Squashed 'yocto-poky/' content from commit ea562de

git-subtree-dir: yocto-poky
git-subtree-split: ea562de57590c966cd5a75fda8defecd397e6436
diff --git a/meta/recipes-connectivity/wpa-supplicant/wpa-supplicant/wpa_supplicant.conf b/meta/recipes-connectivity/wpa-supplicant/wpa-supplicant/wpa_supplicant.conf
new file mode 100644
index 0000000..68258f5
--- /dev/null
+++ b/meta/recipes-connectivity/wpa-supplicant/wpa-supplicant/wpa_supplicant.conf
@@ -0,0 +1,690 @@
+##### Example wpa_supplicant configuration file ###############################
+#
+# This file describes configuration file format and lists all available option.
+# Please also take a look at simpler configuration examples in 'examples'
+# subdirectory.
+#
+# Empty lines and lines starting with # are ignored
+
+# NOTE! This file may contain password information and should probably be made
+# readable only by root user on multiuser systems.
+
+# Note: All file paths in this configuration file should use full (absolute,
+# not relative to working directory) path in order to allow working directory
+# to be changed. This can happen if wpa_supplicant is run in the background.
+
+# Whether to allow wpa_supplicant to update (overwrite) configuration
+#
+# This option can be used to allow wpa_supplicant to overwrite configuration
+# file whenever configuration is changed (e.g., new network block is added with
+# wpa_cli or wpa_gui, or a password is changed). This is required for
+# wpa_cli/wpa_gui to be able to store the configuration changes permanently.
+# Please note that overwriting configuration file will remove the comments from
+# it.
+#update_config=1
+
+# global configuration (shared by all network blocks)
+#
+# Parameters for the control interface. If this is specified, wpa_supplicant
+# will open a control interface that is available for external programs to
+# manage wpa_supplicant. The meaning of this string depends on which control
+# interface mechanism is used. For all cases, the existence of this parameter
+# in configuration is used to determine whether the control interface is
+# enabled.
+#
+# For UNIX domain sockets (default on Linux and BSD): This is a directory that
+# will be created for UNIX domain sockets for listening to requests from
+# external programs (CLI/GUI, etc.) for status information and configuration.
+# The socket file will be named based on the interface name, so multiple
+# wpa_supplicant processes can be run at the same time if more than one
+# interface is used.
+# /var/run/wpa_supplicant is the recommended directory for sockets and by
+# default, wpa_cli will use it when trying to connect with wpa_supplicant.
+#
+# Access control for the control interface can be configured by setting the
+# directory to allow only members of a group to use sockets. This way, it is
+# possible to run wpa_supplicant as root (since it needs to change network
+# configuration and open raw sockets) and still allow GUI/CLI components to be
+# run as non-root users. However, since the control interface can be used to
+# change the network configuration, this access needs to be protected in many
+# cases. By default, wpa_supplicant is configured to use gid 0 (root). If you
+# want to allow non-root users to use the control interface, add a new group
+# and change this value to match with that group. Add users that should have
+# control interface access to this group. If this variable is commented out or
+# not included in the configuration file, group will not be changed from the
+# value it got by default when the directory or socket was created.
+#
+# When configuring both the directory and group, use following format:
+# DIR=/var/run/wpa_supplicant GROUP=wheel
+# DIR=/var/run/wpa_supplicant GROUP=0
+# (group can be either group name or gid)
+#
+# For UDP connections (default on Windows): The value will be ignored. This
+# variable is just used to select that the control interface is to be created.
+# The value can be set to, e.g., udp (ctrl_interface=udp)
+#
+# For Windows Named Pipe: This value can be used to set the security descriptor
+# for controlling access to the control interface. Security descriptor can be
+# set using Security Descriptor String Format (see http://msdn.microsoft.com/
+# library/default.asp?url=/library/en-us/secauthz/security/
+# security_descriptor_string_format.asp). The descriptor string needs to be
+# prefixed with SDDL=. For example, ctrl_interface=SDDL=D: would set an empty
+# DACL (which will reject all connections). See README-Windows.txt for more
+# information about SDDL string format.
+#
+ctrl_interface=/var/run/wpa_supplicant
+
+# IEEE 802.1X/EAPOL version
+# wpa_supplicant is implemented based on IEEE Std 802.1X-2004 which defines
+# EAPOL version 2. However, there are many APs that do not handle the new
+# version number correctly (they seem to drop the frames completely). In order
+# to make wpa_supplicant interoperate with these APs, the version number is set
+# to 1 by default. This configuration value can be used to set it to the new
+# version (2).
+eapol_version=1
+
+# AP scanning/selection
+# By default, wpa_supplicant requests driver to perform AP scanning and then
+# uses the scan results to select a suitable AP. Another alternative is to
+# allow the driver to take care of AP scanning and selection and use
+# wpa_supplicant just to process EAPOL frames based on IEEE 802.11 association
+# information from the driver.
+# 1: wpa_supplicant initiates scanning and AP selection
+# 0: driver takes care of scanning, AP selection, and IEEE 802.11 association
+#    parameters (e.g., WPA IE generation); this mode can also be used with
+#    non-WPA drivers when using IEEE 802.1X mode; do not try to associate with
+#    APs (i.e., external program needs to control association). This mode must
+#    also be used when using wired Ethernet drivers.
+# 2: like 0, but associate with APs using security policy and SSID (but not
+#    BSSID); this can be used, e.g., with ndiswrapper and NDIS drivers to
+#    enable operation with hidden SSIDs and optimized roaming; in this mode,
+#    the network blocks in the configuration file are tried one by one until
+#    the driver reports successful association; each network block should have
+#    explicit security policy (i.e., only one option in the lists) for
+#    key_mgmt, pairwise, group, proto variables
+ap_scan=1
+
+# EAP fast re-authentication
+# By default, fast re-authentication is enabled for all EAP methods that
+# support it. This variable can be used to disable fast re-authentication.
+# Normally, there is no need to disable this.
+fast_reauth=1
+
+# OpenSSL Engine support
+# These options can be used to load OpenSSL engines.
+# The two engines that are supported currently are shown below:
+# They are both from the opensc project (http://www.opensc.org/)
+# By default no engines are loaded.
+# make the opensc engine available
+#opensc_engine_path=/usr/lib/opensc/engine_opensc.so
+# make the pkcs11 engine available
+#pkcs11_engine_path=/usr/lib/opensc/engine_pkcs11.so
+# configure the path to the pkcs11 module required by the pkcs11 engine
+#pkcs11_module_path=/usr/lib/pkcs11/opensc-pkcs11.so
+
+# Dynamic EAP methods
+# If EAP methods were built dynamically as shared object files, they need to be
+# loaded here before being used in the network blocks. By default, EAP methods
+# are included statically in the build, so these lines are not needed
+#load_dynamic_eap=/usr/lib/wpa_supplicant/eap_tls.so
+#load_dynamic_eap=/usr/lib/wpa_supplicant/eap_md5.so
+
+# Driver interface parameters
+# This field can be used to configure arbitrary driver interace parameters. The
+# format is specific to the selected driver interface. This field is not used
+# in most cases.
+#driver_param="field=value"
+
+# Maximum lifetime for PMKSA in seconds; default 43200
+#dot11RSNAConfigPMKLifetime=43200
+# Threshold for reauthentication (percentage of PMK lifetime); default 70
+#dot11RSNAConfigPMKReauthThreshold=70
+# Timeout for security association negotiation in seconds; default 60
+#dot11RSNAConfigSATimeout=60
+
+# network block
+#
+# Each network (usually AP's sharing the same SSID) is configured as a separate
+# block in this configuration file. The network blocks are in preference order
+# (the first match is used).
+#
+# network block fields:
+#
+# disabled:
+#	0 = this network can be used (default)
+#	1 = this network block is disabled (can be enabled through ctrl_iface,
+#	    e.g., with wpa_cli or wpa_gui)
+#
+# id_str: Network identifier string for external scripts. This value is passed
+#	to external action script through wpa_cli as WPA_ID_STR environment
+#	variable to make it easier to do network specific configuration.
+#
+# ssid: SSID (mandatory); either as an ASCII string with double quotation or
+#	as hex string; network name
+#
+# scan_ssid:
+#	0 = do not scan this SSID with specific Probe Request frames (default)
+#	1 = scan with SSID-specific Probe Request frames (this can be used to
+#	    find APs that do not accept broadcast SSID or use multiple SSIDs;
+#	    this will add latency to scanning, so enable this only when needed)
+#
+# bssid: BSSID (optional); if set, this network block is used only when
+#	associating with the AP using the configured BSSID
+#
+# priority: priority group (integer)
+# By default, all networks will get same priority group (0). If some of the
+# networks are more desirable, this field can be used to change the order in
+# which wpa_supplicant goes through the networks when selecting a BSS. The
+# priority groups will be iterated in decreasing priority (i.e., the larger the
+# priority value, the sooner the network is matched against the scan results).
+# Within each priority group, networks will be selected based on security
+# policy, signal strength, etc.
+# Please note that AP scanning with scan_ssid=1 and ap_scan=2 mode are not
+# using this priority to select the order for scanning. Instead, they try the
+# networks in the order that used in the configuration file.
+#
+# mode: IEEE 802.11 operation mode
+# 0 = infrastructure (Managed) mode, i.e., associate with an AP (default)
+# 1 = IBSS (ad-hoc, peer-to-peer)
+# Note: IBSS can only be used with key_mgmt NONE (plaintext and static WEP)
+# and key_mgmt=WPA-NONE (fixed group key TKIP/CCMP). In addition, ap_scan has
+# to be set to 2 for IBSS. WPA-None requires following network block options:
+# proto=WPA, key_mgmt=WPA-NONE, pairwise=NONE, group=TKIP (or CCMP, but not
+# both), and psk must also be set.
+#
+# proto: list of accepted protocols
+# WPA = WPA/IEEE 802.11i/D3.0
+# RSN = WPA2/IEEE 802.11i (also WPA2 can be used as an alias for RSN)
+# If not set, this defaults to: WPA RSN
+#
+# key_mgmt: list of accepted authenticated key management protocols
+# WPA-PSK = WPA pre-shared key (this requires 'psk' field)
+# WPA-EAP = WPA using EAP authentication (this can use an external
+#	program, e.g., Xsupplicant, for IEEE 802.1X EAP Authentication
+# IEEE8021X = IEEE 802.1X using EAP authentication and (optionally) dynamically
+#	generated WEP keys
+# NONE = WPA is not used; plaintext or static WEP could be used
+# If not set, this defaults to: WPA-PSK WPA-EAP
+#
+# auth_alg: list of allowed IEEE 802.11 authentication algorithms
+# OPEN = Open System authentication (required for WPA/WPA2)
+# SHARED = Shared Key authentication (requires static WEP keys)
+# LEAP = LEAP/Network EAP (only used with LEAP)
+# If not set, automatic selection is used (Open System with LEAP enabled if
+# LEAP is allowed as one of the EAP methods).
+#
+# pairwise: list of accepted pairwise (unicast) ciphers for WPA
+# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
+# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
+# NONE = Use only Group Keys (deprecated, should not be included if APs support
+#	pairwise keys)
+# If not set, this defaults to: CCMP TKIP
+#
+# group: list of accepted group (broadcast/multicast) ciphers for WPA
+# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
+# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
+# WEP104 = WEP (Wired Equivalent Privacy) with 104-bit key
+# WEP40 = WEP (Wired Equivalent Privacy) with 40-bit key [IEEE 802.11]
+# If not set, this defaults to: CCMP TKIP WEP104 WEP40
+#
+# psk: WPA preshared key; 256-bit pre-shared key
+# The key used in WPA-PSK mode can be entered either as 64 hex-digits, i.e.,
+# 32 bytes or as an ASCII passphrase (in which case, the real PSK will be
+# generated using the passphrase and SSID). ASCII passphrase must be between
+# 8 and 63 characters (inclusive).
+# This field is not needed, if WPA-EAP is used.
+# Note: Separate tool, wpa_passphrase, can be used to generate 256-bit keys
+# from ASCII passphrase. This process uses lot of CPU and wpa_supplicant
+# startup and reconfiguration time can be optimized by generating the PSK only
+# only when the passphrase or SSID has actually changed.
+#
+# eapol_flags: IEEE 802.1X/EAPOL options (bit field)
+# Dynamic WEP key required for non-WPA mode
+# bit0 (1): require dynamically generated unicast WEP key
+# bit1 (2): require dynamically generated broadcast WEP key
+# 	(3 = require both keys; default)
+# Note: When using wired authentication, eapol_flags must be set to 0 for the
+# authentication to be completed successfully.
+#
+# proactive_key_caching:
+# Enable/disable opportunistic PMKSA caching for WPA2.
+# 0 = disabled (default)
+# 1 = enabled
+#
+# wep_key0..3: Static WEP key (ASCII in double quotation, e.g. "abcde" or
+# hex without quotation, e.g., 0102030405)
+# wep_tx_keyidx: Default WEP key index (TX) (0..3)
+#
+# peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e DLS) is
+# allowed. This is only used with RSN/WPA2.
+# 0 = disabled (default)
+# 1 = enabled
+#peerkey=1
+#
+# Following fields are only used with internal EAP implementation.
+# eap: space-separated list of accepted EAP methods
+#	MD5 = EAP-MD5 (unsecure and does not generate keying material ->
+#			cannot be used with WPA; to be used as a Phase 2 method
+#			with EAP-PEAP or EAP-TTLS)
+#       MSCHAPV2 = EAP-MSCHAPv2 (cannot be used separately with WPA; to be used
+#		as a Phase 2 method with EAP-PEAP or EAP-TTLS)
+#       OTP = EAP-OTP (cannot be used separately with WPA; to be used
+#		as a Phase 2 method with EAP-PEAP or EAP-TTLS)
+#       GTC = EAP-GTC (cannot be used separately with WPA; to be used
+#		as a Phase 2 method with EAP-PEAP or EAP-TTLS)
+#	TLS = EAP-TLS (client and server certificate)
+#	PEAP = EAP-PEAP (with tunnelled EAP authentication)
+#	TTLS = EAP-TTLS (with tunnelled EAP or PAP/CHAP/MSCHAP/MSCHAPV2
+#			 authentication)
+#	If not set, all compiled in methods are allowed.
+#
+# identity: Identity string for EAP
+# anonymous_identity: Anonymous identity string for EAP (to be used as the
+#	unencrypted identity with EAP types that support different tunnelled
+#	identity, e.g., EAP-TTLS)
+# password: Password string for EAP
+# ca_cert: File path to CA certificate file (PEM/DER). This file can have one
+#	or more trusted CA certificates. If ca_cert and ca_path are not
+#	included, server certificate will not be verified. This is insecure and
+#	a trusted CA certificate should always be configured when using
+#	EAP-TLS/TTLS/PEAP. Full path should be used since working directory may
+#	change when wpa_supplicant is run in the background.
+#	On Windows, trusted CA certificates can be loaded from the system
+#	certificate store by setting this to cert_store://<name>, e.g.,
+#	ca_cert="cert_store://CA" or ca_cert="cert_store://ROOT".
+#	Note that when running wpa_supplicant as an application, the user
+#	certificate store (My user account) is used, whereas computer store
+#	(Computer account) is used when running wpasvc as a service.
+# ca_path: Directory path for CA certificate files (PEM). This path may
+#	contain multiple CA certificates in OpenSSL format. Common use for this
+#	is to point to system trusted CA list which is often installed into
+#	directory like /etc/ssl/certs. If configured, these certificates are
+#	added to the list of trusted CAs. ca_cert may also be included in that
+#	case, but it is not required.
+# client_cert: File path to client certificate file (PEM/DER)
+#	Full path should be used since working directory may change when
+#	wpa_supplicant is run in the background.
+#	Alternatively, a named configuration blob can be used by setting this
+#	to blob://<blob name>.
+# private_key: File path to client private key file (PEM/DER/PFX)
+#	When PKCS#12/PFX file (.p12/.pfx) is used, client_cert should be
+#	commented out. Both the private key and certificate will be read from
+#	the PKCS#12 file in this case. Full path should be used since working
+#	directory may change when wpa_supplicant is run in the background.
+#	Windows certificate store can be used by leaving client_cert out and
+#	configuring private_key in one of the following formats:
+#	cert://substring_to_match
+#	hash://certificate_thumbprint_in_hex
+#	for example: private_key="hash://63093aa9c47f56ae88334c7b65a4"
+#	Note that when running wpa_supplicant as an application, the user
+#	certificate store (My user account) is used, whereas computer store
+#	(Computer account) is used when running wpasvc as a service.
+#	Alternatively, a named configuration blob can be used by setting this
+#	to blob://<blob name>.
+# private_key_passwd: Password for private key file (if left out, this will be
+#	asked through control interface)
+# dh_file: File path to DH/DSA parameters file (in PEM format)
+#	This is an optional configuration file for setting parameters for an
+#	ephemeral DH key exchange. In most cases, the default RSA
+#	authentication does not use this configuration. However, it is possible
+#	setup RSA to use ephemeral DH key exchange. In addition, ciphers with
+#	DSA keys always use ephemeral DH keys. This can be used to achieve
+#	forward secrecy. If the file is in DSA parameters format, it will be
+#	automatically converted into DH params.
+# subject_match: Substring to be matched against the subject of the
+#	authentication server certificate. If this string is set, the server
+#	sertificate is only accepted if it contains this string in the subject.
+#	The subject string is in following format:
+#	/C=US/ST=CA/L=San Francisco/CN=Test AS/emailAddress=as@example.com
+# altsubject_match: Semicolon separated string of entries to be matched against
+#	the alternative subject name of the authentication server certificate.
+#	If this string is set, the server sertificate is only accepted if it
+#	contains one of the entries in an alternative subject name extension.
+#	altSubjectName string is in following format: TYPE:VALUE
+#	Example: EMAIL:server@example.com
+#	Example: DNS:server.example.com;DNS:server2.example.com
+#	Following types are supported: EMAIL, DNS, URI
+# phase1: Phase1 (outer authentication, i.e., TLS tunnel) parameters
+#	(string with field-value pairs, e.g., "peapver=0" or
+#	"peapver=1 peaplabel=1")
+#	'peapver' can be used to force which PEAP version (0 or 1) is used.
+#	'peaplabel=1' can be used to force new label, "client PEAP encryption",
+#	to be used during key derivation when PEAPv1 or newer. Most existing
+#	PEAPv1 implementation seem to be using the old label, "client EAP
+#	encryption", and wpa_supplicant is now using that as the default value.
+#	Some servers, e.g., Radiator, may require peaplabel=1 configuration to
+#	interoperate with PEAPv1; see eap_testing.txt for more details.
+#	'peap_outer_success=0' can be used to terminate PEAP authentication on
+#	tunneled EAP-Success. This is required with some RADIUS servers that
+#	implement draft-josefsson-pppext-eap-tls-eap-05.txt (e.g.,
+#	Lucent NavisRadius v4.4.0 with PEAP in "IETF Draft 5" mode)
+#	include_tls_length=1 can be used to force wpa_supplicant to include
+#	TLS Message Length field in all TLS messages even if they are not
+#	fragmented.
+#	sim_min_num_chal=3 can be used to configure EAP-SIM to require three
+#	challenges (by default, it accepts 2 or 3)
+# phase2: Phase2 (inner authentication with TLS tunnel) parameters
+#	(string with field-value pairs, e.g., "auth=MSCHAPV2" for EAP-PEAP or
+#	"autheap=MSCHAPV2 autheap=MD5" for EAP-TTLS)
+# Following certificate/private key fields are used in inner Phase2
+# authentication when using EAP-TTLS or EAP-PEAP.
+# ca_cert2: File path to CA certificate file. This file can have one or more
+#	trusted CA certificates. If ca_cert2 and ca_path2 are not included,
+#	server certificate will not be verified. This is insecure and a trusted
+#	CA certificate should always be configured.
+# ca_path2: Directory path for CA certificate files (PEM)
+# client_cert2: File path to client certificate file
+# private_key2: File path to client private key file
+# private_key2_passwd: Password for private key file
+# dh_file2: File path to DH/DSA parameters file (in PEM format)
+# subject_match2: Substring to be matched against the subject of the
+#	authentication server certificate.
+# altsubject_match2: Substring to be matched against the alternative subject
+#	name of the authentication server certificate.
+#
+# fragment_size: Maximum EAP fragment size in bytes (default 1398).
+#	This value limits the fragment size for EAP methods that support
+#	fragmentation (e.g., EAP-TLS and EAP-PEAP). This value should be set
+#	small enough to make the EAP messages fit in MTU of the network
+#	interface used for EAPOL. The default value is suitable for most
+#	cases.
+#
+# EAP-PSK variables:
+# eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format
+# nai: user NAI
+#
+# EAP-PAX variables:
+# eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format
+#
+# EAP-SAKE variables:
+# eappsk: 32-byte (256-bit, 64 hex digits) pre-shared key in hex format
+#	(this is concatenation of Root-Secret-A and Root-Secret-B)
+# nai: user NAI (PEERID)
+#
+# EAP-GPSK variables:
+# eappsk: Pre-shared key in hex format (at least 128 bits, i.e., 32 hex digits)
+# nai: user NAI (ID_Client)
+#
+# EAP-FAST variables:
+# pac_file: File path for the PAC entries. wpa_supplicant will need to be able
+#	to create this file and write updates to it when PAC is being
+#	provisioned or refreshed. Full path to the file should be used since
+#	working directory may change when wpa_supplicant is run in the
+#	background. Alternatively, a named configuration blob can be used by
+#	setting this to blob://<blob name>
+# phase1: fast_provisioning=1 option enables in-line provisioning of EAP-FAST
+#	credentials (PAC)
+#
+# wpa_supplicant supports number of "EAP workarounds" to work around
+# interoperability issues with incorrectly behaving authentication servers.
+# These are enabled by default because some of the issues are present in large
+# number of authentication servers. Strict EAP conformance mode can be
+# configured by disabling workarounds with eap_workaround=0.
+
+# Example blocks:
+
+# Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers
+network={
+	ssid="simple"
+	psk="very secret passphrase"
+	priority=5
+}
+
+# Same as previous, but request SSID-specific scanning (for APs that reject
+# broadcast SSID)
+network={
+	ssid="second ssid"
+	scan_ssid=1
+	psk="very secret passphrase"
+	priority=2
+}
+
+# Only WPA-PSK is used. Any valid cipher combination is accepted.
+network={
+	ssid="example"
+	proto=WPA
+	key_mgmt=WPA-PSK
+	pairwise=CCMP TKIP
+	group=CCMP TKIP WEP104 WEP40
+	psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
+	priority=2
+}
+
+# Only WPA-EAP is used. Both CCMP and TKIP is accepted. An AP that used WEP104
+# or WEP40 as the group cipher will not be accepted.
+network={
+	ssid="example"
+	proto=RSN
+	key_mgmt=WPA-EAP
+	pairwise=CCMP TKIP
+	group=CCMP TKIP
+	eap=TLS
+	identity="user@example.com"
+	ca_cert="/etc/cert/ca.pem"
+	client_cert="/etc/cert/user.pem"
+	private_key="/etc/cert/user.prv"
+	private_key_passwd="password"
+	priority=1
+}
+
+# EAP-PEAP/MSCHAPv2 configuration for RADIUS servers that use the new peaplabel
+# (e.g., Radiator)
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=PEAP
+	identity="user@example.com"
+	password="foobar"
+	ca_cert="/etc/cert/ca.pem"
+	phase1="peaplabel=1"
+	phase2="auth=MSCHAPV2"
+	priority=10
+}
+
+# EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the
+# unencrypted use. Real identity is sent only within an encrypted TLS tunnel.
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=TTLS
+	identity="user@example.com"
+	anonymous_identity="anonymous@example.com"
+	password="foobar"
+	ca_cert="/etc/cert/ca.pem"
+	priority=2
+}
+
+# EAP-TTLS/MSCHAPv2 configuration with anonymous identity for the unencrypted
+# use. Real identity is sent only within an encrypted TLS tunnel.
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=TTLS
+	identity="user@example.com"
+	anonymous_identity="anonymous@example.com"
+	password="foobar"
+	ca_cert="/etc/cert/ca.pem"
+	phase2="auth=MSCHAPV2"
+}
+
+# WPA-EAP, EAP-TTLS with different CA certificate used for outer and inner
+# authentication.
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=TTLS
+	# Phase1 / outer authentication
+	anonymous_identity="anonymous@example.com"
+	ca_cert="/etc/cert/ca.pem"
+	# Phase 2 / inner authentication
+	phase2="autheap=TLS"
+	ca_cert2="/etc/cert/ca2.pem"
+	client_cert2="/etc/cer/user.pem"
+	private_key2="/etc/cer/user.prv"
+	private_key2_passwd="password"
+	priority=2
+}
+
+# Both WPA-PSK and WPA-EAP is accepted. Only CCMP is accepted as pairwise and
+# group cipher.
+network={
+	ssid="example"
+	bssid=00:11:22:33:44:55
+	proto=WPA RSN
+	key_mgmt=WPA-PSK WPA-EAP
+	pairwise=CCMP
+	group=CCMP
+	psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
+}
+
+# Special characters in SSID, so use hex string. Default to WPA-PSK, WPA-EAP
+# and all valid ciphers.
+network={
+	ssid=00010203
+	psk=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
+}
+
+
+# IEEE 802.1X/EAPOL with dynamically generated WEP keys (i.e., no WPA) using
+# EAP-TLS for authentication and key generation; require both unicast and
+# broadcast WEP keys.
+network={
+	ssid="1x-test"
+	key_mgmt=IEEE8021X
+	eap=TLS
+	identity="user@example.com"
+	ca_cert="/etc/cert/ca.pem"
+	client_cert="/etc/cert/user.pem"
+	private_key="/etc/cert/user.prv"
+	private_key_passwd="password"
+	eapol_flags=3
+}
+
+
+# LEAP with dynamic WEP keys
+network={
+	ssid="leap-example"
+	key_mgmt=IEEE8021X
+	eap=LEAP
+	identity="user"
+	password="foobar"
+}
+
+# Plaintext connection (no WPA, no IEEE 802.1X)
+network={
+	ssid="plaintext-test"
+	key_mgmt=NONE
+}
+
+
+# Shared WEP key connection (no WPA, no IEEE 802.1X)
+network={
+	ssid="static-wep-test"
+	key_mgmt=NONE
+	wep_key0="abcde"
+	wep_key1=0102030405
+	wep_key2="1234567890123"
+	wep_tx_keyidx=0
+	priority=5
+}
+
+
+# Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key
+# IEEE 802.11 authentication
+network={
+	ssid="static-wep-test2"
+	key_mgmt=NONE
+	wep_key0="abcde"
+	wep_key1=0102030405
+	wep_key2="1234567890123"
+	wep_tx_keyidx=0
+	priority=5
+	auth_alg=SHARED
+}
+
+
+# IBSS/ad-hoc network with WPA-None/TKIP.
+network={
+	ssid="test adhoc"
+	mode=1
+	proto=WPA
+	key_mgmt=WPA-NONE
+	pairwise=NONE
+	group=TKIP
+	psk="secret passphrase"
+}
+
+
+# Catch all example that allows more or less all configuration modes
+network={
+	ssid="example"
+	scan_ssid=1
+	key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE
+	pairwise=CCMP TKIP
+	group=CCMP TKIP WEP104 WEP40
+	psk="very secret passphrase"
+	eap=TTLS PEAP TLS
+	identity="user@example.com"
+	password="foobar"
+	ca_cert="/etc/cert/ca.pem"
+	client_cert="/etc/cert/user.pem"
+	private_key="/etc/cert/user.prv"
+	private_key_passwd="password"
+	phase1="peaplabel=0"
+}
+
+# Example of EAP-TLS with smartcard (openssl engine)
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=TLS
+	proto=RSN
+	pairwise=CCMP TKIP
+	group=CCMP TKIP
+	identity="user@example.com"
+	ca_cert="/etc/cert/ca.pem"
+	client_cert="/etc/cert/user.pem"
+
+	engine=1
+
+	# The engine configured here must be available. Look at
+	# OpenSSL engine support in the global section.
+	# The key available through the engine must be the private key
+	# matching the client certificate configured above.
+
+	# use the opensc engine
+	#engine_id="opensc"
+	#key_id="45"
+
+	# use the pkcs11 engine
+	engine_id="pkcs11"
+	key_id="id_45"
+
+	# Optional PIN configuration; this can be left out and PIN will be
+	# asked through the control interface
+	pin="1234"
+}
+
+# Example configuration showing how to use an inlined blob as a CA certificate
+# data instead of using external file
+network={
+	ssid="example"
+	key_mgmt=WPA-EAP
+	eap=TTLS
+	identity="user@example.com"
+	anonymous_identity="anonymous@example.com"
+	password="foobar"
+	ca_cert="blob://exampleblob"
+	priority=20
+}
+
+blob-base64-exampleblob={
+SGVsbG8gV29ybGQhCg==
+}
+
+
+# Wildcard match for SSID (plaintext APs only). This example select any
+# open AP regardless of its SSID.
+network={
+	key_mgmt=NONE
+}