kernel: new Maxim MAX31785A driver

Andrew has cooked us up a proper pmbus MAX31785A driver. This bumps the kernel
to include that driver, the device tree updates for the new bindings, and a
userspace change for Witherspoon.

The userspace change was reviewed and got five +1's:

  phosphor-hwmon: Update Witherspoon fan labels for PMBus driver

  The reimplementation of the max37185 fan controller driver uses the
  Linux PMBus subsystem, which exposes the installed number of fans
  rather than all supported fan IO.

  https://gerrit.openbmc-project.xyz/#/c/5564/

It is included in this commit so the system remains bisectable.

Andrew Jeffery (6):
      dt-bindings: hwmon: pmbus: Add Maxim MAX31785 documentation
      ARM: dts: aspeed: witherspoon: Update max31785 node
      hwmon: pmbus: Add fan control support
      hwmon: Remove MAX31785 implementation
      pmbus: Add driver for Maxim MAX31785 Intelligent Fan Controller
      ARM: dts: aspeed: Witherspoon has a MAX31785A fan controller

Joel Stanley (2):
      ARM: dts: aspeed: romulus: Update max31785 node
      ARM: dts: aspeed: firestone: Update max31785 node

Change-Id: I7a7b86f5ee6ff38803d4f62c3d3ac99edbea45fb
Signed-off-by: Joel Stanley <joel@jms.id.au>
2 files changed
tree: 1701b17073e3c153ed5fb102d929f44f4d9bc9ae
  1. import-layers/
  2. meta-openbmc-bsp/
  3. meta-openbmc-machines/
  4. meta-phosphor/
  5. .gitignore
  6. .gitreview
  7. .templateconf
  8. openbmc-env
  9. README.md
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, Open-Embedded, Systemd and DBus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 23
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. OpenBMC has placed all known hardware targets in a standard directory structure meta-openbmc-machines/meta-openpower/[company]/[target]. You can see all of the known targets with find meta-openbmc-machines -type d -name conf. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf
Barreleyemeta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/conf
Zaiusmeta-openbmc-machines/meta-openpower/meta-ingrasys/meta-zaius/conf
Witherspoonmeta-openbmc-machines/meta-openpower/meta-ibm/meta-witherspoon/conf

As an example target Palmetto

export TEMPLATECONF=meta-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf

3) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC Github community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with a arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on Github. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • REST Management
  • IPMI
  • SSH based SOL
  • Power and Cooling Management
  • Event Logs
  • Zeroconf discoverable
  • Sensors
  • Inventory
  • LED Management
  • Host Watchdog
  • Simulation

Features In Progress

  • Code Update Support for multiple BMC/BIOS images
  • POWER On Chip Controller (OCC) Support
  • Full IPMI 2.0 Compliance with DCMI
  • Verified Boot
  • HTML5 Java Script Web User Interface
  • BMC RAS

Features Requested but need help

  • OpenCompute Redfish Compliance
  • OpenBMC performance monitoring
  • cgroup user management and policies
  • Remote KVM
  • Remote USB
  • OpenStack Ironic Integration
  • QEMU enhancements

Finding out more

Dive deeper in to OpenBMC by opening the docs repository

Contact