tree: 0b35ff2cef20df90d3d5d09806f34ce3f381d9dc [path history] [tgz]
  1. registry/
  2. tools/
  3. additional_data.hpp
  4. ascii_string.cpp
  5. ascii_string.hpp
  6. bcd_time.cpp
  7. bcd_time.hpp
  8. callout.cpp
  9. callout.hpp
  10. callouts.cpp
  11. callouts.hpp
  12. data_interface.cpp
  13. data_interface.hpp
  14. dbus_types.hpp
  15. dbus_watcher.hpp
  16. device_callouts.cpp
  17. device_callouts.hpp
  18. entry_points.cpp
  19. event_logger.hpp
  20. extended_user_header.cpp
  21. extended_user_header.hpp
  22. failing_mtms.cpp
  23. failing_mtms.hpp
  24. fru_identity.cpp
  25. fru_identity.hpp
  26. generic.cpp
  27. generic.hpp
  28. host_interface.hpp
  29. host_notifier.cpp
  30. host_notifier.hpp
  31. json_utils.cpp
  32. json_utils.hpp
  33. log_id.cpp
  34. log_id.hpp
  35. manager.cpp
  36. manager.hpp
  37. mru.cpp
  38. mru.hpp
  39. mtms.cpp
  40. mtms.hpp
  41. openpower-pels.mk
  42. paths.cpp
  43. paths.hpp
  44. pce_identity.cpp
  45. pce_identity.hpp
  46. pel.cpp
  47. pel.hpp
  48. pel_rules.cpp
  49. pel_rules.hpp
  50. pel_types.hpp
  51. pel_values.cpp
  52. pel_values.hpp
  53. pldm_interface.cpp
  54. pldm_interface.hpp
  55. private_header.cpp
  56. private_header.hpp
  57. README.md
  58. registry.cpp
  59. registry.hpp
  60. repository.cpp
  61. repository.hpp
  62. section.hpp
  63. section_factory.cpp
  64. section_factory.hpp
  65. section_header.hpp
  66. severity.cpp
  67. severity.hpp
  68. src.cpp
  69. src.hpp
  70. stream.hpp
  71. user_data.cpp
  72. user_data.hpp
  73. user_data_formats.hpp
  74. user_data_json.cpp
  75. user_data_json.hpp
  76. user_header.cpp
  77. user_header.hpp
extensions/openpower-pels/README.md

OpenPower Platform Event Log (PEL) extension

This extension will create PELs for every OpenBMC event log. It is also possible to point to the raw PEL to use in the OpenBMC event, and then that will be used instead of creating one.

Contents

Passing PEL related data within an OpenBMC event log

An error log creator can pass in data that is relevant to a PEL by using certain keywords in the AdditionalData property of the event log.

AdditionalData keywords

RAWPEL

This keyword is used to point to an existing PEL in a binary file that should be associated with this event log. The syntax is:

RAWPEL=<path to PEL File>
e.g.
RAWPEL="/tmp/pels/pel.5"

The code will assign its own error log ID to this PEL, and also update the commit timestamp field to the current time.

ESEL

This keyword's data contains a full PEL in string format. This is how hostboot sends down PELs when it is configured in IPMI communication mode. The PEL is handled just like the PEL obtained using the RAWPEL keyword.

The syntax is:

ESEL=
"00 00 df 00 00 00 00 20 00 04 12 01 6f aa 00 00 50 48 00 30 01 00 33 00 00..."

Note that there are 16 bytes of IPMI SEL data before the PEL data starts.

_PID

This keyword that contains the application's PID is added automatically by the phosphor-logging daemon when the commit or report APIs are used to create an event log, but not when the Create D-Bus method is used. If a caller of the Create API wishes to have their PID captured in the PEL this should be used.

This will be added to the PEL in a section of type User Data (UD), along with the application name it corresponds to.

The syntax is:

_PID=<PID of application>
e.g.
_PID="12345"

CALLOUT_INVENTORY_PATH

This is used to pass in an inventory item to use as a callout. See here for details

CALLOUT_DEVICE_PATH with CALLOUT_ERRNO

This is used to pass in a device path to create callouts from. See here for details

CALLOUT_IIC_BUS with CALLOUT_IIC_ADDR and CALLOUT_ERRNO

This is used to pass in an I2C bus and address to create callouts from. See here for details

FFDC Intended For UserData PEL sections

When one needs to add FFDC into the PEL UserData sections, the CreateWithFFDCFiles D-Bus method on the xyz.openbmc_project.Logging.Create interface must be used when creating a new event log. This method takes a list of files to store in the PEL UserData sections.

That API is the same as the 'Create' one, except it has a new parameter:

std::vector<std::tuple<enum[FFDCFormat],
                       uint8_t,
                       uint8_t,
                       sdbusplus::message::unix_fd>>

Each entry in the vector contains a file descriptor for a file that will be stored in a unique UserData section. The tuple's arguments are:

  • enum[FFDCFormat]: The data format type, the options are:
    • 'JSON'
      • The parser will use nlohmann::json's pretty print
    • 'CBOR'
      • The parser will use nlohmann::json's pretty print
    • 'Text'
      • The parser will output ASCII text
    • 'Custom'
      • The parser will hexdump the data, unless there is a parser registered for this component ID and subtype.
  • uint8_t: subType
    • Useful for the 'custom' type. Not used with the other types.
  • uint8_t: version
    • The version of the data.
    • Used for the custom type.
    • Not planning on using for JSON/BSON unless a reason to do so appears.
  • unixfd - The file descriptor for the opened file that contains the contents. The file descriptor can be closed and the file can be deleted if desired after the method call.

An example of saving JSON data to a file and getting its file descriptor is:

nlohmann::json json = ...;
auto jsonString = json.dump();
FILE* fp = fopen(filename, "w");
fwrite(jsonString.data(), 1, jsonString.size(), fp);
int fd = fileno(fp);

Alternatively, 'open()' can be used to obtain the file descriptor of the file.

Upon receiving this data, the PEL code will create UserData sections for each entry in that vector with the following UserData fields:

  • Section header component ID:
    • If the type field from the tuple is "custom", use the component ID from the message registry.
    • Otherwise, set the component ID to the phosphor-logging component ID so that the parser knows to use the built in parsers (e.g. json) for the type.
  • Section header subtype: The subtype field from the tuple.
  • Section header version: The version field from the tuple.
  • Section data: The data from the file.

If there is a peltool parser registered for the custom type (method is TBD), that will be used by peltool to print the data, otherwise it will be hexdumped.

Before adding each of these UserData sections, a check will be done to see if the PEL size will remain under the maximum size of 16KB. If not, the UserData section will be truncated down enough so that it will fit into the 16KB.

Default UserData sections for BMC created PELs

The extension code that creates PELs will add these UserData sections to every PEL:

  • The AdditionalData property contents

    • If the AdditionalData property in the OpenBMC event log has anything in it, it will be saved in a UserData section as a JSON string.
  • System information

    • This section contains various pieces of system information, such as the full code level and the BMC, chassis, and host state properties.

The PEL Message Registry

The PEL message registry is used to create PELs from OpenBMC event logs. Documentation can be found here.

Callouts

A callout points to a FRU, a symbolic FRU, or an isolation procedure. There can be from zero to ten of them in each PEL, where they are located in the SRC section.

There are a few different ways to add callouts to a PEL:

Passing callouts in with the AdditionalData property

The PEL code can add callouts based on the values of special entries in the AdditionalData event log property. They are:

  • CALLOUT_INVENTORY_PATH

    This keyword is used to call out a single FRU by passing in its D-Bus inventory path. When the PEL code sees this, it will create a single high priority FRU callout, using the VPD properties (location code, FN, CCIN) from that inventory item. If that item is not a FRU itself and does not have a location code, it will keep searching its parents until it finds one that is.

    CALLOUT_INVENTORY_PATH=
    "/xyz/openbmc_project/inventory/system/chassis/motherboard"
    
  • CALLOUT_DEVICE_PATH with CALLOUT_ERRNO

    These keywords are required as a pair to indicate faulty device communication, usually detected by a failure accessing a device at that sysfs path. The PEL code will use a data table generated by the MRW to map these device paths to FRU callout lists. The errno value may influence the callout.

    I2C, FSI, FSI-I2C, and FSI-SPI paths are supported.

    CALLOUT_DEVICE_PATH="/sys/bus/i2c/devices/3-0069"
    CALLOUT_ERRNO="2"
    
  • CALLOUT_IIC_BUS with CALLOUT_IIC_ADDR and CALLOUT_ERRNO

    These 3 keywords can be used to callout a failing I2C device path when the full device path isn't known. It is similar to CALLOUT_DEVICE_PATH in that it will use data tables generated by the MRW to create the callouts.

    CALLOUT_IIC_BUS is in the form "/dev/i2c-X" where X is the bus number, or just the bus number by itself. CALLOUT_IIC_ADDR is the 7 bit address either as a decimal or a hex number if preceded with a "0x".

    CALLOUT_IIC_BUS="/dev/i2c-7"
    CALLOUT_IIC_ADDR="81"
    CALLOUT_ERRNO=62
    

Defining callouts in the message registry

Callouts can be completely defined inside that error's definition in the PEL message registry. This method allows the callouts to vary based on the system type or on any AdditionalData item.

At a high level, this involves defining a callout section inside the registry entry that contain the location codes or procedure names to use, along with their priority. If these can vary based on system type, the type provided by the entity manager will be one of the keys. If they can also depend on an AdditionalData entry, then that will also be a key.

See the message registry README and schema for the details.

Using the message registry along with CALLOUT_ entries

If the message registry entry contains a callout definition and the event log also contains one of aforementioned CALLOUT keys in the AdditionalData property, then the PEL code will first add the callouts stemming from the CALLOUT items, followed by the callouts from the message registry.

Using external callout tables

Some applications, such as the code from the openpower-hw-diags repository, have their own callout tables that contain the callouts to use for the errors they generate.

TODO: The best way to pass these callouts in to the PEL creation code.

Action Flags and Event Type Rules

The Action Flags and Event Type PEL fields are optional in the message registry, and if not present the code will set them based on certain rules layed out in the PEL spec. In fact, even if they were specified, the checks are still done to ensure consistency across all the logs.

These rules are:

  1. Always set the Report flag, unless the Do Not Report flag is already on.
  2. Always clear the SP Call Home flag, as that feature isn't supported.
  3. If the severity is Non-error Event:
    • Clear the Service Action flag.
    • Clear the Call Home flag.
    • If the Event Type field is Not Applicable, change it to Information Only.
    • If the Event Type field is Information Only or Tracing, set the Hidden flag.
  4. If the severity is Recovered:
    • Set the Hidden flag.
    • Clear the Service Action flag.
    • Clear the Call Home flag.
  5. For all other severities:
    • Clear the Hidden flag.
    • Set the Service Action flag.
    • Set the Call Home flag.

Additional rules may be added in the future if necessary.

D-Bus Interfaces

See the org.open_power.Logging.PEL interface definition for the most up to date information.