commit | cd4cd45765c45e8b331f91c9017ef791b71f1564 | [log] [tgz] |
---|---|---|
author | Manojkiran Eda <manojkiran.eda@gmail.com> | Tue Apr 23 08:53:17 2024 +0530 |
committer | ManojKiran Eda <manojkiran.eda@gmail.com> | Wed Apr 24 05:22:58 2024 +0000 |
tree | 9b3fe0c3a3e00bea094b72f7f2aa33b6df87a261 | |
parent | 312c3735e0fb94241d4dd7ad8f9ebbdc14c71847 [diff] |
common: Improve printBuffer() & added unit tests This patchset is improved version of the existing code for several reasons: 1.The code is more concise and easier to read. It uses modern C++ features such as `std::ranges::for_each` and `std::format`, which express the intent of the code more clearly compared to the nested if-else statements and manual formatting. 2.The code now has fewer lines of code and avoids the need for creating and managing an `std::ostringstream` object manually, which simplifies the function and reduces the risk of errors. 3.This patch uses type-safe range-based for loop and `uint8_t` type directly, whereas the existing code uses `int` for iterating over the buffer elements, which may lead to unintentional type conversions or loss of precision. 4.While the performance impact may not be significant for this patch, using `std::ranges::for_each` with lambdas might allow for more optimization opportunities by the compiler compared to the traditional loop used in existing code. Overall, this patchset leverages modern C++ features to achieve the same functionality in a more concise, readable, and type-safe manner, making it preferable. Change-Id: I7be547ade053638cb4ca459ee795195f6f0883bf Signed-off-by: Manojkiran Eda <manojkiran.eda@gmail.com>
Need meson
and ninja
. Alternatively, source an OpenBMC ARM/x86 SDK.
meson setup build && ninja -C build
The simplest way of running the tests is as described by the meson man page:
meson setup builddir && meson setup test -C builddir
Alternatively, tests can be run in the OpenBMC CI docker container, or with an OpenBMC x86 sdk(see below for x86 steps).
meson setup -Doe-sdk=enabled build ninja -C build test
pldm daemon accepts a command line argument --verbose
or --v
or -v
to enable the daemon to run in verbose mode. It can be done via adding this option to the environment file that pldm service consumes.
echo 'PLDMD_ARGS="--verbose"' > /etc/default/pldmd systemctl restart pldmd
rm /etc/default/pldmd systemctl restart pldmd
At a high-level, code in this repository belongs to one of the following three components.
This library provides handlers for incoming PLDM request messages. It provides for a registration as well as a plug-in mechanism. The library is implemented in modern C++, and handles OpenBMC's platform specifics.
The handlers are of the form
Response handler(Request payload, size_t payloadLen)
Source files are named according to the PLDM Type, for eg base.[hpp/cpp], fru.[hpp/cpp], etc.
This will support OEM or vendor-specific functions and semantic information. Following directory structure has to be used:
pldm repo |---- oem |----<oem_name> |----libpldmresponder |---<oem based handler files>
<oem_name> - This folder must be created with the name of the OEM/vendor in lower case. Folders named libpldm and libpldmresponder must be created under the folder <oem_name>
Files having the oem functionality for the libpldmresponder library should be placed under the folder oem/<oem_name>/libpldmresponder. They must be adhering to the rules mentioned under the libpldmresponder section above.
Once the above is done a meson option has to be created in pldm/meson_options.txt
with its mapped compiler flag to enable conditional compilation.
For consistency would recommend using "oem-<oem_name>".
The pldm/meson.build
and the corresponding source file(s) will need to incorporate the logic of adding its mapped compiler flag to allow conditional compilation of the code.
pldm daemon links against the libpldm library during compilation, For more information on libpldm please refer to libpldm
For more information on pldmtool please refer to plmdtool/README.md.
This section documents important code flow paths.
a) PLDM daemon receives PLDM request message from underlying transport (MCTP).
b) PLDM daemon routes message to message handler, based on the PLDM command.
c) Message handler decodes request payload into various field(s) of the request message. It can make use of a decode_foo_req() API, and doesn't have to perform deserialization of the request payload by itself.
d) Message handler works with the request field(s) and generates response field(s).
e) Message handler prepares a response message. It can make use of an encode_foo_resp() API, and doesn't have to perform the serialization of the response field(s) by itself.
f) The PLDM daemon sends the response message prepared at step e) to the remote PLDM device.
a) A BMC PLDM requester app prepares a PLDM request message. There would be several requester apps (based on functionality/PLDM remote device). Each of them needn't bother with the serialization of request field(s), and can instead make use of an encode_foo_req() API.
b) BMC requester app requests PLDM daemon to send the request message to remote PLDM device.
c) Once the PLDM daemon receives a corresponding response message, it notifies the requester app.
d) The requester app has to work with the response field(s). It can make use of a decode_foo_resp() API to deserialize the response message.
While PLDM Platform Descriptor Records (PDRs) are mostly static information, they can vary across platforms and systems. For this reason, platform specific PDR information is encoded in platform specific JSON files. JSON files must be named based on the PDR type number. For example a state effecter PDR JSON file will be named 11.json. The JSON files may also include information to enable additional processing (apart from PDR creation) for specific PDR types, for eg mapping an effecter id to a D-Bus object.
The PLDM responder implementation finds and parses PDR JSON files to create the PDR repository. Platform specific PDR modifications would likely just result in JSON updates. New PDR type support would require JSON updates as well as PDR generation code. The PDR generator is a map of PDR Type -> C++ lambda to create PDR entries for that type based on the JSON, and to update the central PDR repo.