add pflash
diff --git a/objects/pflash/ast-sf-ctrl.c b/objects/pflash/ast-sf-ctrl.c
new file mode 100644
index 0000000..b154682
--- /dev/null
+++ b/objects/pflash/ast-sf-ctrl.c
@@ -0,0 +1,830 @@
+#include <stdint.h>

+#include <stdbool.h>

+#include <stdlib.h>

+#include <errno.h>

+#include <stdio.h>

+#include <string.h>

+

+#include <libflash/libflash.h>

+#include <libflash/libflash-priv.h>

+

+#include "ast.h"

+

+#ifndef __unused

+#define __unused __attribute__((unused))

+#endif

+

+#define CALIBRATE_BUF_SIZE	16384

+

+struct ast_sf_ctrl {

+	/* We have 2 controllers, one for the BMC flash, one for the PNOR */

+	uint8_t			type;

+

+	/* Address and previous value of the ctrl register */

+	uint32_t		ctl_reg;

+

+	/* Control register value for normal commands */

+	uint32_t		ctl_val;

+

+	/* Control register value for (fast) reads */

+	uint32_t		ctl_read_val;

+

+	/* Flash read timing register  */

+	uint32_t		fread_timing_reg;

+	uint32_t		fread_timing_val;

+

+	/* Address of the flash mapping */

+	uint32_t		flash;

+

+	/* Current 4b mode */

+	bool			mode_4b;

+

+	/* Callbacks */

+	struct spi_flash_ctrl	ops;

+};

+

+static uint32_t ast_ahb_freq;

+

+static const uint32_t ast_ct_hclk_divs[] = {

+	0xf, /* HCLK */

+	0x7, /* HCLK/2 */

+	0xe, /* HCLK/3 */

+	0x6, /* HCLK/4 */

+	0xd, /* HCLK/5 */

+};

+

+static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)

+{

+	/* Switch to user mode, CE# dropped */

+	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

+

+	/* user mode, CE# active */

+	ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);

+

+	/* write cmd */

+	return ast_copy_to_ahb(ct->flash, &cmd, 1);

+}

+

+static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)

+{

+	/* clear CE# */

+	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

+

+	/* Switch back to read mode */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+}

+

+static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)

+{

+	const void *ap;

+

+	/* Layout address MSB first in memory */

+	addr = cpu_to_be32(addr);

+

+	/* Send the right amount of bytes */

+	ap = (char *)&addr;

+

+	if (ct->mode_4b)

+		return ast_copy_to_ahb(ct->flash, ap, 4);

+	else

+		return ast_copy_to_ahb(ct->flash, ap + 1, 3);

+}

+

+static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,

+			 bool has_addr, uint32_t addr, void *buffer,

+			 uint32_t size)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

+	int rc;

+

+	rc = ast_sf_start_cmd(ct, cmd);

+	if (rc)

+		goto bail;

+	if (has_addr) {

+		rc = ast_sf_send_addr(ct, addr);

+		if (rc)

+			goto bail;

+	}

+	if (buffer && size)

+		rc = ast_copy_from_ahb(buffer, ct->flash, size);

+ bail:

+	ast_sf_end_cmd(ct);

+	return rc;

+}

+

+static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,

+			 bool has_addr, uint32_t addr, const void *buffer,

+			 uint32_t size)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

+	int rc;

+

+	rc = ast_sf_start_cmd(ct, cmd);

+	if (rc)

+		goto bail;

+	if (has_addr) {

+		rc = ast_sf_send_addr(ct, addr);

+		if (rc)

+			goto bail;

+	}

+	if (buffer && size)

+		rc = ast_copy_to_ahb(ct->flash, buffer, size);

+ bail:

+	ast_sf_end_cmd(ct);

+	return rc;

+}

+

+static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

+

+	if (ct->type != AST_SF_TYPE_PNOR)

+		return enable ? FLASH_ERR_4B_NOT_SUPPORTED : 0;

+

+	/*

+	 * We update the "old" value as well since when quitting

+	 * we don't restore the mode of the flash itself so we need

+	 * to leave the controller in a compatible setup

+	 */

+	if (enable) {

+		ct->ctl_val |= 0x2000;

+		ct->ctl_read_val |= 0x2000;

+	} else {

+		ct->ctl_val &= ~0x2000;

+		ct->ctl_read_val &= ~0x2000;

+	}

+	ct->mode_4b = enable;

+

+	/* Update read mode */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	return 0;

+}

+

+static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,

+		       void *buf, uint32_t len)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

+

+	/*

+	 * We are in read mode by default. We don't yet support fancy

+	 * things like fast read or X2 mode

+	 */

+	return ast_copy_from_ahb(buf, ct->flash + pos, len);

+}

+

+static void ast_get_ahb_freq(void)

+{

+	static const uint32_t cpu_freqs_24_48[] = {

+		384000000,

+		360000000,

+		336000000,

+		408000000

+	};

+	static const uint32_t cpu_freqs_25[] = {

+		400000000,

+		375000000,

+		350000000,

+		425000000

+	};

+	static const uint32_t ahb_div[] = { 1, 2, 4, 3 };

+	uint32_t strap, cpu_clk, div;

+

+	if (ast_ahb_freq)

+		return;

+

+	/* HW strapping gives us the CPU freq and AHB divisor */

+	strap = ast_ahb_readl(SCU_HW_STRAPPING);

+	if (strap & 0x00800000) {

+		FL_DBG("AST: CLKIN 25Mhz\n");

+		cpu_clk = cpu_freqs_25[(strap >> 8) & 3];

+	} else {

+		FL_DBG("AST: CLKIN 24/48Mhz\n");

+		cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];

+	}

+	FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);

+	div = ahb_div[(strap >> 10) & 3];

+	ast_ahb_freq = cpu_clk / div;

+	FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);

+}

+

+static int ast_sf_check_reads(struct ast_sf_ctrl *ct,

+			      const uint8_t *golden_buf, uint8_t *test_buf)

+{

+	int i, rc;

+

+	for (i = 0; i < 10; i++) {

+		rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);

+		if (rc)

+			return rc;

+		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)

+			return FLASH_ERR_VERIFY_FAILURE;

+	}

+	return 0;

+}

+

+static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,

+				  const uint8_t *golden_buf, uint8_t *test_buf)

+{

+	int i, rc;

+	int good_pass = -1, pass_count = 0;

+	uint32_t shift = (hdiv - 1) << 2;

+	uint32_t mask = ~(0xfu << shift);

+

+#define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))

+

+	/* Try HCLK delay 0..5, each one with/without delay and look for a

+	 * good pair.

+	 */

+	for (i = 0; i < 12; i++) {

+		bool pass;

+

+		ct->fread_timing_val &= mask;

+		ct->fread_timing_val |= FREAD_TPASS(i) << shift;

+		ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

+		rc = ast_sf_check_reads(ct, golden_buf, test_buf);

+		if (rc && rc != FLASH_ERR_VERIFY_FAILURE)

+			return rc;

+		pass = (rc == 0);

+		FL_DBG("  * [%08x] %d HCLK delay, %dns DI delay : %s\n",

+		       ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");

+		if (pass) {

+			pass_count++;

+			if (pass_count == 3) {

+				good_pass = i - 1;

+				break;

+			}

+		} else

+			pass_count = 0;

+	}

+

+	/* No good setting for this frequency */

+	if (good_pass < 0)

+		return FLASH_ERR_VERIFY_FAILURE;

+

+	/* We have at least one pass of margin, let's use first pass */

+	ct->fread_timing_val &= mask;

+	ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;

+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

+	FL_DBG("AST:  * -> good is pass %d [0x%08x]\n",

+	       good_pass, ct->fread_timing_val);

+	return 0;

+}

+

+static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)

+{

+	const uint32_t *tb32 = (const uint32_t *)test_buf;

+	uint32_t i, cnt = 0;

+

+	/* We check if we have enough words that are neither all 0

+	 * nor all 1's so the calibration can be considered valid.

+	 *

+	 * I use an arbitrary threshold for now of 64

+	 */

+	size >>= 2;

+	for (i = 0; i < size; i++) {

+		if (tb32[i] != 0 && tb32[i] != 0xffffffff)

+			cnt++;

+	}

+	return cnt >= 64;

+}

+

+static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct, struct flash_info *info,

+				 uint32_t max_freq)

+{

+	uint8_t *golden_buf, *test_buf;

+	int i, rc, best_div = -1;

+	uint32_t save_read_val = ct->ctl_read_val;

+

+	test_buf = malloc(CALIBRATE_BUF_SIZE * 2);

+	golden_buf = test_buf + CALIBRATE_BUF_SIZE;

+

+	/* We start with the dumbest setting and read some data */

+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x00 << 24) | /* CE# max */

+		(0x03 << 16) | /* use normal reads */

+		(0x00 <<  8) | /* HCLK/16 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);        /* normal read */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);

+	if (rc) {

+		free(test_buf);

+		return rc;

+	}

+

+	/* Establish our read mode with freq field set to 0 */

+	ct->ctl_read_val = save_read_val & 0xfffff0ff;

+

+	/* Check if calibration data is suitable */

+	if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {

+		FL_INF("AST: Calibration area too uniform, "

+		       "using low speed\n");

+		ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+		free(test_buf);

+		return 0;

+	}

+

+	/* Now we iterate the HCLK dividers until we find our breaking point */

+	for (i = 5; i > 0; i--) {

+		uint32_t tv, freq;

+

+		/* Compare timing to max */

+		freq = ast_ahb_freq / i;

+		if (freq >= max_freq)

+			continue;

+

+		/* Set the timing */

+		tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);

+		ast_ahb_writel(tv, ct->ctl_reg);

+		FL_DBG("AST: Trying HCLK/%d...\n", i);

+		rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);

+

+		/* Some other error occurred, bail out */

+		if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {

+			free(test_buf);

+			return rc;

+		}

+		if (rc == 0)

+			best_div = i;

+	}

+	free(test_buf);

+

+	/* Nothing found ? */

+	if (best_div < 0)

+		FL_ERR("AST: No good frequency, using dumb slow\n");

+	else {

+		FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);

+		ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);

+	}

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	return 0;

+}

+

+static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)

+{

+	int i;

+

+	/* It appears that running commands at HCLK/2 on some micron

+	 * chips results in occasionally reads of bogus status (that

+	 * or unrelated chip hangs).

+	 *

+	 * Since we cannot calibrate properly the reads for commands,

+	 * instead, let's limit our SPI frequency to HCLK/4 to stay

+	 * on the safe side of things

+	 */

+#define MIN_CMD_FREQ	4

+	for (i = MIN_CMD_FREQ; i <= 5; i++) {

+		uint32_t freq = ast_ahb_freq / i;

+		if (freq >= max_freq)

+			continue;

+		*ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);

+		return i;

+	}

+	return 0;

+}

+

+static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)

+{

+	int rc, div;

+	uint8_t srcr[2];

+

+	/*

+	 * Those Macronix chips support dual reads at 104Mhz

+	 * and dual IO at 84Mhz with 4 dummies.

+	 *

+	 * Our calibration algo should give us something along

+	 * the lines of HCLK/3 (HCLK/2 seems to work sometimes

+	 * but appears to be fairly unreliable) which is 64Mhz

+	 *

+	 * So we chose dual IO mode.

+	 *

+	 * The CE# inactive width for reads must be 7ns, we set it

+	 * to 3T which is about 15ns at the fastest speed we support

+	 * HCLK/2) as I've had issue with smaller values.

+	 *

+	 * For write and program it's 30ns so let's set the value

+	 * for normal ops to 6T.

+	 *

+	 * Preserve the current 4b mode.

+	 */

+	FL_DBG("AST: Setting up Macronix...\n");

+

+	/*

+	 * Read the status and config registers

+	 */

+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to read status\n");

+		return rc;

+	}

+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to read configuration\n");

+		return rc;

+	}

+

+	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

+

+	/* Switch to 8 dummy cycles to enable 104Mhz operations */

+	srcr[1] = (srcr[1] & 0x3f) | 0x80;

+

+	rc = fl_wren(&ct->ops);

+	if (rc) {

+		FL_ERR("AST: Failed to WREN for Macronix config\n");

+		return rc;

+	}

+

+	rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to write Macronix config\n");

+		return rc;

+	}

+	rc = fl_sync_wait_idle(&ct->ops);;

+	if (rc != 0) {

+		FL_ERR("AST: Failed waiting for config write\n");

+		return rc;

+	}

+

+	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

+

+	/* Use 2READ */

+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

+		(0x03 << 28) | /* Dual IO */

+		(0x0d << 24) | /* CE# width 3T */

+		(0xbb << 16) | /* 2READ command */

+		(0x00 <<  8) | /* HCLK/16 (optimize later) */

+		(0x02 <<  6) | /* 2 bytes dummy cycle (8 clocks) */

+		(0x01);	       /* fast read */

+

+	/* Configure SPI flash read timing */

+	rc = ast_sf_optimize_reads(ct, info, 104000000);

+	if (rc) {

+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

+		return rc;

+	}

+

+	/*

+	 * For other commands and writes also increase the SPI clock

+	 * to HCLK/2 since the chip supports up to 133Mhz and set

+	 * CE# inactive to 6T. We request a timing that is 20% below

+	 * the limit of the chip, so about 106Mhz which should fit.

+	 */

+	ct->ctl_val = (ct->ctl_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x0a << 24) | /* CE# width 6T (b1010) */

+		(0x00 << 16) | /* no command */

+		(0x00 <<  8) | /* HCLK/16 (done later) */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);	       /* normal read */

+

+	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);

+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

+

+	/* Update chip with current read config */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+	return 0;

+}

+

+static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)

+{

+	int rc, div;

+

+	FL_DBG("AST: Setting up Windbond...\n");

+

+	/*

+	 * This Windbond chip support dual reads at 104Mhz

+	 * with 8 dummy cycles.

+	 *

+	 * The CE# inactive width for reads must be 10ns, we set it

+	 * to 3T which is about 15.6ns.

+	 */

+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

+		(0x02 << 28) | /* Dual bit data only */

+		(0x0e << 24) | /* CE# width 2T (b1110) */

+		(0x3b << 16) | /* DREAD command */

+		(0x00 <<  8) | /* HCLK/16 */

+		(0x01 <<  6) | /* 1-byte dummy cycle */

+		(0x01);	       /* fast read */

+

+	/* Configure SPI flash read timing */

+	rc = ast_sf_optimize_reads(ct, info, 104000000);

+	if (rc) {

+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

+		return rc;

+	}

+

+	/*

+	 * For other commands and writes also increase the SPI clock

+	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive

+	 * for write and erase is 50ns so let's set it to 10T.

+	 */

+	ct->ctl_val = (ct->ctl_read_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x06 << 24) | /* CE# width 10T (b0110) */

+		(0x00 << 16) | /* no command */

+		(0x00 <<  8) | /* HCLK/16 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x01);	       /* fast read */

+

+	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);

+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

+

+	/* Update chip with current read config */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+	return 0;

+}

+

+static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)

+{

+	uint8_t	vconf, ext_id[6];

+	int rc, div;

+

+	FL_DBG("AST: Setting up Micron...\n");

+

+	/*

+	 * Read the extended chip ID to try to detect old vs. new

+	 * flashes since old Micron flashes have a lot of issues

+	 */

+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");

+		return 0;

+	}

+	/* Check ID matches expectations */

+	if (ext_id[0] != ((info->id >> 16) & 0xff) ||

+	    ext_id[1] != ((info->id >>  8) & 0xff) ||

+	    ext_id[2] != ((info->id      ) & 0xff)) {

+		FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");

+		return 0;

+	}

+	FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);

+

+	/* Check for old (<45nm) chips, don't try to be fancy on those */

+	if (!(ext_id[4] & 0x40)) {

+		FL_DBG("AST: Old chip, using dumb timings\n");

+		goto dumb;

+	}

+

+	/*

+	 * Read the micron specific volatile configuration reg

+	 */

+	rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");

+		goto dumb;

+	}

+	FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);

+

+	/* Switch to 8 dummy cycles (we might be able to operate with 4

+	 * but let's keep some margin

+	 */

+	vconf = (vconf & 0x0f) | 0x80;

+

+	rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);

+	if (rc != 0) {

+		FL_ERR("AST: Failed to write Micron vconf, "

+		       " sticking to dumb speed\n");

+		goto dumb;

+	}

+	rc = fl_sync_wait_idle(&ct->ops);;

+	if (rc != 0) {

+		FL_ERR("AST: Failed waiting for config write\n");

+		return rc;

+	}

+	FL_DBG("AST: Updated to  : 0x%02x\n", vconf);

+

+	/*

+	 * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz

+	 *

+	 * The CE# inactive width for reads must be 20ns, we set it

+	 * to 4T which is about 20.8ns.

+	 */

+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

+		(0x03 << 28) | /* Single bit */

+		(0x0c << 24) | /* CE# 4T */

+		(0xbb << 16) | /* 2READ command */

+		(0x00 <<  8) | /* HCLK/16 (optimize later) */

+		(0x02 <<  6) | /* 8 dummy cycles (2 bytes) */

+		(0x01);	       /* fast read */

+

+	/* Configure SPI flash read timing */

+	rc = ast_sf_optimize_reads(ct, info, 133000000);

+	if (rc) {

+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

+		return rc;

+	}

+

+	/*

+	 * For other commands and writes also increase the SPI clock

+	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive

+	 * for write and erase is 50ns so let's set it to 10T.

+	 */

+	ct->ctl_val = (ct->ctl_read_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x06 << 24) | /* CE# width 10T (b0110) */

+		(0x00 << 16) | /* no command */

+		(0x00 <<  8) | /* HCLK/16 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);	       /* norm read */

+

+	div = ast_sf_get_hclk(&ct->ctl_val, 133000000);

+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

+

+	/* Update chip with current read config */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	return 0;

+

+ dumb:

+	ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x00 << 24) | /* CE# max */

+		(0x03 << 16) | /* use normal reads */

+		(0x06 <<  8) | /* HCLK/4 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);	       /* normal read */

+

+	/* Update chip with current read config */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	return 0;

+}

+

+static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);	

+	struct flash_info *info = ctrl->finfo;

+

+	(void)tsize;

+

+	/*

+	 * Configure better timings and read mode for known

+	 * flash chips

+	 */

+	switch(info->id) {		

+	case 0xc22019: /* MX25L25635F */

+	case 0xc2201a: /* MX66L51235F */

+		return ast_sf_setup_macronix(ct, info);

+	case 0xef4018: /* W25Q128BV */

+		return ast_sf_setup_winbond(ct, info);

+	case 0x20ba20: /* MT25Qx512xx */

+		return ast_sf_setup_micron(ct, info);

+	}

+	/* No special tuning */

+	return 0;

+}

+

+static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)

+{

+	uint32_t reg;

+

+	ct->ctl_reg = PNOR_SPI_FCTL_CTRL;

+	ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;

+	ct->flash = PNOR_FLASH_BASE;

+

+	/* Enable writing to the controller */

+	reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);

+	if (reg == 0xffffffff) {

+		FL_ERR("AST_SF: Failed read from controller config\n");

+		return false;

+	}

+	ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);

+

+	/*

+	 * Snapshot control reg and sanitize it for our

+	 * use, switching to 1-bit mode, clearing user

+	 * mode if set, etc...

+	 *

+	 * Also configure SPI clock to something safe

+	 * like HCLK/8 (24Mhz)

+	 */

+	ct->ctl_val = ast_ahb_readl(ct->ctl_reg);

+	if (ct->ctl_val == 0xffffffff) {

+		FL_ERR("AST_SF: Failed read from controller control\n");

+		return false;

+	}

+

+	ct->ctl_val = (ct->ctl_val & 0x2000) |

+		(0x00 << 28) | /* Single bit */

+		(0x00 << 24) | /* CE# width 16T */

+		(0x00 << 16) | /* no command */

+		(0x04 <<  8) | /* HCLK/8 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);	       /* normal read */

+

+	/* Initial read mode is default */

+	ct->ctl_read_val = ct->ctl_val;

+

+	/* Initial read timings all 0 */

+	ct->fread_timing_val = 0;

+

+	/* Configure for read */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

+

+	if (ct->ctl_val & 0x2000)

+		ct->mode_4b = true;

+	else

+		ct->mode_4b = false;

+

+	return true;

+}

+

+static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)

+{

+	ct->ctl_reg = BMC_SPI_FCTL_CTRL;

+	ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;

+	ct->flash = BMC_FLASH_BASE;

+

+	/*

+	 * Snapshot control reg and sanitize it for our

+	 * use, switching to 1-bit mode, clearing user

+	 * mode if set, etc...

+	 *

+	 * Also configure SPI clock to something safe

+	 * like HCLK/8 (24Mhz)

+	 */

+	ct->ctl_val =

+		(0x00 << 28) | /* Single bit */

+		(0x00 << 24) | /* CE# width 16T */

+		(0x00 << 16) | /* no command */

+		(0x04 <<  8) | /* HCLK/8 */

+		(0x00 <<  6) | /* no dummy cycle */

+		(0x00);	       /* normal read */

+

+	/* Initial read mode is default */

+	ct->ctl_read_val = ct->ctl_val;

+

+	/* Initial read timings all 0 */

+	ct->fread_timing_val = 0;

+

+	/* Configure for read */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

+

+	ct->mode_4b = false;

+

+	return true;

+}

+

+int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)

+{

+	struct ast_sf_ctrl *ct;

+

+	if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC)

+		return -EINVAL;

+

+	*ctrl = NULL;

+	ct = malloc(sizeof(*ct));

+	if (!ct) {

+		FL_ERR("AST_SF: Failed to allocate\n");

+		return -ENOMEM;

+	}

+	memset(ct, 0, sizeof(*ct));

+	ct->type = type;

+	ct->ops.cmd_wr = ast_sf_cmd_wr;

+	ct->ops.cmd_rd = ast_sf_cmd_rd;

+	ct->ops.set_4b = ast_sf_set_4b;

+	ct->ops.read = ast_sf_read;

+	ct->ops.setup = ast_sf_setup;

+

+	ast_get_ahb_freq();

+

+	if (type == AST_SF_TYPE_PNOR) {

+		if (!ast_sf_init_pnor(ct))

+			goto fail;

+	} else {

+		if (!ast_sf_init_bmc(ct))

+			goto fail;

+	}

+

+	*ctrl = &ct->ops;

+

+	return 0;

+ fail:

+	free(ct);

+	return -EIO;

+}

+

+void ast_sf_close(struct spi_flash_ctrl *ctrl)

+{

+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

+

+	/* Restore control reg to read */

+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

+

+	/* Additional cleanup */

+	if (ct->type == AST_SF_TYPE_PNOR) {

+		uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);

+		if (reg != 0xffffffff)

+			ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);

+	}

+

+	/* Free the whole lot */

+	free(ct);

+}

+