regulators: Add hardware presence service

The regulators application needs to determine whether hardware is
present or absent.  Some voltage regulators are optional, and
configuration should only be performed if the regulator is present.

Add a new class to obtain hardware presence data from the D-Bus
xyz.openbmc_project.Inventory.Item interface.

Also define an abstract base class and a mock implementation to enable
use of gmock in test cases related to hardware presence.

Tested:
* Tested where inventory path is present
* Tested where inventory path is not present
* Tested where inventory path is invalid and results in an exception
* Verified that mock implementation could be used in a gmock test case
* Full test plan available at
  https://gist.github.com/smccarney/2b6ea6ecbbeaf5a8b1793e2321799972

Signed-off-by: Shawn McCarney <shawnmm@us.ibm.com>
Change-Id: Ia25a92815efc506c3ef4ac72844c17120c4ce9b7
6 files changed
tree: 465109ac3292aa8a13117e0a60eb77a0275d1ca2
  1. cold-redundancy/
  2. example/
  3. org/
  4. phosphor-power-supply/
  5. phosphor-regulators/
  6. power-sequencer/
  7. power-supply/
  8. services/
  9. test/
  10. tools/
  11. .clang-format
  12. .gitignore
  13. argument.hpp
  14. device.hpp
  15. device_monitor.hpp
  16. elog-errors.hpp
  17. file_descriptor.hpp
  18. gpio.cpp
  19. gpio.hpp
  20. LICENSE
  21. MAINTAINERS
  22. meson.build
  23. meson_options.txt
  24. names_values.hpp
  25. pmbus.cpp
  26. pmbus.hpp
  27. README.md
  28. types.hpp
  29. utility.cpp
  30. utility.hpp
README.md

Overview

This repository contains applications for configuring and monitoring devices that deliver power to the system.

  • cold-redundancy: Application that makes power supplies work in Cold Redundancy mode and rotates them at intervals.
  • phosphor-power-supply: Next generation power supply monitoring application.
  • phosphor-regulators: JSON-driven application that configures and monitors voltage regulators.
  • power-sequencer: A power sequencer monitoring application.
  • power-supply: Original power supply monitoring application.
  • tools/power-utils: Power supply utilities.

Build

To build all applications in this repository:

  meson build
  ninja -C build

To clean the repository and remove all build output:

  rm -rf build

You can specify meson options to customize the build process. For example, you can specify:

  • Which applications to build and install.
  • Application-specific configuration data, such as power sequencer type.
  • Whether to build tests.

Power Supply Monitor and Util JSON config

Several applications in this repository require a PSU JSON config to run. The JSON config file provides information for:

  • Where to access the pmbus attributes
  • Which attribute file in pmbus maps to which property and interface in D-Bus
  • Which kernel device directory is used on which PSU

There is an example psu.json to describe the necessary configurations.

  • inventoryPMBusAccessType defines the pmbus access type, which tells the service which sysfs type to use to read the attributes. The possible values are:
    • Base: The base dir, e.g. /sys/bus/i2c/devices/3-0069/
    • Hwmon: The hwmon dir, e.g. /sys/bus/i2c/devices/3-0069/hwmon/hwmonX/
    • Debug: The pmbus debug dir, e.g. /sys/kernel/debug/pmbus/hwmonX/
    • DeviceDebug: The device debug dir, e.g. '/sys/kernel/debug/./`
    • HwmonDeviceDebug: The hwmon device debug dir, e.g. /sys/kernel/debug/pmbus/hwmonX/cffps1/
  • fruConfigs defines the mapping between the attribute file and the FRU inventory interface and property. The configuration example below indicates that the service will read part_number attribute file from a directory specified by the above pmbus access type, and assign to PartNumber property in xyz.openbmc_project.Inventory.Decorator.Asset interface.
      "fruConfigs": [
        {
          "propertyName": "PartNumber",
          "fileName": "part_number",
          "interface": "xyz.openbmc_project.Inventory.Decorator.Asset"
        }
      ]
    
  • psuDevices defines the kernel device dir for each PSU in inventory. The configuration example below indicates that powersupply0's device is located in /sys/bus/i2c/devices/3-0069.
      "psuDevices": {
        "/xyz/openbmc_project/inventory/system/chassis/motherboard/powersupply0" : "/sys/bus/i2c/devices/3-0069",
      }