| commit | d1d22e6713c601a72ff7329133cd86f30ac3d6ce | [log] [tgz] |
|---|---|---|
| author | Andrew Geissler <geissonator@yahoo.com> | Fri Oct 16 10:14:32 2020 -0500 |
| committer | Andrew Geissler <geissonator@yahoo.com> | Fri Oct 16 10:14:41 2020 -0500 |
| tree | ed4f67876b562f45b5e9ca3b3f6406445af535af | |
| parent | 5c4154ffa5fc7b63c57a909685a06a90a5b9c82c [diff] |
meta-security: subtree update:d6baccc068..4c2f7ffd49
Adrian (1):
gitignore added
Armin Kuster (31):
kas: build with ptest. remove apparmor
softHSM: add pkg
packagegroup-core-security: add softHSM
libest: add recipe
packagegroup-core-security: add libest package
opendnssec: add recipe
packagegroup-core-security: add opendnssec to pkg grp
gitlab-ci: allow test to fail
libseccomp: fix ptest failures.
packagegroup-core-security-ptest: remove keyutils-ptest
security-test-image: simplify
packagegroup-core-security-ptest: remove
apparmor: fix build issue with ptest enabled.
security-test-image: tweak to get more tests to runn
apparmor: update to 3.0
packagegroup-core-security: apparmor 3.0 ptest does not build
suricata: fix compiling on gcc10
qemux86-test: add apparmor back
apparmor: fix build for on musl
ecryptfs-utils: fix musl build
libest: fix musl build.
sssd: update to latest ltm 1.16.5
packagegroup-core-security: remove clamav from musl image
suricata: update to 4.1.9
kas: fixup alt configs
gitlab-ci: add qemux86 and qemuarm64 musl builds
tpm2-tss: update to 2.4.3
tpm2-totp: update to 0.2.1
tpm2-abrmd: update to 2.3.3
tpm2-tools: update to 4.3.0
tpm2-pkcs11: update to 1.4.0
Mingli Yu (1):
scap-security-guide: add expat-native to DEPENDS
Naveen Saini (3):
initramfs-framework/dmverity: add retry loop for slow boot devices
wic: add wks.in for intel dm-verity
linux-%/5.x: Add dm-verity fragment as needed
Signed-off-by: Andrew Geissler <geissonator@yahoo.com>
Change-Id: If3a721fdd99bb6e35c82cf4e7485f06cebaef905
The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake \
rpcgen perl-Thread-Queue perl-bignum perl-Crypt-OpenSSL-Bignum
sudo dnf groupinstall "C Development Tools and Libraries"
git clone git@github.com:openbmc/openbmc.git cd openbmc
Any build requires an environment set up according to your hardware target. There is a special script in the root of this repository that can be used to configure the environment as needed. The script is called setup and takes the name of your hardware target as an argument.
The script needs to be sourced while in the top directory of the OpenBMC repository clone, and, if run without arguments, will display the list of supported hardware targets, see the following example:
$ . setup <machine> [build_dir] Target machine must be specified. Use one of: centriq2400-rep nicole stardragon4800-rep2 f0b olympus swift fp5280g2 olympus-nuvoton tiogapass gsj on5263m5 vesnin hr630 palmetto witherspoon hr855xg2 qemuarm witherspoon-128 lanyang quanta-q71l witherspoon-tacoma mihawk rainier yosemitev2 msn romulus zaius neptune s2600wf
Once you know the target (e.g. romulus), source the setup script as follows:
. setup romulus build
For evb-ast2500, please use the below command to specify the machine config, because the machine in meta-aspeed layer is in a BSP layer and does not build the openbmc image.
TEMPLATECONF=meta-evb/meta-evb-aspeed/meta-evb-ast2500/conf . openbmc-env
bitbake obmc-phosphor-image
Additional details can be found in the docs repository.
The OpenBMC community maintains a set of tutorials new users can go through to get up to speed on OpenBMC development out here
Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.
Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.
Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.
Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.
Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.
First, please do a search on the internet. There's a good chance your question has already been asked.
For general questions, please use the openbmc tag on Stack Overflow. Please review the discussion on Stack Overflow licensing before posting any code.
For technical discussions, please see contact info below for IRC and mailing list information. Please don't file an issue to ask a question. You'll get faster results by using the mailing list or IRC.
Feature List
Features In Progress
Features Requested but need help
Dive deeper into OpenBMC by opening the docs repository.
The Technical Steering Committee (TSC) guides the project. Members are: