Merge pull request #115 from causten/s3c4
Sprint 3 candidate 6
diff --git a/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/barreleye.cfg b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/barreleye.cfg
new file mode 100644
index 0000000..0f96507
--- /dev/null
+++ b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/barreleye.cfg
@@ -0,0 +1 @@
+CONFIG_SENSORS_OCC=y
diff --git a/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/occ_hwmon.patch b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/occ_hwmon.patch
new file mode 100644
index 0000000..612214d
--- /dev/null
+++ b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc/occ_hwmon.patch
@@ -0,0 +1,1565 @@
+diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
+index e13c902..38aff0c 100644
+--- a/drivers/hwmon/Kconfig
++++ b/drivers/hwmon/Kconfig
+@@ -1167,6 +1167,13 @@ config SENSORS_NCT7904
+ This driver can also be built as a module. If so, the module
+ will be called nct7904.
+
++config SENSORS_OCC
++ tristate "OCC sensor driver for IBM Power CPU"
++ depends on I2C
++ help
++ If you say yes here you get support for driver to read sensors in
++ IBM Power CPU On-Chip-Controller. module will be called occ.
++
+ config SENSORS_PCF8591
+ tristate "Philips PCF8591 ADC/DAC"
+ depends on I2C
+diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
+index 9e0f3dd..53dc3b3 100644
+--- a/drivers/hwmon/Makefile
++++ b/drivers/hwmon/Makefile
+@@ -123,6 +123,7 @@ obj-$(CONFIG_SENSORS_NCT6775) += nct6775.o
+ obj-$(CONFIG_SENSORS_NCT7802) += nct7802.o
+ obj-$(CONFIG_SENSORS_NCT7904) += nct7904.o
+ obj-$(CONFIG_SENSORS_NTC_THERMISTOR) += ntc_thermistor.o
++obj-$(CONFIG_SENSORS_OCC) += occ.o
+ obj-$(CONFIG_SENSORS_PC87360) += pc87360.o
+ obj-$(CONFIG_SENSORS_PC87427) += pc87427.o
+ obj-$(CONFIG_SENSORS_PCF8591) += pcf8591.o
+diff --git a/drivers/hwmon/occ.c b/drivers/hwmon/occ.c
+new file mode 100644
+index 0000000..f265ff3
+--- /dev/null
++++ b/drivers/hwmon/occ.c
+@@ -0,0 +1,1529 @@
++/*
++ * Open BMC OCC HWMON driver - read Power8 OCC (On Chip Controller) sensor data via i2c.
++ *
++ * Copyright (c) 2015 IBM (Alvin Wang, Li Yi)
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/slab.h>
++#include <linux/jiffies.h>
++#include <linux/i2c.h>
++#include <linux/hwmon.h>
++#include <linux/hwmon-sysfs.h>
++#include <linux/err.h>
++#include <linux/mutex.h>
++#include <linux/of.h>
++#include <linux/delay.h>
++
++//#define DEBUG 1
++
++/* ------------------------------------------------------------*/
++/* OCC sensor data format */
++typedef struct {
++ uint16_t sensor_id;
++ uint16_t value;
++} occ_sensor;
++
++typedef struct {
++ uint16_t sensor_id;
++ uint32_t update_tag;
++ uint32_t accumulator;
++ uint16_t value;
++} powr_sensor;
++
++typedef struct {
++ uint16_t curr_powercap;
++ uint16_t curr_powerreading;
++ uint16_t norm_powercap;
++ uint16_t max_powercap;
++ uint16_t min_powercap;
++ uint16_t user_powerlimit;
++} caps_sensor;
++
++typedef struct {
++ char sensor_type[5];
++ uint8_t reserved0;
++ uint8_t sensor_format;
++ uint8_t sensor_length;
++ uint8_t num_of_sensors;
++ occ_sensor *sensor;
++ powr_sensor *powr;
++ caps_sensor *caps;
++} sensor_data_block;
++
++typedef struct {
++ uint8_t status;
++ uint8_t ext_status;
++ uint8_t occs_present;
++ uint8_t config;
++ uint8_t occ_state;
++ uint8_t reserved0;
++ uint8_t reserved1;
++ uint8_t error_log_id;
++ uint32_t error_log_addr_start;
++ uint16_t error_log_length;
++ uint8_t reserved2;
++ uint8_t reserved3;
++ char occ_code_level[17];
++ char sensor_eye_catcher[7];
++ uint8_t num_of_sensor_blocks;
++ uint8_t sensor_data_version;
++ sensor_data_block* blocks;
++} occ_poll_data;
++
++typedef struct {
++ uint8_t sequence_num;
++ uint8_t cmd_type;
++ uint8_t rtn_status;
++ uint16_t data_length;
++ occ_poll_data data;
++ uint16_t chk_sum;
++ int temp_block_id;
++ int freq_block_id;
++ int power_block_id;
++ int caps_block_id;
++} occ_response_t;
++
++//static occ_response_t occ_resp;
++
++/* Each client has this additional data */
++struct occ_drv_data {
++ struct i2c_client *client;
++ struct device *hwmon_dev;
++ struct mutex update_lock;
++ char valid; /* !=0 if sensor data are valid */
++ unsigned long last_updated; /* In jiffies */
++ unsigned long sample_time; /* Mininum timer interval for sampling In jiffies */
++ occ_response_t occ_resp;
++};
++
++/*-----------------------------------------------------------------------*/
++/* i2c read and write occ sensors */
++
++#define OCC_DATA_MAX 4096 /* 4KB at most */
++#define I2C_STATUS_REG 0x000d0001
++#define I2C_ERROR_REG 0x000d0002
++#define I2C_READ_ERROR 1
++#define I2C_WRITE_ERROR 2
++#define I2C_DATABUFFER_SIZE_ERROR 3
++
++/*
++#define SCOM_OCC_SRAM_WOX 0x0006B013
++#define SCOM_OCC_SRAM_WAND 0x0006B012
++#define SCOM_OCC_SRAM_ADDR 0x0006B010
++#define SCOM_OCC_SRAM_DATA 0x0006B015
++*/
++
++// To generate attn to OCC
++#define ATTN_DATA 0x0006B035
++
++// For BMC to read/write SRAM
++#define OCB_ADDRESS 0x0006B070
++#define OCB_DATA 0x0006B075
++#define OCB_STATUS_CONTROL_AND 0x0006B072
++#define OCB_STATUS_CONTROL_OR 0x0006B073
++
++#define OCC_COMMAND_ADDR 0xFFFF6000
++#define OCC_RESPONSE_ADDR 0xFFFF7000
++
++static int deinit_occ_resp_buf(occ_response_t *p)
++{
++ int b;
++
++ if (p == NULL)
++ return 0;
++
++ if (p->data.blocks == NULL)
++ return 0;
++
++ for(b = 0; b < p->data.num_of_sensor_blocks; b++) {
++ if (!p->data.blocks[b].sensor)
++ kfree(p->data.blocks[b].sensor);
++ if (!p->data.blocks[b].powr)
++ kfree(p->data.blocks[b].powr);
++ if (!p->data.blocks[b].caps)
++ kfree(p->data.blocks[b].caps);
++ }
++
++ kfree(p->data.blocks);
++
++ memset(p, 0, sizeof(*p));
++
++
++ return 0;
++}
++
++static ssize_t occ_i2c_read(struct i2c_client *client, char *buf, size_t count)
++{
++ int ret = 0;
++
++ if (count > 8192)
++ count = 8192;
++
++ //printk("i2c_read: reading %zu bytes @0x%x.\n", count, client->addr);
++ ret = i2c_master_recv(client, buf, count);
++ return ret;
++}
++
++static ssize_t occ_i2c_write(struct i2c_client *client, const char *buf, size_t count)
++{
++ int ret = 0;
++
++ if (count > 8192)
++ count = 8192;
++
++ //printk("i2c_write: writing %zu bytes @0x%x.\n", count, client->addr);
++ ret = i2c_master_send(client, buf, count);
++ return ret;
++}
++
++/* read two 4-byte value */
++static int occ_getscom(struct i2c_client *client, uint32_t address, uint32_t *value0, uint32_t *value1)
++{
++ uint32_t ret = 0;
++ char buf[8];
++ const char* address_buf = (const char*)&address;
++
++ //P8 i2c slave requires address to be shifted by 1
++ address = address << 1;
++
++ ret = occ_i2c_write(client, address_buf, sizeof(address));
++ /* FIXME: ast i2c driver does not read corret value */
++ //if (ret != sizeof(address))
++ // return -I2C_WRITE_ERROR;
++
++ ret = occ_i2c_read(client, buf, sizeof(buf));
++ //if (ret != sizeof(buf))
++ // return -I2C_READ_ERROR;
++
++ memcpy(value1, &buf[0], sizeof(*value1));
++ memcpy(value0, &buf[4], sizeof(*value0));
++
++ return 0;
++}
++
++/* read 8-byte value and put into data[offset] */
++static int occ_getscomb(struct i2c_client *client, uint32_t address, char* data, int offset)
++{
++ uint32_t ret = 0;
++ const char* address_buf = (const char*)&address;
++ char buf[8];
++ int b = 0;
++
++ //P8 i2c slave requires address to be shifted by 1
++ address = address << 1;
++
++ ret = occ_i2c_write(client, address_buf, sizeof(address));
++ //if (ret != sizeof(address))
++ // return -I2C_WRITE_ERROR;
++
++ ret = occ_i2c_read(client, buf, sizeof(buf));
++ //if (ret != sizeof(buf))
++ // return -I2C_READ_ERROR;
++
++ for (b = 0; b < 8; b++) {
++ data[offset + b] = buf[7 - b];
++ }
++
++ return 0;
++}
++
++static int occ_putscom(struct i2c_client *client, uint32_t address, uint32_t data0, uint32_t data1)
++{
++ const char* address_buf = (const char*)&address;
++ const char* d0 = (const char*)&data0;
++ const char* d1 = (const char*)&data1;
++ char buf[12];
++ uint32_t ret = 0;
++
++ //P8 i2c slave requires address to be shifted by 1
++ address = address << 1;
++
++ memcpy(&buf[0], address_buf, sizeof(address));
++ memcpy(&buf[4], d1, sizeof(data1));
++ memcpy(&buf[8], d0, sizeof(data0));
++
++ ret = occ_i2c_write(client, buf, sizeof(buf));
++ //if (ret != sizeof(buf))
++ // return I2C_WRITE_ERROR;
++
++ return 0;
++}
++
++static int occ_check_i2c_errors(struct i2c_client *client)
++{
++ uint32_t v0;
++ uint32_t v1;
++
++ occ_getscom(client, I2C_STATUS_REG, &v0, &v1);
++ if (v0 != 0x80000000) {
++ printk("ERROR present in P8 I2C Slave. Clearing...\n");
++ occ_putscom(client, I2C_ERROR_REG, 0x00000000, 0x00000000);
++ occ_putscom(client, I2C_STATUS_REG, 0x00000000, 0x00000000);
++ return -1;
++ }
++
++ return 0;
++}
++
++
++static inline uint16_t get_occdata_length(char* d)
++{
++ uint16_t data_length = 0;
++
++ data_length = d[3] << 8;
++ data_length = data_length | d[4];
++ return data_length;
++}
++
++
++static int parse_occ_response(char* d, occ_response_t* o)
++{
++ int b = 0;
++ int s = 0;
++ int ret = 0;
++ int dnum = 45;
++
++ o->sequence_num = d[0];
++ o->cmd_type = d[1];
++ o->rtn_status = d[2];
++ o->data_length = d[3] << 8;
++ o->data_length = o->data_length | d[4];
++ o->data.status = d[5];
++ o->data.ext_status = d[6];
++ o->data.occs_present = d[7];
++ o->data.config = d[8];
++ o->data.occ_state = d[9];
++ o->data.reserved0 = d[10];
++ o->data.reserved1 = d[11];
++ o->data.error_log_id = d[12];
++ o->data.error_log_addr_start = d[13] << 24;
++ o->data.error_log_addr_start = o->data.error_log_addr_start | d[14] << 16;
++ o->data.error_log_addr_start = o->data.error_log_addr_start | d[15] << 8;
++ o->data.error_log_addr_start = o->data.error_log_addr_start | d[16];
++ o->data.error_log_length = d[17] << 8;
++ o->data.error_log_length = o->data.error_log_length | d[18];
++ o->data.reserved2 = d[19];
++ o->data.reserved3 = d[20];
++ strncpy(&o->data.occ_code_level[0], (const char*)&d[21], 16);
++ strncpy(&o->data.sensor_eye_catcher[0], (const char*)&d[37], 6);
++ o->data.sensor_eye_catcher[6]='\0';
++ o->data.num_of_sensor_blocks=d[43];
++ o->data.sensor_data_version = d[44];
++
++ if (strcmp(o->data.sensor_eye_catcher, "SENSOR") != 0) {
++ printk("ERROR: SENSOR not found at byte 37 (%s)\n",o->data.sensor_eye_catcher);
++ return -1;
++ }
++
++ if (o->data.num_of_sensor_blocks == 0) {
++ printk("ERROR: SENSOR block num is 0\n");
++ return -1;
++ }
++
++ o->data.blocks = kzalloc(sizeof(sensor_data_block) * o->data.num_of_sensor_blocks, GFP_KERNEL);
++ if (o->data.blocks == NULL)
++ return -ENOMEM;
++
++ //printk("Reading %d sensor blocks\n", o->data.num_of_sensor_blocks);
++ o->temp_block_id = -1;
++ o->freq_block_id = -1;
++ o->power_block_id = -1;
++ o->caps_block_id = -1;
++ for(b = 0; b < o->data.num_of_sensor_blocks; b++) {
++ /* 8-byte sensor block head */
++ strncpy(&o->data.blocks[b].sensor_type[0], (const char*)&d[dnum], 4);
++ o->data.blocks[b].reserved0 = d[dnum+4];
++ o->data.blocks[b].sensor_format = d[dnum+5];
++ o->data.blocks[b].sensor_length = d[dnum+6];
++ o->data.blocks[b].num_of_sensors = d[dnum+7];
++ dnum = dnum + 8;
++
++ //printk("sensor block[%d]: type: %s, num_of_sensors: %d, sensor_length: %u\n",
++ //b, o->data.blocks[b].sensor_type, o->data.blocks[b].num_of_sensors,
++ //o->data.blocks[b].sensor_length);
++
++ /* empty sensor block */
++ if (o->data.blocks[b].num_of_sensors <= 0)
++ continue;
++ if (o->data.blocks[b].sensor_length == 0)
++ continue;
++
++ if (strcmp(o->data.blocks[b].sensor_type, "FREQ") == 0) {
++ o->data.blocks[b].sensor =
++ kzalloc(sizeof(occ_sensor) * o->data.blocks[b].num_of_sensors, GFP_KERNEL);
++
++ if (o->data.blocks[b].sensor == NULL) {
++ ret = -ENOMEM;
++ goto abort;
++ }
++ o->freq_block_id = b;
++ for (s = 0; s < o->data.blocks[b].num_of_sensors; s++) {
++ o->data.blocks[b].sensor[s].sensor_id = d[dnum] << 8;
++ o->data.blocks[b].sensor[s].sensor_id =
++ o->data.blocks[b].sensor[s].sensor_id | d[dnum+1];
++ o->data.blocks[b].sensor[s].value = d[dnum+2] << 8;
++ o->data.blocks[b].sensor[s].value = o->data.blocks[b].sensor[s].value | d[dnum+3];
++ //printk("sensor[%d]-[%d]: id: %u, value: %u\n",
++ // b, s, o->data.blocks[b].sensor[s].sensor_id, o->data.blocks[b].sensor[s].value);
++ dnum = dnum + o->data.blocks[b].sensor_length;
++ }
++ }
++ else if (strcmp(o->data.blocks[b].sensor_type, "TEMP") == 0) {
++
++ o->data.blocks[b].sensor =
++ kzalloc(sizeof(occ_sensor) * o->data.blocks[b].num_of_sensors, GFP_KERNEL);
++
++ if (o->data.blocks[b].sensor == NULL) {
++ ret = -ENOMEM;
++ goto abort;
++ }
++
++ o->temp_block_id = b;
++ for (s = 0; s < o->data.blocks[b].num_of_sensors; s++) {
++ o->data.blocks[b].sensor[s].sensor_id = d[dnum] << 8;
++ o->data.blocks[b].sensor[s].sensor_id =
++ o->data.blocks[b].sensor[s].sensor_id | d[dnum+1];
++ o->data.blocks[b].sensor[s].value = d[dnum+2] << 8;
++ o->data.blocks[b].sensor[s].value = o->data.blocks[b].sensor[s].value | d[dnum+3];
++ //printk("sensor[%d]-[%d]: id: %u, value: %u\n",
++ // b, s, o->data.blocks[b].sensor[s].sensor_id, o->data.blocks[b].sensor[s].value);
++ dnum = dnum + o->data.blocks[b].sensor_length;
++ }
++ }
++ else if (strcmp(o->data.blocks[b].sensor_type, "POWR") == 0) {
++
++ o->data.blocks[b].powr =
++ kzalloc(sizeof(powr_sensor) * o->data.blocks[b].num_of_sensors, GFP_KERNEL);
++
++ if (o->data.blocks[b].powr == NULL) {
++ ret = -ENOMEM;
++ goto abort;
++ }
++ o->power_block_id = b;
++ for (s = 0; s < o->data.blocks[b].num_of_sensors; s++) {
++ o->data.blocks[b].powr[s].sensor_id = d[dnum] << 8;
++ o->data.blocks[b].powr[s].sensor_id = o->data.blocks[b].powr[s].sensor_id | d[dnum+1];
++ o->data.blocks[b].powr[s].update_tag = d[dnum+2] << 24;
++ o->data.blocks[b].powr[s].update_tag = o->data.blocks[b].powr[s].update_tag | d[dnum+3] << 16;
++ o->data.blocks[b].powr[s].update_tag = o->data.blocks[b].powr[s].update_tag | d[dnum+4] << 8;
++ o->data.blocks[b].powr[s].update_tag = o->data.blocks[b].powr[s].update_tag | d[dnum+5];
++ o->data.blocks[b].powr[s].accumulator = d[dnum+6] << 24;
++ o->data.blocks[b].powr[s].accumulator = o->data.blocks[b].powr[s].accumulator | d[dnum+7] << 16;
++ o->data.blocks[b].powr[s].accumulator = o->data.blocks[b].powr[s].accumulator | d[dnum+8] << 8;
++ o->data.blocks[b].powr[s].accumulator = o->data.blocks[b].powr[s].accumulator | d[dnum+9];
++ o->data.blocks[b].powr[s].value = d[dnum+10] << 8;
++ o->data.blocks[b].powr[s].value = o->data.blocks[b].powr[s].value | d[dnum+11];
++
++ //printk("sensor[%d]-[%d]: id: %u, value: %u\n",
++ // b, s, o->data.blocks[b].powr[s].sensor_id, o->data.blocks[b].powr[s].value);
++
++ dnum = dnum + o->data.blocks[b].sensor_length;
++ }
++ }
++ else if (strcmp(o->data.blocks[b].sensor_type, "CAPS") == 0) {
++
++ o->data.blocks[b].caps =
++ kzalloc(sizeof(caps_sensor) * o->data.blocks[b].num_of_sensors, GFP_KERNEL);
++
++ if (o->data.blocks[b].caps == NULL) {
++ ret = -ENOMEM;
++ goto abort;
++ }
++ o->caps_block_id = b;
++ for (s = 0; s < o->data.blocks[b].num_of_sensors; s++) {
++ o->data.blocks[b].caps[s].curr_powercap = d[dnum] << 8;
++ o->data.blocks[b].caps[s].curr_powercap = o->data.blocks[b].caps[s].curr_powercap | d[dnum+1];
++ o->data.blocks[b].caps[s].curr_powerreading = d[dnum+2] << 8;
++ o->data.blocks[b].caps[s].curr_powerreading = o->data.blocks[b].caps[s].curr_powerreading | d[dnum+3];
++ o->data.blocks[b].caps[s].norm_powercap = d[dnum+4] << 8;
++ o->data.blocks[b].caps[s].norm_powercap = o->data.blocks[b].caps[s].norm_powercap | d[dnum+5];
++ o->data.blocks[b].caps[s].max_powercap = d[dnum+6] << 8;
++ o->data.blocks[b].caps[s].max_powercap = o->data.blocks[b].caps[s].max_powercap| d[dnum+7];
++ o->data.blocks[b].caps[s].min_powercap = d[dnum+8] << 8;
++ o->data.blocks[b].caps[s].min_powercap = o->data.blocks[b].caps[s].min_powercap| d[dnum+9];
++ o->data.blocks[b].caps[s].user_powerlimit = d[dnum+10] << 8;
++ o->data.blocks[b].caps[s].user_powerlimit = o->data.blocks[b].caps[s].user_powerlimit| d[dnum+11];
++
++ dnum = dnum + o->data.blocks[b].sensor_length;
++ //printk("CAPS sensor #%d:\n", s);
++ //printk("curr_powercap is %x \n", o->data.blocks[b].caps[s].curr_powercap);
++ //printk("curr_powerreading is %x \n", o->data.blocks[b].caps[s].curr_powerreading);
++ //printk("norm_powercap is %x \n", o->data.blocks[b].caps[s].norm_powercap);
++ //printk("max_powercap is %x \n", o->data.blocks[b].caps[s].max_powercap);
++ //printk("min_powercap is %x \n", o->data.blocks[b].caps[s].min_powercap);
++ //printk("user_powerlimit is %x \n", o->data.blocks[b].caps[s].user_powerlimit);
++ }
++
++ }
++ else {
++ printk("ERROR: sensor type %s not supported\n", o->data.blocks[b].sensor_type);
++ ret = -1;
++ goto abort;
++ }
++ }
++
++ return 0;
++abort:
++ deinit_occ_resp_buf(o);
++ return ret;
++}
++
++/* used for testing */
++char fake_occ_rsp[OCC_DATA_MAX] = {
++0x69, 0x00, 0x00, 0x00, 0xa4, 0xc3, 0x00, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
++0x00, 0x00, 0x00, 0x00, 0x00, 0x6f, 0x70, 0x5f, 0x6f, 0x63, 0x63, 0x5f, 0x31, 0x35, 0x30, 0x37,
++0x31, 0x36, 0x61, 0x00, 0x00, 0x53, 0x45, 0x4e, 0x53, 0x4f, 0x52, 0x04, 0x01, 0x54, 0x45, 0x4d,
++0x50, 0x00, 0x01, 0x04, 0x0a, 0x00 ,0x6a, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x6d, 0x00,
++0x00,0x00,0x6e,0x00, 0x00,0x00,0x6f,0x00, 0x00,0x00,0x70,0x00, 0x00,0x00,0x71,0x00,
++0x00,0x00,0x73,0x00, 0x00,0x00,0x74,0x00, 0x00,0x00,0x75,0x00, 0x00,0x46,0x52,0x45,
++0x51,0x00,0x01,0x04, 0x0a,0x00,0x76,0x00, 0x00,0x00,0x78,0x00, 0x00,0x00,0x79,0x00,
++0x00,0x00,0x7a,0x00, 0x00,0x00,0x7b,0x00, 0x00,0x00,0x7c,0x00, 0x00,0x00,0x7d,0x00,
++0x00,0x00,0x7f,0x00, 0x00,0x00,0x80,0x00, 0x00,0x00,0x81,0x00, 0x00,0x50,0x4f,0x57,
++0x52,0x00,0x01,0x0c, 0x00,0x43,0x41,0x50, 0x53,0x00,0x01,0x0c, 0x01,0x00,0x00,0x00,
++0x00,0x04,0xb0,0x09, 0x60,0x04,0x4c,0x00, 0x00,0x17,0xc5,};
++
++//#define DUMP_RAW 1
++
++static int occ_get_all(struct i2c_client *client, occ_response_t *occ_resp)
++{
++ char occ_data[OCC_DATA_MAX];
++ uint16_t num_bytes = 0;
++ int b = 0;
++ int ret = 0;
++/*
++ //Procedure to access SRAM where OCC data is located
++ occ_putscom(client, SCOM_OCC_SRAM_WOX, 0x08000000, 0x00000000);
++ occ_putscom(client, SCOM_OCC_SRAM_WAND, 0xFBFFFFFF, 0xFFFFFFFF);
++ occ_putscom(client, SCOM_OCC_SRAM_ADDR, OCC_RESPONSE_ADDR, 0x00000000);
++ occ_putscom(client, SCOM_OCC_SRAM_ADDR, OCC_RESPONSE_ADDR, 0x00000000);
++
++ occ_getscomb(client, SCOM_OCC_SRAM_DATA, occ_data, 0);
++
++*/
++
++ // Init OCB
++ occ_putscom(client, OCB_STATUS_CONTROL_OR, 0x08000000, 0x00000000);
++ occ_putscom(client, OCB_STATUS_CONTROL_AND, 0xFBFFFFFF, 0xFFFFFFFF);
++
++ // Send poll command to OCC
++ occ_putscom(client, OCB_ADDRESS, OCC_COMMAND_ADDR, 0x00000000);
++ occ_putscom(client, OCB_ADDRESS, OCC_COMMAND_ADDR, 0x00000000);
++ occ_putscom(client, OCB_DATA, 0x00000001, 0x10001100);
++
++ // Trigger ATTN
++ occ_putscom(client, ATTN_DATA, 0x01010000, 0x00000000);
++
++ // TODO: check command status Refere to
++ // "1.6.2 OCC Command/Response Sequence" in OCC_OpenPwr_FW_Interfaces1.2.pdf
++ // Use sleep as workaround
++ //msleep(2000);
++
++ // Get response data
++ occ_putscom(client, OCB_ADDRESS, OCC_RESPONSE_ADDR, 0x00000000);
++ occ_getscomb(client, OCB_DATA, occ_data, 0);
++
++ /* FIXME: use fake data to test driver without hw */
++ //printk("i2c-occ: using FAKE occ data\n");
++ //memcpy(&occ_data[0], &fake_occ_rsp[0], sizeof(occ_data));
++
++ num_bytes = get_occdata_length(occ_data);
++
++ //printk("OCC data length: %d\n", num_bytes);
++
++#ifdef DUMP_RAW
++ int i = 0;
++ printk("\nRAW data\n==================\n");
++ for (i = 0; i < 8; i++) {
++ if(i == 4) printk(" ");
++ printk("%02x", occ_data[i]);
++ }
++ printk("\n");
++#endif
++
++ if (num_bytes > OCC_DATA_MAX) {
++ printk("ERROR: OCC data length must be < 4KB\n");
++ return -1;
++ }
++
++ if (num_bytes <= 0) {
++ printk("ERROR: OCC data length is zero\n");
++ return -1;
++ }
++
++ for (b = 8; b < num_bytes + 8; b = b + 8) {
++ //occ_getscomb(client, SCOM_OCC_SRAM_DATA, occ_data, b);
++ occ_getscomb(client, OCB_DATA, occ_data, b);
++#ifdef DUMP_RAW
++ for (i = 0; i < 8; i++) {
++ if(i == 4) printk(" ");
++ printk("%02x", occ_data[b+i]);
++ }
++ printk("\n");
++#endif
++
++ }
++
++ /* FIXME: use fake data to test driver without hw */
++ //memcpy(&occ_data[0], &fake_occ_rsp[0], sizeof(occ_data));
++
++ ret = parse_occ_response(occ_data, occ_resp);
++
++ return ret;
++}
++
++
++static int occ_update_device(struct device *dev)
++{
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ struct i2c_client *client = data->client;
++ int ret = 0;
++
++ mutex_lock(&data->update_lock);
++
++ if (time_after(jiffies, data->last_updated + data->sample_time)
++ || !data->valid) {
++ deinit_occ_resp_buf(&data->occ_resp);
++
++ ret = occ_get_all(client, &data->occ_resp);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++ mutex_unlock(&data->update_lock);
++
++ return ret;
++}
++
++/* ----------------------------------------------------------------------*/
++/* sysfs attributes for hwmon */
++
++static ssize_t show_occ_temp_input(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device * dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ occ_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.temp_block_id].sensor == NULL)
++ return -1;
++
++ //printk("block_id: %d, sensor: %d\n", data->occ_resp.temp_block_id, n -1);
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.temp_block_id].sensor[n - 1];
++ /* in millidegree Celsius */
++ val = sensor->value * 1000;
++ //printk("temp%d sensor value: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++static ssize_t show_occ_temp_label(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ occ_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.temp_block_id].sensor == NULL)
++ return -1;
++
++ //printk("temp_block_id: %d, sensor: %d\n", data->occ_resp.temp_block_id, n -1);
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.temp_block_id].sensor[n - 1];
++ val = sensor->sensor_id;
++ //printk("temp%d sensor id: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++static ssize_t show_occ_power_label(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ powr_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ //printk("power_block_id: %d, sensor: %d\n", data->occ_resp.power_block_id, n -1);
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.power_block_id].powr == NULL)
++ return -1;
++
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.power_block_id].powr[n - 1];
++ val = sensor->sensor_id;
++ //printk("power%d sensor id: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++
++static ssize_t show_occ_power_input(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ powr_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ //printk("power block_id: %d, sensor: %d\n", data->occ_resp.power_block_id, n -1);
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.power_block_id].powr == NULL)
++ return -1;
++
++
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.power_block_id].powr[n - 1];
++ val = sensor->value;
++ //printk("power%d sensor value: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++
++static ssize_t show_occ_freq_label(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ occ_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.freq_block_id].sensor == NULL)
++ return -1;
++
++ //printk("freq_block_id: %d, sensor: %d\n", data->occ_resp.freq_block_id, n -1);
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.freq_block_id].sensor[n - 1];
++ val = sensor->sensor_id;
++ //printk("freq%d sensor id: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++
++static ssize_t show_occ_freq_input(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ occ_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.freq_block_id].sensor == NULL)
++ return -1;
++
++ //printk("block_id: %d, sensor: %d\n", data->occ_resp.freq_block_id, n -1);
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.freq_block_id].sensor[n - 1];
++ val = sensor->value;
++ //printk("freq%d sensor value: %d\n", n, val);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++static ssize_t show_occ_caps(struct device *hwmon_dev, struct device_attribute *da, char *buf)
++{
++ struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
++ int nr = attr->nr;
++ int n = attr->index;
++ struct device *dev = hwmon_dev->parent;
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int ret = 0;
++ caps_sensor *sensor;
++ int val = 0;
++
++ ret = occ_update_device(dev);
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ //printk("block_id: %d, sensor: %d, nr: %d\n", data->occ_resp.caps_block_id, n - 1, nr);
++ if (data->occ_resp.data.blocks == NULL ||
++ data->occ_resp.data.blocks[data->occ_resp.caps_block_id].caps == NULL)
++ return -1;
++
++ sensor = &data->occ_resp.data.blocks[data->occ_resp.caps_block_id].caps[n - 1];
++
++ switch (nr) {
++ case 0:
++ val = sensor->curr_powercap;
++ break;
++ case 1:
++ val = sensor->curr_powerreading;
++ break;
++ case 2:
++ val = sensor->norm_powercap;
++ break;
++ case 3:
++ val = sensor->max_powercap;
++ break;
++ case 4:
++ val = sensor->min_powercap;
++ break;
++ case 5:
++ val = sensor->user_powerlimit;
++ break;
++ default:
++ val = 0;
++ }
++
++ //printk("caps%d sensor value: %d, nr: %d\n", n, val, nr);
++
++ //printk("------------- above are debug message, bellow is real output------------\n");
++ return sprintf(buf, "%d\n", val);
++}
++
++#if 0
++static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_occ_temp_input, NULL, 1);
++static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_occ_temp_input, NULL, 2);
++static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_occ_temp_input, NULL, 3);
++static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_occ_temp_input, NULL, 4);
++static SENSOR_DEVICE_ATTR(temp5_input, S_IRUGO, show_occ_temp_input, NULL, 5);
++static SENSOR_DEVICE_ATTR(temp6_input, S_IRUGO, show_occ_temp_input, NULL, 6);
++static SENSOR_DEVICE_ATTR(temp7_input, S_IRUGO, show_occ_temp_input, NULL, 7);
++static SENSOR_DEVICE_ATTR(temp8_input, S_IRUGO, show_occ_temp_input, NULL, 8);
++static SENSOR_DEVICE_ATTR(temp9_input, S_IRUGO, show_occ_temp_input, NULL, 9);
++static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, show_occ_temp_label, NULL, 1);
++static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, show_occ_temp_label, NULL, 2);
++static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, show_occ_temp_label, NULL, 3);
++static SENSOR_DEVICE_ATTR(temp4_label, S_IRUGO, show_occ_temp_label, NULL, 4);
++static SENSOR_DEVICE_ATTR(temp5_label, S_IRUGO, show_occ_temp_label, NULL, 5);
++static SENSOR_DEVICE_ATTR(temp6_label, S_IRUGO, show_occ_temp_label, NULL, 6);
++static SENSOR_DEVICE_ATTR(temp7_label, S_IRUGO, show_occ_temp_label, NULL, 7);
++static SENSOR_DEVICE_ATTR(temp8_label, S_IRUGO, show_occ_temp_label, NULL, 8);
++static SENSOR_DEVICE_ATTR(temp9_label, S_IRUGO, show_occ_temp_label, NULL, 9);
++
++static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, show_occ_power_input, NULL, 1);
++static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, show_occ_power_label, NULL, 1);
++static SENSOR_DEVICE_ATTR(power2_input, S_IRUGO, show_occ_power_input, NULL, 2);
++static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, show_occ_power_label, NULL, 2);
++static SENSOR_DEVICE_ATTR(power3_input, S_IRUGO, show_occ_power_input, NULL, 3);
++static SENSOR_DEVICE_ATTR(power3_label, S_IRUGO, show_occ_power_label, NULL, 3);
++static SENSOR_DEVICE_ATTR(power4_input, S_IRUGO, show_occ_power_input, NULL, 4);
++static SENSOR_DEVICE_ATTR(power4_label, S_IRUGO, show_occ_power_label, NULL, 4);
++
++static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, show_occ_freq_input, NULL, 1);
++static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, show_occ_freq_label, NULL, 1);
++static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, show_occ_freq_input, NULL, 2);
++static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, show_occ_freq_label, NULL, 2);
++static SENSOR_DEVICE_ATTR(freq3_input, S_IRUGO, show_occ_freq_input, NULL, 3);
++static SENSOR_DEVICE_ATTR(freq3_label, S_IRUGO, show_occ_freq_label, NULL, 3);
++static SENSOR_DEVICE_ATTR(freq4_input, S_IRUGO, show_occ_freq_input, NULL, 4);
++static SENSOR_DEVICE_ATTR(freq4_label, S_IRUGO, show_occ_freq_label, NULL, 4);
++
++static struct attribute *occ_attrs[] = {
++ &sensor_dev_attr_temp1_input.dev_attr.attr,
++ &sensor_dev_attr_temp2_input.dev_attr.attr,
++ &sensor_dev_attr_temp3_input.dev_attr.attr,
++ &sensor_dev_attr_temp4_input.dev_attr.attr,
++ &sensor_dev_attr_temp5_input.dev_attr.attr,
++ &sensor_dev_attr_temp6_input.dev_attr.attr,
++ &sensor_dev_attr_temp7_input.dev_attr.attr,
++ &sensor_dev_attr_temp8_input.dev_attr.attr,
++ &sensor_dev_attr_temp9_input.dev_attr.attr,
++ &sensor_dev_attr_temp1_label.dev_attr.attr,
++ &sensor_dev_attr_temp2_label.dev_attr.attr,
++ &sensor_dev_attr_temp3_label.dev_attr.attr,
++ &sensor_dev_attr_temp4_label.dev_attr.attr,
++ &sensor_dev_attr_temp5_label.dev_attr.attr,
++ &sensor_dev_attr_temp6_label.dev_attr.attr,
++ &sensor_dev_attr_temp7_label.dev_attr.attr,
++ &sensor_dev_attr_temp8_label.dev_attr.attr,
++ &sensor_dev_attr_temp9_label.dev_attr.attr,
++ &sensor_dev_attr_power1_input.dev_attr.attr,
++ &sensor_dev_attr_power2_input.dev_attr.attr,
++ &sensor_dev_attr_power3_input.dev_attr.attr,
++ &sensor_dev_attr_power4_input.dev_attr.attr,
++ &sensor_dev_attr_power1_label.dev_attr.attr,
++ &sensor_dev_attr_power2_label.dev_attr.attr,
++ &sensor_dev_attr_power3_label.dev_attr.attr,
++ &sensor_dev_attr_power4_label.dev_attr.attr,
++ &sensor_dev_attr_freq1_input.dev_attr.attr,
++ &sensor_dev_attr_freq2_input.dev_attr.attr,
++ &sensor_dev_attr_freq3_input.dev_attr.attr,
++ &sensor_dev_attr_freq4_input.dev_attr.attr,
++ &sensor_dev_attr_freq1_label.dev_attr.attr,
++ &sensor_dev_attr_freq2_label.dev_attr.attr,
++ &sensor_dev_attr_freq3_label.dev_attr.attr,
++ &sensor_dev_attr_freq4_label.dev_attr.attr,
++
++ NULL
++};
++ATTRIBUTE_GROUPS(occ);
++
++#endif
++
++static struct sensor_device_attribute temp_input[] = {
++ SENSOR_ATTR(temp1_input, S_IRUGO, show_occ_temp_input, NULL, 1),
++ SENSOR_ATTR(temp2_input, S_IRUGO, show_occ_temp_input, NULL, 2),
++ SENSOR_ATTR(temp3_input, S_IRUGO, show_occ_temp_input, NULL, 3),
++ SENSOR_ATTR(temp4_input, S_IRUGO, show_occ_temp_input, NULL, 4),
++ SENSOR_ATTR(temp5_input, S_IRUGO, show_occ_temp_input, NULL, 5),
++ SENSOR_ATTR(temp6_input, S_IRUGO, show_occ_temp_input, NULL, 6),
++ SENSOR_ATTR(temp7_input, S_IRUGO, show_occ_temp_input, NULL, 7),
++ SENSOR_ATTR(temp8_input, S_IRUGO, show_occ_temp_input, NULL, 8),
++ SENSOR_ATTR(temp9_input, S_IRUGO, show_occ_temp_input, NULL, 9),
++ SENSOR_ATTR(temp10_input, S_IRUGO, show_occ_temp_input, NULL, 10),
++ SENSOR_ATTR(temp11_input, S_IRUGO, show_occ_temp_input, NULL, 11),
++ SENSOR_ATTR(temp12_input, S_IRUGO, show_occ_temp_input, NULL, 12),
++ SENSOR_ATTR(temp13_input, S_IRUGO, show_occ_temp_input, NULL, 13),
++ SENSOR_ATTR(temp14_input, S_IRUGO, show_occ_temp_input, NULL, 14),
++ SENSOR_ATTR(temp15_input, S_IRUGO, show_occ_temp_input, NULL, 15),
++ SENSOR_ATTR(temp16_input, S_IRUGO, show_occ_temp_input, NULL, 16),
++ SENSOR_ATTR(temp17_input, S_IRUGO, show_occ_temp_input, NULL, 17),
++ SENSOR_ATTR(temp18_input, S_IRUGO, show_occ_temp_input, NULL, 18),
++ SENSOR_ATTR(temp19_input, S_IRUGO, show_occ_temp_input, NULL, 19),
++ SENSOR_ATTR(temp20_input, S_IRUGO, show_occ_temp_input, NULL, 20),
++ SENSOR_ATTR(temp21_input, S_IRUGO, show_occ_temp_input, NULL, 21),
++ SENSOR_ATTR(temp22_input, S_IRUGO, show_occ_temp_input, NULL, 22),
++};
++
++static struct sensor_device_attribute temp_label[] = {
++ SENSOR_ATTR(temp1_label, S_IRUGO, show_occ_temp_label, NULL, 1),
++ SENSOR_ATTR(temp2_label, S_IRUGO, show_occ_temp_label, NULL, 2),
++ SENSOR_ATTR(temp3_label, S_IRUGO, show_occ_temp_label, NULL, 3),
++ SENSOR_ATTR(temp4_label, S_IRUGO, show_occ_temp_label, NULL, 4),
++ SENSOR_ATTR(temp5_label, S_IRUGO, show_occ_temp_label, NULL, 5),
++ SENSOR_ATTR(temp6_label, S_IRUGO, show_occ_temp_label, NULL, 6),
++ SENSOR_ATTR(temp7_label, S_IRUGO, show_occ_temp_label, NULL, 7),
++ SENSOR_ATTR(temp8_label, S_IRUGO, show_occ_temp_label, NULL, 8),
++ SENSOR_ATTR(temp9_label, S_IRUGO, show_occ_temp_label, NULL, 9),
++ SENSOR_ATTR(temp10_label, S_IRUGO, show_occ_temp_label, NULL, 10),
++ SENSOR_ATTR(temp11_label, S_IRUGO, show_occ_temp_label, NULL, 11),
++ SENSOR_ATTR(temp12_label, S_IRUGO, show_occ_temp_label, NULL, 12),
++ SENSOR_ATTR(temp13_label, S_IRUGO, show_occ_temp_label, NULL, 13),
++ SENSOR_ATTR(temp14_label, S_IRUGO, show_occ_temp_label, NULL, 14),
++ SENSOR_ATTR(temp15_label, S_IRUGO, show_occ_temp_label, NULL, 15),
++ SENSOR_ATTR(temp16_label, S_IRUGO, show_occ_temp_label, NULL, 16),
++ SENSOR_ATTR(temp17_label, S_IRUGO, show_occ_temp_label, NULL, 17),
++ SENSOR_ATTR(temp18_label, S_IRUGO, show_occ_temp_label, NULL, 18),
++ SENSOR_ATTR(temp19_label, S_IRUGO, show_occ_temp_label, NULL, 19),
++ SENSOR_ATTR(temp20_label, S_IRUGO, show_occ_temp_label, NULL, 20),
++ SENSOR_ATTR(temp21_label, S_IRUGO, show_occ_temp_label, NULL, 21),
++ SENSOR_ATTR(temp22_label, S_IRUGO, show_occ_temp_label, NULL, 22),
++
++};
++
++#define TEMP_UNIT_ATTRS(X) \
++{ &temp_input[X].dev_attr.attr, \
++ &temp_label[X].dev_attr.attr, \
++ NULL \
++}
++
++/* 10-core CPU, occ has 22 temp sensors, more socket, more sensors */
++static struct attribute *occ_temp_attr[][3] = {
++ TEMP_UNIT_ATTRS(0),
++ TEMP_UNIT_ATTRS(1),
++ TEMP_UNIT_ATTRS(2),
++ TEMP_UNIT_ATTRS(3),
++ TEMP_UNIT_ATTRS(4),
++ TEMP_UNIT_ATTRS(5),
++ TEMP_UNIT_ATTRS(6),
++ TEMP_UNIT_ATTRS(7),
++ TEMP_UNIT_ATTRS(8),
++ TEMP_UNIT_ATTRS(9),
++ TEMP_UNIT_ATTRS(10),
++ TEMP_UNIT_ATTRS(11),
++ TEMP_UNIT_ATTRS(12),
++ TEMP_UNIT_ATTRS(13),
++ TEMP_UNIT_ATTRS(14),
++ TEMP_UNIT_ATTRS(15),
++ TEMP_UNIT_ATTRS(16),
++ TEMP_UNIT_ATTRS(17),
++ TEMP_UNIT_ATTRS(18),
++ TEMP_UNIT_ATTRS(19),
++ TEMP_UNIT_ATTRS(20),
++ TEMP_UNIT_ATTRS(21),
++};
++
++static const struct attribute_group occ_temp_attr_group[] = {
++ { .attrs = occ_temp_attr[0] },
++ { .attrs = occ_temp_attr[1] },
++ { .attrs = occ_temp_attr[2] },
++ { .attrs = occ_temp_attr[3] },
++ { .attrs = occ_temp_attr[4] },
++ { .attrs = occ_temp_attr[5] },
++ { .attrs = occ_temp_attr[6] },
++ { .attrs = occ_temp_attr[7] },
++ { .attrs = occ_temp_attr[8] },
++ { .attrs = occ_temp_attr[9] },
++ { .attrs = occ_temp_attr[10] },
++ { .attrs = occ_temp_attr[11] },
++ { .attrs = occ_temp_attr[12] },
++ { .attrs = occ_temp_attr[13] },
++ { .attrs = occ_temp_attr[14] },
++ { .attrs = occ_temp_attr[15] },
++ { .attrs = occ_temp_attr[16] },
++ { .attrs = occ_temp_attr[17] },
++ { .attrs = occ_temp_attr[18] },
++ { .attrs = occ_temp_attr[19] },
++ { .attrs = occ_temp_attr[20] },
++ { .attrs = occ_temp_attr[21] },
++};
++
++
++static struct sensor_device_attribute freq_input[] = {
++ SENSOR_ATTR(freq1_input, S_IRUGO, show_occ_freq_input, NULL, 1),
++ SENSOR_ATTR(freq2_input, S_IRUGO, show_occ_freq_input, NULL, 2),
++ SENSOR_ATTR(freq3_input, S_IRUGO, show_occ_freq_input, NULL, 3),
++ SENSOR_ATTR(freq4_input, S_IRUGO, show_occ_freq_input, NULL, 4),
++ SENSOR_ATTR(freq5_input, S_IRUGO, show_occ_freq_input, NULL, 5),
++ SENSOR_ATTR(freq6_input, S_IRUGO, show_occ_freq_input, NULL, 6),
++ SENSOR_ATTR(freq7_input, S_IRUGO, show_occ_freq_input, NULL, 7),
++ SENSOR_ATTR(freq8_input, S_IRUGO, show_occ_freq_input, NULL, 8),
++ SENSOR_ATTR(freq9_input, S_IRUGO, show_occ_freq_input, NULL, 9),
++ SENSOR_ATTR(freq10_input, S_IRUGO, show_occ_freq_input, NULL, 10),
++};
++
++static struct sensor_device_attribute freq_label[] = {
++ SENSOR_ATTR(freq1_label, S_IRUGO, show_occ_freq_label, NULL, 1),
++ SENSOR_ATTR(freq2_label, S_IRUGO, show_occ_freq_label, NULL, 2),
++ SENSOR_ATTR(freq3_label, S_IRUGO, show_occ_freq_label, NULL, 3),
++ SENSOR_ATTR(freq4_label, S_IRUGO, show_occ_freq_label, NULL, 4),
++ SENSOR_ATTR(freq5_label, S_IRUGO, show_occ_freq_label, NULL, 5),
++ SENSOR_ATTR(freq6_label, S_IRUGO, show_occ_freq_label, NULL, 6),
++ SENSOR_ATTR(freq7_label, S_IRUGO, show_occ_freq_label, NULL, 7),
++ SENSOR_ATTR(freq8_label, S_IRUGO, show_occ_freq_label, NULL, 8),
++ SENSOR_ATTR(freq9_label, S_IRUGO, show_occ_freq_label, NULL, 9),
++ SENSOR_ATTR(freq10_label, S_IRUGO, show_occ_freq_label, NULL, 10),
++
++};
++
++#define FREQ_UNIT_ATTRS(X) \
++{ &freq_input[X].dev_attr.attr, \
++ &freq_label[X].dev_attr.attr, \
++ NULL \
++}
++
++/* 10-core CPU, occ has 22 freq sensors, more socket, more sensors */
++static struct attribute *occ_freq_attr[][3] = {
++ FREQ_UNIT_ATTRS(0),
++ FREQ_UNIT_ATTRS(1),
++ FREQ_UNIT_ATTRS(2),
++ FREQ_UNIT_ATTRS(3),
++ FREQ_UNIT_ATTRS(4),
++ FREQ_UNIT_ATTRS(5),
++ FREQ_UNIT_ATTRS(6),
++ FREQ_UNIT_ATTRS(7),
++ FREQ_UNIT_ATTRS(8),
++ FREQ_UNIT_ATTRS(9),
++};
++
++static const struct attribute_group occ_freq_attr_group[] = {
++ { .attrs = occ_freq_attr[0] },
++ { .attrs = occ_freq_attr[1] },
++ { .attrs = occ_freq_attr[2] },
++ { .attrs = occ_freq_attr[3] },
++ { .attrs = occ_freq_attr[4] },
++ { .attrs = occ_freq_attr[5] },
++ { .attrs = occ_freq_attr[6] },
++ { .attrs = occ_freq_attr[7] },
++ { .attrs = occ_freq_attr[8] },
++ { .attrs = occ_freq_attr[9] },
++};
++
++static struct sensor_device_attribute_2 caps_curr_powercap[] = {
++ SENSOR_ATTR_2(caps_curr_powercap, S_IRUGO, show_occ_caps, NULL, 0, 1),
++};
++static struct sensor_device_attribute_2 caps_curr_powerreading[] = {
++ SENSOR_ATTR_2(caps_curr_powerreading, S_IRUGO, show_occ_caps, NULL, 1, 1),
++};
++static struct sensor_device_attribute_2 caps_norm_powercap[] = {
++ SENSOR_ATTR_2(caps_norm_powercap, S_IRUGO, show_occ_caps, NULL, 2, 1),
++};
++static struct sensor_device_attribute_2 caps_max_powercap[] = {
++ SENSOR_ATTR_2(caps_max_powercap, S_IRUGO, show_occ_caps, NULL, 3, 1),
++};
++static struct sensor_device_attribute_2 caps_min_powercap[] = {
++ SENSOR_ATTR_2(caps_min_powercap, S_IRUGO, show_occ_caps, NULL, 4, 1),
++};
++static struct sensor_device_attribute_2 caps_user_powerlimit[] = {
++ SENSOR_ATTR_2(caps_user_powerlimit, S_IRUGO, show_occ_caps, NULL, 5, 1),
++};
++#define CAPS_UNIT_ATTRS(X) \
++{ &caps_curr_powercap[X].dev_attr.attr, \
++ &caps_curr_powerreading[X].dev_attr.attr, \
++ &caps_norm_powercap[X].dev_attr.attr, \
++ &caps_max_powercap[X].dev_attr.attr, \
++ &caps_min_powercap[X].dev_attr.attr, \
++ &caps_user_powerlimit[X].dev_attr.attr, \
++ NULL \
++}
++
++/* 10-core CPU, occ has 1 caps sensors */
++static struct attribute *occ_caps_attr[][7] = {
++ CAPS_UNIT_ATTRS(0),
++};
++static const struct attribute_group occ_caps_attr_group[] = {
++ { .attrs = occ_caps_attr[0] },
++};
++
++static struct sensor_device_attribute power_input[] = {
++ SENSOR_ATTR(power1_input, S_IRUGO, show_occ_power_input, NULL, 1),
++ SENSOR_ATTR(power2_input, S_IRUGO, show_occ_power_input, NULL, 2),
++ SENSOR_ATTR(power3_input, S_IRUGO, show_occ_power_input, NULL, 3),
++ SENSOR_ATTR(power4_input, S_IRUGO, show_occ_power_input, NULL, 4),
++ SENSOR_ATTR(power5_input, S_IRUGO, show_occ_power_input, NULL, 5),
++ SENSOR_ATTR(power6_input, S_IRUGO, show_occ_power_input, NULL, 6),
++ SENSOR_ATTR(power7_input, S_IRUGO, show_occ_power_input, NULL, 7),
++ SENSOR_ATTR(power8_input, S_IRUGO, show_occ_power_input, NULL, 8),
++ SENSOR_ATTR(power9_input, S_IRUGO, show_occ_power_input, NULL, 9),
++ SENSOR_ATTR(power10_input, S_IRUGO, show_occ_power_input, NULL, 10),
++ SENSOR_ATTR(power11_input, S_IRUGO, show_occ_power_input, NULL, 11),
++};
++
++static struct sensor_device_attribute power_label[] = {
++ SENSOR_ATTR(power1_label, S_IRUGO, show_occ_power_label, NULL, 1),
++ SENSOR_ATTR(power2_label, S_IRUGO, show_occ_power_label, NULL, 2),
++ SENSOR_ATTR(power3_label, S_IRUGO, show_occ_power_label, NULL, 3),
++ SENSOR_ATTR(power4_label, S_IRUGO, show_occ_power_label, NULL, 4),
++ SENSOR_ATTR(power5_label, S_IRUGO, show_occ_power_label, NULL, 5),
++ SENSOR_ATTR(power6_label, S_IRUGO, show_occ_power_label, NULL, 6),
++ SENSOR_ATTR(power7_label, S_IRUGO, show_occ_power_label, NULL, 7),
++ SENSOR_ATTR(power8_label, S_IRUGO, show_occ_power_label, NULL, 8),
++ SENSOR_ATTR(power9_label, S_IRUGO, show_occ_power_label, NULL, 9),
++ SENSOR_ATTR(power10_label, S_IRUGO, show_occ_power_label, NULL, 10),
++ SENSOR_ATTR(power11_label, S_IRUGO, show_occ_power_label, NULL, 11),
++};
++
++#define POWER_UNIT_ATTRS(X) \
++{ &power_input[X].dev_attr.attr, \
++ &power_label[X].dev_attr.attr, \
++ NULL \
++}
++
++/* 10-core CPU, occ has 11 power sensors, more socket, more sensors */
++static struct attribute *occ_power_attr[][3] = {
++ POWER_UNIT_ATTRS(0),
++ POWER_UNIT_ATTRS(1),
++ POWER_UNIT_ATTRS(2),
++ POWER_UNIT_ATTRS(3),
++ POWER_UNIT_ATTRS(4),
++ POWER_UNIT_ATTRS(5),
++ POWER_UNIT_ATTRS(6),
++ POWER_UNIT_ATTRS(7),
++ POWER_UNIT_ATTRS(8),
++ POWER_UNIT_ATTRS(9),
++ POWER_UNIT_ATTRS(10),
++};
++
++static const struct attribute_group occ_power_attr_group[] = {
++ { .attrs = occ_power_attr[0] },
++ { .attrs = occ_power_attr[1] },
++ { .attrs = occ_power_attr[2] },
++ { .attrs = occ_power_attr[3] },
++ { .attrs = occ_power_attr[4] },
++ { .attrs = occ_power_attr[5] },
++ { .attrs = occ_power_attr[6] },
++ { .attrs = occ_power_attr[7] },
++ { .attrs = occ_power_attr[8] },
++ { .attrs = occ_power_attr[9] },
++ { .attrs = occ_power_attr[10] },
++};
++
++static void occ_remove_sysfs_files(struct device *dev)
++{
++ int i = 0;
++
++ for (i = 0; i < ARRAY_SIZE(occ_temp_attr_group); i++)
++ sysfs_remove_group(&dev->kobj, &occ_temp_attr_group[i]);
++
++ for (i = 0; i < ARRAY_SIZE(occ_freq_attr_group); i++)
++ sysfs_remove_group(&dev->kobj, &occ_freq_attr_group[i]);
++
++ for (i = 0; i < ARRAY_SIZE(occ_power_attr_group); i++)
++ sysfs_remove_group(&dev->kobj, &occ_power_attr_group[i]);
++
++ for (i = 0; i < ARRAY_SIZE(occ_caps_attr_group); i++)
++ sysfs_remove_group(&dev->kobj, &occ_caps_attr_group[i]);
++}
++
++
++static int occ_create_sysfs_attribute(struct device *dev)
++{
++ /* The sensor number varies for different
++ * platform depending on core number. We'd better
++ * create them dynamically */
++ struct occ_drv_data *data = dev_get_drvdata(dev);
++ int i = 0;
++ int num_of_sensors = 0;
++ int ret = 0;
++
++ /* get sensor number from occ. */
++ ret = occ_update_device(dev);
++ if (ret != 0)
++ {
++ /* FIXME: to test fake data */
++ printk("ERROR: cannot get occ sensor data: %d\n", ret);
++ return ret;
++ }
++
++ if (data->occ_resp.data.blocks == NULL)
++ return -1;
++
++ /* temp sensors */
++ if (data->occ_resp.temp_block_id >= 0)
++ {
++ num_of_sensors = data->occ_resp.data.blocks[data->occ_resp.temp_block_id].num_of_sensors;
++ for (i = 0; i < num_of_sensors; i++)
++ {
++ //printk("create temp group: %d\n", i);
++ //ret = sysfs_create_group(&dev->kobj, &occ_temp_attr_group[i]);
++ ret = sysfs_create_group(&data->hwmon_dev->kobj, &occ_temp_attr_group[i]);
++ if (ret)
++ {
++ dev_err(dev, "error create temp sysfs entry\n");
++ goto error;
++ }
++ }
++ }
++
++ /* freq sensors */
++ if (data->occ_resp.freq_block_id >= 0)
++ {
++ num_of_sensors = data->occ_resp.data.blocks[data->occ_resp.freq_block_id].num_of_sensors;
++ for (i = 0; i < num_of_sensors; i++)
++ {
++ //printk("create freq group: %d\n", i);
++ //ret = sysfs_create_group(&dev->kobj, &occ_temp_attr_group[i]);
++ ret = sysfs_create_group(&data->hwmon_dev->kobj, &occ_freq_attr_group[i]);
++ if (ret)
++ {
++ dev_err(dev, "error create freq sysfs entry\n");
++ goto error;
++ }
++ }
++ }
++
++ /* power sensors */
++ //printk("power_block_id: %d\n", data->occ_resp.power_block_id);
++ if (data->occ_resp.power_block_id >= 0)
++ {
++ num_of_sensors = data->occ_resp.data.blocks[data->occ_resp.power_block_id].num_of_sensors;
++ for (i = 0; i < num_of_sensors; i++)
++ {
++ //printk("create power group: %d\n", i);
++ //ret = sysfs_create_group(&dev->kobj, &occ_temp_attr_group[i]);
++ ret = sysfs_create_group(&data->hwmon_dev->kobj, &occ_power_attr_group[i]);
++ if (ret)
++ {
++ dev_err(dev, "error create power sysfs entry\n");
++ goto error;
++ }
++ }
++ }
++
++ /* caps sensors */
++ //printk("caps_block_id: %d\n", data->occ_resp.caps_block_id);
++ if (data->occ_resp.caps_block_id >= 0)
++ {
++ num_of_sensors = data->occ_resp.data.blocks[data->occ_resp.caps_block_id].num_of_sensors;
++ for (i = 0; i < num_of_sensors; i++)
++ {
++ //printk("create caps group: %d\n", i);
++ //ret = sysfs_create_group(&dev->kobj, &occ_temp_attr_group[i]);
++ ret = sysfs_create_group(&data->hwmon_dev->kobj, &occ_caps_attr_group[i]);
++ if (ret)
++ {
++ dev_err(dev, "error create caps sysfs entry\n");
++ goto error;
++ }
++ }
++ }
++
++ return 0;
++error:
++ occ_remove_sysfs_files(data->hwmon_dev);
++ return ret;
++}
++
++/*-----------------------------------------------------------------------*/
++/* device probe and removal */
++
++#define OCC_I2C_ADDR 0x50
++#define OCC_I2C_NAME "occ-i2c"
++
++enum occ_type {
++ occ_id,
++};
++
++static int occ_probe(struct i2c_client *client, const struct i2c_device_id *id)
++{
++ struct device *dev = &client->dev;
++ struct occ_drv_data *data;
++ unsigned long funcs;
++ struct device_node *np = dev->of_node;
++ //u32 pval = 0;
++ int ret = 0;
++
++ data = devm_kzalloc(dev, sizeof(struct occ_drv_data), GFP_KERNEL);
++ if (!data)
++ return -ENOMEM;
++
++ data->client = client;
++ i2c_set_clientdata(client, data);
++ mutex_init(&data->update_lock);
++ data->sample_time = HZ;
++
++ /* Yi: i2c-core should assign address to
++ * client when detection - but it does not work FIXME */
++ //client->addr = OCC_I2C_ADDR;
++
++ /* Yi: read address from device table */
++ //if (of_property_read_u32(np, "reg", &pval)) {
++ // dev_err(&client->dev, "invalid reg\n");
++ //}
++ //client->addr = pval;
++
++ /* configure the driver */
++ //dev_dbg(dev, "occ register hwmon @0x%x\n", client->addr);
++ //data->hwmon_dev = hwmon_device_register_with_groups(dev, "occ",
++ // data, occ_groups);
++
++ /* Yi: try to create sysfs attributes dynamically */
++ data->hwmon_dev = hwmon_device_register(dev);
++ if (IS_ERR(data->hwmon_dev))
++ return PTR_ERR(data->hwmon_dev);
++
++ ret = occ_create_sysfs_attribute(dev);
++ if (ret)
++ {
++ hwmon_device_unregister(data->hwmon_dev);
++ return ret;
++ }
++
++ data->hwmon_dev->parent = dev;
++
++ //dev_dbg(dev, "%s: sensor '%s'\n",
++ // dev_name(data->hwmon_dev), client->name);
++
++ funcs = i2c_get_functionality(client->adapter);
++ //dev_info(dev, "i2c adaptor supports function: 0x%lx\n", funcs);
++
++ /* Yi: seems always error? disable for now */
++ //occ_check_i2c_errors(client);
++
++ //dev_info(dev, "occ i2c driver ready: i2c addr@0x%x\n", client->addr);
++ printk("occ i2c driver ready: i2c addr@0x%x\n", client->addr);
++
++ return 0;
++}
++
++static int occ_remove(struct i2c_client *client)
++{
++ struct occ_drv_data *data = i2c_get_clientdata(client);
++
++ /* free allocated sensor memory */
++ deinit_occ_resp_buf(&data->occ_resp);
++
++ //occ_remove_sysfs_files(&client->dev);
++ occ_remove_sysfs_files(data->hwmon_dev);
++ hwmon_device_unregister(data->hwmon_dev);
++ return 0;
++}
++
++/* used for old-style board info */
++static const struct i2c_device_id occ_ids[] = {
++ { OCC_I2C_NAME, occ_id, },
++ { /* LIST END */ }
++};
++MODULE_DEVICE_TABLE(i2c, occ_ids);
++
++static const struct of_device_id i2c_occ_of_match[] = {
++ {.compatible = "ibm,occ-i2c"},
++ {},
++};
++
++MODULE_DEVICE_TABLE(of, i2c_occ_of_match);
++
++#ifdef CONFIG_PM
++static int occ_suspend(struct device *dev)
++{
++ //struct i2c_client *client = to_i2c_client(dev);
++ /* TODO */
++ return 0;
++}
++
++static int occ_resume(struct device *dev)
++{
++ //struct i2c_client *client = to_i2c_client(dev);
++ /* TODO */
++ return 0;
++}
++
++static const struct dev_pm_ops occ_dev_pm_ops = {
++ .suspend = occ_suspend,
++ .resume = occ_resume,
++};
++#define OCC_DEV_PM_OPS (&occ_dev_pm_ops)
++#else
++#define OCC_DEV_PM_OPS NULL
++#endif /* CONFIG_PM */
++
++/* Yi: i2c-core uses i2c-detect() to detect device in bellow address list.
++ If exists, address will be assigned to client.
++ * It is also possible to read address from device table. */
++static const unsigned short normal_i2c[] = {0x50, 0x51, I2C_CLIENT_END };
++
++/* Return 0 if detection is successful, -ENODEV otherwise */
++static int occ_detect(struct i2c_client *new_client,
++ struct i2c_board_info *info)
++{
++ /* i2c-core need this function to create new device */
++ strncpy(info->type, OCC_I2C_NAME, sizeof(OCC_I2C_NAME));
++ return 0;
++}
++
++static struct i2c_driver occ_driver = {
++ .class = I2C_CLASS_HWMON,
++ .driver = {
++ .name = OCC_I2C_NAME,
++ .pm = OCC_DEV_PM_OPS,
++ .of_match_table = i2c_occ_of_match,
++ },
++ .probe = occ_probe,
++ .remove = occ_remove,
++ .id_table = occ_ids,
++ .address_list = normal_i2c,
++ .detect = occ_detect,
++};
++
++module_i2c_driver(occ_driver);
++
++#if 0
++/* Create new i2c device */
++static struct i2c_board_info my_dev_info[] __initdata = {
++ {
++ I2C_BOARD_INFO(OCC_I2C_NAME, 0x50),
++ },
++};
++
++static struct i2c_client *my_client;
++
++static int occ_init(void)
++{
++ static int sys_adap_bus_num = 3;
++ struct i2c_adapter* adap = i2c_get_adapter(sys_adap_bus_num);
++
++ if(adap==NULL) {
++ printk("[OCC-DEBUG] i2c_get_adapter fail!\n");
++ return -1;
++ }
++
++ my_client = i2c_new_device(adap, &my_dev_info[0]);
++ if( my_client==NULL ){
++ printk("[OCC-DEBUG] i2c_new_device fail!\n");
++ return -1;
++ }
++ i2c_put_adapter(adap);
++ return i2c_add_driver(&occ_driver);
++}
++
++static void __exit occ_exit(void)
++{
++ i2c_unregister_device(my_client);
++ i2c_del_driver(&occ_driver);
++}
++
++module_init(occ_init);
++module_exit(occ_exit);
++
++#endif
++
++MODULE_AUTHOR("Li Yi <shliyi@cn.ibm.com>");
++MODULE_DESCRIPTION("BMC OCC monitor driver");
++MODULE_LICENSE("GPL");
diff --git a/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc_%.bbappend b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc_%.bbappend
index b106e5a..1099689 100644
--- a/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc_%.bbappend
+++ b/meta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/recipes-kernel/linux/linux-obmc_%.bbappend
@@ -1 +1,3 @@
FILESEXTRAPATHS_prepend := "${THISDIR}/linux-obmc:"
+SRC_URI += "file://barreleye.cfg"
+SRC_URI += "file://occ_hwmon.patch"