Create RSA host key in user specified path

On each ssh connection, we are getting a Warning message similar to below:

dropbear[3956]: Failed loading /var/lib/dropbear/dropbear_rsa_host_key

This is because the dropbear service is started with the -r option which
points to /var/lib/dropbear/dropbear_rsa_host_key as the RSA host key to
load.  However, the dropbearkey.service creates the key in /etc/dropbear
instead.  There is an environment file, /etc/default/dropbear, which
contains the path to the RSA host key.  This path is set by
rootfs-postcommands.bbclass.  At build time, the .bbclass file checks if
the /etc/dropbear directory exists and if the RSA host key exists in
this directory.  If the key does exist it sets the path to /etc/dropbear
else it sets it to /var/lib/dropbear. The dropbear service reads this
environment file to determine from which path to load the RSA host key.
This fix is to change dropbearkey.service to have similar logic to read
the file to determine which path to create the RSA host key.  This will
get rid of the above Warning message, which can fill up the log buffer
in a Continuous Test environment where many ssh connection are made.

Change-Id: Iae37a3dfa9aa8c56687560f0f6560114c1e9b85a
Signed-off-by: CamVan Nguyen <ctnguyen@us.ibm.com>
1 file changed
tree: b1d1ca2318d2ebef8ec1ab3c90174d2a7e46b446
  1. import-layers/
  2. meta-openbmc-bsp/
  3. meta-openbmc-machines/
  4. meta-phosphor/
  5. .gitignore
  6. .gitreview
  7. .templateconf
  8. openbmc-env
  9. README.md
  10. setup
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 23
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. OpenBMC has placed all known hardware targets in a standard directory structure meta-openbmc-machines/meta-[architecture]/meta-[company]/meta-[target]. You can see all of the known targets with find meta-openbmc-machines -type d -name conf. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf
Barreleyemeta-openbmc-machines/meta-openpower/meta-rackspace/meta-barreleye/conf
Zaiusmeta-openbmc-machines/meta-openpower/meta-ingrasys/meta-zaius/conf
Witherspoonmeta-openbmc-machines/meta-openpower/meta-ibm/meta-witherspoon/conf

As an example target Palmetto

export TEMPLATECONF=meta-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • REST Management
  • IPMI
  • SSH based SOL
  • Power and Cooling Management
  • Event Logs
  • Zeroconf discoverable
  • Sensors
  • Inventory
  • LED Management
  • Host Watchdog
  • Simulation
  • Code Update Support for multiple BMC/BIOS images
  • POWER On Chip Controller (OCC) Support

Features In Progress

  • Full IPMI 2.0 Compliance with DCMI
  • Verified Boot
  • HTML5 Java Script Web User Interface
  • BMC RAS

Features Requested but need help

  • OpenCompute Redfish Compliance
  • OpenBMC performance monitoring
  • cgroup user management and policies
  • Remote KVM
  • Remote USB
  • OpenStack Ironic Integration
  • QEMU enhancements

Finding out more

Dive deeper in to OpenBMC by opening the docs repository.

Contact