
  22. meta-raspberrypi/
  23. meta-security/
  24. meta-x86/
  25. meta-xilinx/
  26. meta-yadro/
  27. poky/
  28. .gitignore
  29. .gitreview
  30. .templateconf
  31. MAINTAINERS
  32. openbmc-env
  33. README.md
  34. setup
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 28
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake \
    rpcgen perl-Thread-Queue perl-bignum perl-Crypt-OpenSSL-Bignum
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. You can see all of the known targets with find meta-* -name local.conf.sample. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-ibm/meta-palmetto/conf
Zaiusmeta-ingrasys/meta-zaius/conf
Witherspoonmeta-ibm/meta-witherspoon/conf
Romulusmeta-ibm/meta-romulus/conf

As an example target Palmetto

export TEMPLATECONF=meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • Host management: Power, Cooling, LEDs, Inventory, Events, Watchdog
  • Full IPMI 2.0 Compliance with DCMI
  • Code Update Support for multiple BMC/BIOS images
  • Web-based user interface
  • REST interfaces
  • D-Bus based interfaces
  • SSH based SOL
  • Remote KVM
  • Hardware Simulation
  • Automated Testing

Features In Progress

  • OpenCompute Redfish Compliance
  • User management
  • Virtual media
  • Verified Boot

Features Requested but need help

  • OpenBMC performance monitoring

Finding out more

Dive deeper into OpenBMC by opening the docs repository.

Contact