Willy Tu | de54f48 | 2021-01-26 15:59:09 -0800 | [diff] [blame] | 1 | #include "dbus-sdr/sensorutils.hpp" |
| 2 | |
| 3 | #include <cmath> |
| 4 | |
| 5 | #include "gtest/gtest.h" |
| 6 | |
| 7 | // There is a surprising amount of slop in the math, |
| 8 | // thanks to all the rounding and conversion. |
| 9 | // The "x" byte value can drift by up to 2 away, I have seen. |
| 10 | static constexpr int8_t expectedSlopX = 2; |
| 11 | |
| 12 | // Unlike expectedSlopX, this is a ratio, not an integer |
| 13 | // It scales based on the range of "y" |
| 14 | static constexpr double expectedSlopY = 0.01; |
| 15 | |
| 16 | // The algorithm here was copied from ipmitool |
| 17 | // sdr_convert_sensor_reading() function |
| 18 | // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 |
| 19 | double ipmitool_y_from_x(uint8_t x, int m, int k2_rExp, int b, int k1_bExp, |
| 20 | bool bSigned) |
| 21 | { |
| 22 | double result; |
| 23 | |
| 24 | // Rename to exactly match names and types (except analog) from ipmitool |
| 25 | uint8_t val = x; |
| 26 | double k1 = k1_bExp; |
| 27 | double k2 = k2_rExp; |
| 28 | int analog = bSigned ? 2 : 0; |
| 29 | |
| 30 | // Begin paste here |
| 31 | // Only change is to comment out complicated structure in switch statement |
| 32 | |
| 33 | switch (/*sensor->cmn.unit.*/ analog) |
| 34 | { |
| 35 | case 0: |
| 36 | result = (double)(((m * val) + (b * pow(10, k1))) * pow(10, k2)); |
| 37 | break; |
| 38 | case 1: |
| 39 | if (val & 0x80) |
| 40 | val++; |
| 41 | /* Deliberately fall through to case 2. */ |
Willy Tu | 11d6889 | 2022-01-20 10:37:34 -0800 | [diff] [blame] | 42 | [[fallthrough]]; |
Willy Tu | de54f48 | 2021-01-26 15:59:09 -0800 | [diff] [blame] | 43 | case 2: |
| 44 | result = |
| 45 | (double)(((m * (int8_t)val) + (b * pow(10, k1))) * pow(10, k2)); |
| 46 | break; |
| 47 | default: |
| 48 | /* Oops! This isn't an analog sensor. */ |
| 49 | return 0.0; |
| 50 | } |
| 51 | |
| 52 | // End paste here |
| 53 | // Ignoring linearization curves and postprocessing that follows, |
| 54 | // assuming all sensors are perfectly linear |
| 55 | return result; |
| 56 | } |
| 57 | |
| 58 | void testValue(int x, double y, int16_t M, int8_t rExp, int16_t B, int8_t bExp, |
| 59 | bool bSigned, double yRange) |
| 60 | { |
| 61 | double yRoundtrip; |
| 62 | int result; |
| 63 | |
| 64 | // There is intentionally no exception catching here, |
| 65 | // because if getSensorAttributes() returned true, |
| 66 | // it is a promise that all of these should work. |
| 67 | if (bSigned) |
| 68 | { |
| 69 | int8_t expect = x; |
| 70 | int8_t actual = |
| 71 | ipmi::scaleIPMIValueFromDouble(y, M, rExp, B, bExp, bSigned); |
| 72 | |
| 73 | result = actual; |
| 74 | yRoundtrip = ipmitool_y_from_x(actual, M, rExp, B, bExp, bSigned); |
| 75 | |
| 76 | EXPECT_NEAR(actual, expect, expectedSlopX); |
| 77 | } |
| 78 | else |
| 79 | { |
| 80 | uint8_t expect = x; |
| 81 | uint8_t actual = |
| 82 | ipmi::scaleIPMIValueFromDouble(y, M, rExp, B, bExp, bSigned); |
| 83 | |
| 84 | result = actual; |
| 85 | yRoundtrip = ipmitool_y_from_x(actual, M, rExp, B, bExp, bSigned); |
| 86 | |
| 87 | EXPECT_NEAR(actual, expect, expectedSlopX); |
| 88 | } |
| 89 | |
| 90 | // Scale the amount of allowed slop in y based on range, so ratio similar |
| 91 | double yTolerance = yRange * expectedSlopY; |
| 92 | // double yError = std::abs(y - yRoundtrip); |
| 93 | |
| 94 | EXPECT_NEAR(y, yRoundtrip, yTolerance); |
| 95 | |
| 96 | char szFormat[1024]; |
| 97 | sprintf(szFormat, |
| 98 | "Value | xExpect %4d | xResult %4d " |
| 99 | "| M %5d | rExp %3d " |
| 100 | "| B %5d | bExp %3d | bSigned %1d | y %18.3f | yRoundtrip %18.3f\n", |
| 101 | x, result, M, (int)rExp, B, (int)bExp, (int)bSigned, y, yRoundtrip); |
| 102 | std::cout << szFormat; |
| 103 | } |
| 104 | |
| 105 | void testBounds(double yMin, double yMax, bool bExpectedOutcome = true) |
| 106 | { |
| 107 | int16_t mValue; |
| 108 | int8_t rExp; |
| 109 | int16_t bValue; |
| 110 | int8_t bExp; |
| 111 | bool bSigned; |
| 112 | bool result; |
| 113 | |
| 114 | result = ipmi::getSensorAttributes(yMax, yMin, mValue, rExp, bValue, bExp, |
| 115 | bSigned); |
| 116 | EXPECT_EQ(result, bExpectedOutcome); |
| 117 | |
| 118 | if (!result) |
| 119 | { |
| 120 | return; |
| 121 | } |
| 122 | |
| 123 | char szFormat[1024]; |
| 124 | sprintf(szFormat, |
| 125 | "Bounds | yMin %18.3f | yMax %18.3f | M %5d" |
| 126 | " | rExp %3d | B %5d | bExp %3d | bSigned %1d\n", |
| 127 | yMin, yMax, mValue, (int)rExp, bValue, (int)bExp, (int)bSigned); |
| 128 | std::cout << szFormat; |
| 129 | |
| 130 | double y50p = (yMin + yMax) / 2.0; |
| 131 | |
| 132 | // Average the average |
| 133 | double y25p = (yMin + y50p) / 2.0; |
| 134 | double y75p = (y50p + yMax) / 2.0; |
| 135 | |
| 136 | // This range value is only used for tolerance checking, not computation |
| 137 | double yRange = yMax - yMin; |
| 138 | |
| 139 | if (bSigned) |
| 140 | { |
| 141 | int8_t xMin = -128; |
| 142 | int8_t x25p = -64; |
| 143 | int8_t x50p = 0; |
| 144 | int8_t x75p = 64; |
| 145 | int8_t xMax = 127; |
| 146 | |
| 147 | testValue(xMin, yMin, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 148 | testValue(x25p, y25p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 149 | testValue(x50p, y50p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 150 | testValue(x75p, y75p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 151 | testValue(xMax, yMax, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 152 | } |
| 153 | else |
| 154 | { |
| 155 | uint8_t xMin = 0; |
| 156 | uint8_t x25p = 64; |
| 157 | uint8_t x50p = 128; |
| 158 | uint8_t x75p = 192; |
| 159 | uint8_t xMax = 255; |
| 160 | |
| 161 | testValue(xMin, yMin, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 162 | testValue(x25p, y25p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 163 | testValue(x50p, y50p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 164 | testValue(x75p, y75p, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 165 | testValue(xMax, yMax, mValue, rExp, bValue, bExp, bSigned, yRange); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | void testRanges(void) |
| 170 | { |
| 171 | // The ranges from the main TEST function |
| 172 | testBounds(0x0, 0xFF); |
| 173 | testBounds(-128, 127); |
| 174 | testBounds(0, 16000); |
| 175 | testBounds(0, 20); |
| 176 | testBounds(8000, 16000); |
| 177 | testBounds(-10, 10); |
| 178 | testBounds(0, 277); |
| 179 | testBounds(0, 0, false); |
| 180 | testBounds(10, 12); |
| 181 | |
| 182 | // Additional test cases recommended to me by hardware people |
| 183 | testBounds(-40, 150); |
| 184 | testBounds(0, 1); |
| 185 | testBounds(0, 2); |
| 186 | testBounds(0, 4); |
| 187 | testBounds(0, 8); |
| 188 | testBounds(35, 65); |
| 189 | testBounds(0, 18); |
| 190 | testBounds(0, 25); |
| 191 | testBounds(0, 80); |
| 192 | testBounds(0, 500); |
| 193 | |
| 194 | // Additional sanity checks |
| 195 | testBounds(0, 255); |
| 196 | testBounds(-255, 0); |
| 197 | testBounds(-255, 255); |
| 198 | testBounds(0, 1000); |
| 199 | testBounds(-1000, 0); |
| 200 | testBounds(-1000, 1000); |
| 201 | testBounds(0, 255000); |
| 202 | testBounds(-128000000, 127000000); |
| 203 | testBounds(-50000, 0); |
| 204 | testBounds(-40000, 10000); |
| 205 | testBounds(-30000, 20000); |
| 206 | testBounds(-20000, 30000); |
| 207 | testBounds(-10000, 40000); |
| 208 | testBounds(0, 50000); |
| 209 | testBounds(-1e3, 1e6); |
| 210 | testBounds(-1e6, 1e3); |
| 211 | |
| 212 | // Extreme ranges are now possible |
| 213 | testBounds(0, 1e10); |
| 214 | testBounds(0, 1e11); |
| 215 | testBounds(0, 1e12); |
| 216 | testBounds(0, 1e13, false); |
| 217 | testBounds(-1e10, 0); |
| 218 | testBounds(-1e11, 0); |
| 219 | testBounds(-1e12, 0); |
| 220 | testBounds(-1e13, 0, false); |
| 221 | testBounds(-1e9, 1e9); |
| 222 | testBounds(-1e10, 1e10); |
| 223 | testBounds(-1e11, 1e11); |
| 224 | testBounds(-1e12, 1e12, false); |
| 225 | |
| 226 | // Large multiplier but small offset |
| 227 | testBounds(1e4, 1e4 + 255); |
| 228 | testBounds(1e5, 1e5 + 255); |
| 229 | testBounds(1e6, 1e6 + 255); |
| 230 | testBounds(1e7, 1e7 + 255); |
| 231 | testBounds(1e8, 1e8 + 255); |
| 232 | testBounds(1e9, 1e9 + 255); |
| 233 | testBounds(1e10, 1e10 + 255, false); |
| 234 | |
| 235 | // Input validation against garbage |
| 236 | testBounds(0, INFINITY, false); |
| 237 | testBounds(-INFINITY, 0, false); |
| 238 | testBounds(-INFINITY, INFINITY, false); |
| 239 | testBounds(0, NAN, false); |
| 240 | testBounds(NAN, 0, false); |
| 241 | testBounds(NAN, NAN, false); |
| 242 | |
| 243 | // Noteworthy binary integers |
| 244 | testBounds(0, std::pow(2.0, 32.0) - 1.0); |
| 245 | testBounds(0, std::pow(2.0, 32.0)); |
| 246 | testBounds(0.0 - std::pow(2.0, 31.0), std::pow(2.0, 31.0)); |
| 247 | testBounds((0.0 - std::pow(2.0, 31.0)) - 1.0, std::pow(2.0, 31.0)); |
| 248 | |
| 249 | // Similar but negative (note additional commented-out below) |
| 250 | testBounds(-1e1, (-1e1) + 255); |
| 251 | testBounds(-1e2, (-1e2) + 255); |
| 252 | |
| 253 | // Ranges of negative numbers (note additional commented-out below) |
| 254 | testBounds(-10400, -10000); |
| 255 | testBounds(-15000, -14000); |
| 256 | testBounds(-10000, -9000); |
| 257 | testBounds(-1000, -900); |
| 258 | testBounds(-1000, -800); |
| 259 | testBounds(-1000, -700); |
| 260 | testBounds(-1000, -740); |
| 261 | |
| 262 | // Very small ranges (note additional commented-out below) |
| 263 | testBounds(0, 0.1); |
| 264 | testBounds(0, 0.01); |
| 265 | testBounds(0, 0.001); |
| 266 | testBounds(0, 0.0001); |
| 267 | testBounds(0, 0.000001, false); |
| 268 | |
| 269 | #if 0 |
| 270 | // TODO(): The algorithm in this module is better than it was before, |
| 271 | // but the resulting value of X is still wrong under certain conditions, |
| 272 | // such as when the range between min and max is around 255, |
| 273 | // and the offset is fairly extreme compared to the multiplier. |
| 274 | // Not sure why this is, but these ranges are contrived, |
| 275 | // and real-world examples would most likely never be this way. |
| 276 | testBounds(-10290, -10000); |
| 277 | testBounds(-10280, -10000); |
| 278 | testBounds(-10275,-10000); |
| 279 | testBounds(-10270,-10000); |
| 280 | testBounds(-10265,-10000); |
| 281 | testBounds(-10260,-10000); |
| 282 | testBounds(-10255,-10000); |
| 283 | testBounds(-10250,-10000); |
| 284 | testBounds(-10245,-10000); |
| 285 | testBounds(-10256,-10000); |
| 286 | testBounds(-10512, -10000); |
| 287 | testBounds(-11024, -10000); |
| 288 | |
| 289 | // TODO(): This also fails, due to extreme small range, loss of precision |
| 290 | testBounds(0, 0.00001); |
| 291 | |
| 292 | // TODO(): Interestingly, if bSigned is forced false, |
| 293 | // causing "x" to have range of (0,255) instead of (-128,127), |
| 294 | // these test cases change from failing to passing! |
| 295 | // Not sure why this is, perhaps a mathematician might know. |
| 296 | testBounds(-10300, -10000); |
| 297 | testBounds(-1000,-750); |
| 298 | testBounds(-1e3, (-1e3) + 255); |
| 299 | testBounds(-1e4, (-1e4) + 255); |
| 300 | testBounds(-1e5, (-1e5) + 255); |
| 301 | testBounds(-1e6, (-1e6) + 255); |
| 302 | #endif |
| 303 | } |
| 304 | |
| 305 | TEST(sensorutils, TranslateToIPMI) |
| 306 | { |
| 307 | /*bool getSensorAttributes(double maxValue, double minValue, int16_t |
| 308 | &mValue, int8_t &rExp, int16_t &bValue, int8_t &bExp, bool &bSigned); */ |
| 309 | // normal unsigned sensor |
| 310 | double maxValue = 0xFF; |
| 311 | double minValue = 0x0; |
| 312 | int16_t mValue; |
| 313 | int8_t rExp; |
| 314 | int16_t bValue; |
| 315 | int8_t bExp; |
| 316 | bool bSigned; |
| 317 | bool result; |
| 318 | |
| 319 | uint8_t scaledVal; |
| 320 | |
| 321 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 322 | bExp, bSigned); |
| 323 | EXPECT_EQ(result, true); |
| 324 | if (result) |
| 325 | { |
| 326 | EXPECT_EQ(bSigned, false); |
| 327 | EXPECT_EQ(mValue, 1); |
| 328 | EXPECT_EQ(rExp, 0); |
| 329 | EXPECT_EQ(bValue, 0); |
| 330 | EXPECT_EQ(bExp, 0); |
| 331 | } |
| 332 | double expected = 0x50; |
| 333 | scaledVal = ipmi::scaleIPMIValueFromDouble(0x50, mValue, rExp, bValue, bExp, |
| 334 | bSigned); |
| 335 | EXPECT_NEAR(scaledVal, expected, expected * 0.01); |
| 336 | |
| 337 | // normal signed sensor |
| 338 | maxValue = 127; |
| 339 | minValue = -128; |
| 340 | |
| 341 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 342 | bExp, bSigned); |
| 343 | EXPECT_EQ(result, true); |
| 344 | |
| 345 | if (result) |
| 346 | { |
| 347 | EXPECT_EQ(bSigned, true); |
| 348 | EXPECT_EQ(mValue, 1); |
| 349 | EXPECT_EQ(rExp, 0); |
| 350 | EXPECT_EQ(bValue, 0); |
| 351 | EXPECT_EQ(bExp, 0); |
| 352 | } |
| 353 | |
| 354 | // check negative values |
| 355 | expected = 236; // 2s compliment -20 |
| 356 | scaledVal = ipmi::scaleIPMIValueFromDouble(-20, mValue, rExp, bValue, bExp, |
| 357 | bSigned); |
| 358 | EXPECT_NEAR(scaledVal, expected, expected * 0.01); |
| 359 | |
| 360 | // fan example |
| 361 | maxValue = 16000; |
| 362 | minValue = 0; |
| 363 | |
| 364 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 365 | bExp, bSigned); |
| 366 | EXPECT_EQ(result, true); |
| 367 | if (result) |
| 368 | { |
| 369 | EXPECT_EQ(bSigned, false); |
| 370 | EXPECT_EQ(mValue, floor((16000.0 / 0xFF) + 0.5)); |
| 371 | EXPECT_EQ(rExp, 0); |
| 372 | EXPECT_EQ(bValue, 0); |
| 373 | EXPECT_EQ(bExp, 0); |
| 374 | } |
| 375 | |
| 376 | // voltage sensor example |
| 377 | maxValue = 20; |
| 378 | minValue = 0; |
| 379 | |
| 380 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 381 | bExp, bSigned); |
| 382 | EXPECT_EQ(result, true); |
| 383 | if (result) |
| 384 | { |
| 385 | EXPECT_EQ(bSigned, false); |
| 386 | EXPECT_EQ(mValue, floor(((20.0 / 0xFF) / std::pow(10, rExp)) + 0.5)); |
| 387 | EXPECT_EQ(rExp, -3); |
| 388 | EXPECT_EQ(bValue, 0); |
| 389 | EXPECT_EQ(bExp, 0); |
| 390 | } |
| 391 | scaledVal = ipmi::scaleIPMIValueFromDouble(12.2, mValue, rExp, bValue, bExp, |
| 392 | bSigned); |
| 393 | |
| 394 | expected = 12.2 / (mValue * std::pow(10, rExp)); |
| 395 | EXPECT_NEAR(scaledVal, expected, expected * 0.01); |
| 396 | |
| 397 | // shifted fan example |
| 398 | maxValue = 16000; |
| 399 | minValue = 8000; |
| 400 | |
| 401 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 402 | bExp, bSigned); |
| 403 | EXPECT_EQ(result, true); |
| 404 | |
| 405 | if (result) |
| 406 | { |
| 407 | EXPECT_EQ(bSigned, false); |
| 408 | EXPECT_EQ(mValue, floor(((8000.0 / 0xFF) / std::pow(10, rExp)) + 0.5)); |
| 409 | EXPECT_EQ(rExp, -1); |
| 410 | EXPECT_EQ(bValue, 8); |
| 411 | EXPECT_EQ(bExp, 4); |
| 412 | } |
| 413 | |
| 414 | // signed voltage sensor example |
| 415 | maxValue = 10; |
| 416 | minValue = -10; |
| 417 | |
| 418 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 419 | bExp, bSigned); |
| 420 | EXPECT_EQ(result, true); |
| 421 | if (result) |
| 422 | { |
| 423 | EXPECT_EQ(bSigned, true); |
| 424 | EXPECT_EQ(mValue, floor(((20.0 / 0xFF) / std::pow(10, rExp)) + 0.5)); |
| 425 | EXPECT_EQ(rExp, -3); |
| 426 | // Although this seems like a weird magic number, |
| 427 | // it is because the range (-128,127) is not symmetrical about zero, |
| 428 | // unlike the range (-10,10), so this introduces some distortion. |
| 429 | EXPECT_EQ(bValue, 392); |
| 430 | EXPECT_EQ(bExp, -1); |
| 431 | } |
| 432 | |
| 433 | scaledVal = |
| 434 | ipmi::scaleIPMIValueFromDouble(5, mValue, rExp, bValue, bExp, bSigned); |
| 435 | |
| 436 | expected = 5 / (mValue * std::pow(10, rExp)); |
| 437 | EXPECT_NEAR(scaledVal, expected, expected * 0.01); |
| 438 | |
| 439 | // reading = max example |
| 440 | maxValue = 277; |
| 441 | minValue = 0; |
| 442 | |
| 443 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 444 | bExp, bSigned); |
| 445 | EXPECT_EQ(result, true); |
| 446 | if (result) |
| 447 | { |
| 448 | EXPECT_EQ(bSigned, false); |
| 449 | } |
| 450 | |
| 451 | scaledVal = ipmi::scaleIPMIValueFromDouble(maxValue, mValue, rExp, bValue, |
| 452 | bExp, bSigned); |
| 453 | |
| 454 | expected = 0xFF; |
| 455 | EXPECT_NEAR(scaledVal, expected, expected * 0.01); |
| 456 | |
| 457 | // 0, 0 failure |
| 458 | maxValue = 0; |
| 459 | minValue = 0; |
| 460 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 461 | bExp, bSigned); |
| 462 | EXPECT_EQ(result, false); |
| 463 | |
| 464 | // too close *success* (was previously failure!) |
| 465 | maxValue = 12; |
| 466 | minValue = 10; |
| 467 | result = ipmi::getSensorAttributes(maxValue, minValue, mValue, rExp, bValue, |
| 468 | bExp, bSigned); |
| 469 | EXPECT_EQ(result, true); |
| 470 | if (result) |
| 471 | { |
| 472 | EXPECT_EQ(bSigned, false); |
| 473 | EXPECT_EQ(mValue, floor(((2.0 / 0xFF) / std::pow(10, rExp)) + 0.5)); |
| 474 | EXPECT_EQ(rExp, -4); |
| 475 | EXPECT_EQ(bValue, 1); |
| 476 | EXPECT_EQ(bExp, 5); |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | TEST(sensorUtils, TestRanges) |
| 481 | { |
| 482 | // Additional test ranges, each running through a series of values, |
| 483 | // to make sure the values of "x" and "y" go together and make sense, |
| 484 | // for the resulting scaling attributes from each range. |
| 485 | // Unlike the TranslateToIPMI test, exact matches of the |
| 486 | // getSensorAttributes() results (the coefficients) are not required, |
| 487 | // because they are tested through actual use, relating "x" to "y". |
| 488 | testRanges(); |
| 489 | } |