add bmc flash capability
diff --git a/objects/pflash/ast-sf-ctrl.c b/objects/pflash/ast-sf-ctrl.c
index b154682..bf5d372 100644
--- a/objects/pflash/ast-sf-ctrl.c
+++ b/objects/pflash/ast-sf-ctrl.c
@@ -1,830 +1,923 @@
-#include <stdint.h>

-#include <stdbool.h>

-#include <stdlib.h>

-#include <errno.h>

-#include <stdio.h>

-#include <string.h>

-

-#include <libflash/libflash.h>

-#include <libflash/libflash-priv.h>

-

-#include "ast.h"

-

-#ifndef __unused

-#define __unused __attribute__((unused))

-#endif

-

-#define CALIBRATE_BUF_SIZE	16384

-

-struct ast_sf_ctrl {

-	/* We have 2 controllers, one for the BMC flash, one for the PNOR */

-	uint8_t			type;

-

-	/* Address and previous value of the ctrl register */

-	uint32_t		ctl_reg;

-

-	/* Control register value for normal commands */

-	uint32_t		ctl_val;

-

-	/* Control register value for (fast) reads */

-	uint32_t		ctl_read_val;

-

-	/* Flash read timing register  */

-	uint32_t		fread_timing_reg;

-	uint32_t		fread_timing_val;

-

-	/* Address of the flash mapping */

-	uint32_t		flash;

-

-	/* Current 4b mode */

-	bool			mode_4b;

-

-	/* Callbacks */

-	struct spi_flash_ctrl	ops;

-};

-

-static uint32_t ast_ahb_freq;

-

-static const uint32_t ast_ct_hclk_divs[] = {

-	0xf, /* HCLK */

-	0x7, /* HCLK/2 */

-	0xe, /* HCLK/3 */

-	0x6, /* HCLK/4 */

-	0xd, /* HCLK/5 */

-};

-

-static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)

-{

-	/* Switch to user mode, CE# dropped */

-	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

-

-	/* user mode, CE# active */

-	ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);

-

-	/* write cmd */

-	return ast_copy_to_ahb(ct->flash, &cmd, 1);

-}

-

-static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)

-{

-	/* clear CE# */

-	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

-

-	/* Switch back to read mode */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-}

-

-static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)

-{

-	const void *ap;

-

-	/* Layout address MSB first in memory */

-	addr = cpu_to_be32(addr);

-

-	/* Send the right amount of bytes */

-	ap = (char *)&addr;

-

-	if (ct->mode_4b)

-		return ast_copy_to_ahb(ct->flash, ap, 4);

-	else

-		return ast_copy_to_ahb(ct->flash, ap + 1, 3);

-}

-

-static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,

-			 bool has_addr, uint32_t addr, void *buffer,

-			 uint32_t size)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

-	int rc;

-

-	rc = ast_sf_start_cmd(ct, cmd);

-	if (rc)

-		goto bail;

-	if (has_addr) {

-		rc = ast_sf_send_addr(ct, addr);

-		if (rc)

-			goto bail;

-	}

-	if (buffer && size)

-		rc = ast_copy_from_ahb(buffer, ct->flash, size);

- bail:

-	ast_sf_end_cmd(ct);

-	return rc;

-}

-

-static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,

-			 bool has_addr, uint32_t addr, const void *buffer,

-			 uint32_t size)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

-	int rc;

-

-	rc = ast_sf_start_cmd(ct, cmd);

-	if (rc)

-		goto bail;

-	if (has_addr) {

-		rc = ast_sf_send_addr(ct, addr);

-		if (rc)

-			goto bail;

-	}

-	if (buffer && size)

-		rc = ast_copy_to_ahb(ct->flash, buffer, size);

- bail:

-	ast_sf_end_cmd(ct);

-	return rc;

-}

-

-static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

-

-	if (ct->type != AST_SF_TYPE_PNOR)

-		return enable ? FLASH_ERR_4B_NOT_SUPPORTED : 0;

-

-	/*

-	 * We update the "old" value as well since when quitting

-	 * we don't restore the mode of the flash itself so we need

-	 * to leave the controller in a compatible setup

-	 */

-	if (enable) {

-		ct->ctl_val |= 0x2000;

-		ct->ctl_read_val |= 0x2000;

-	} else {

-		ct->ctl_val &= ~0x2000;

-		ct->ctl_read_val &= ~0x2000;

-	}

-	ct->mode_4b = enable;

-

-	/* Update read mode */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	return 0;

-}

-

-static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,

-		       void *buf, uint32_t len)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

-

-	/*

-	 * We are in read mode by default. We don't yet support fancy

-	 * things like fast read or X2 mode

-	 */

-	return ast_copy_from_ahb(buf, ct->flash + pos, len);

-}

-

-static void ast_get_ahb_freq(void)

-{

-	static const uint32_t cpu_freqs_24_48[] = {

-		384000000,

-		360000000,

-		336000000,

-		408000000

-	};

-	static const uint32_t cpu_freqs_25[] = {

-		400000000,

-		375000000,

-		350000000,

-		425000000

-	};

-	static const uint32_t ahb_div[] = { 1, 2, 4, 3 };

-	uint32_t strap, cpu_clk, div;

-

-	if (ast_ahb_freq)

-		return;

-

-	/* HW strapping gives us the CPU freq and AHB divisor */

-	strap = ast_ahb_readl(SCU_HW_STRAPPING);

-	if (strap & 0x00800000) {

-		FL_DBG("AST: CLKIN 25Mhz\n");

-		cpu_clk = cpu_freqs_25[(strap >> 8) & 3];

-	} else {

-		FL_DBG("AST: CLKIN 24/48Mhz\n");

-		cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];

-	}

-	FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);

-	div = ahb_div[(strap >> 10) & 3];

-	ast_ahb_freq = cpu_clk / div;

-	FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);

-}

-

-static int ast_sf_check_reads(struct ast_sf_ctrl *ct,

-			      const uint8_t *golden_buf, uint8_t *test_buf)

-{

-	int i, rc;

-

-	for (i = 0; i < 10; i++) {

-		rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);

-		if (rc)

-			return rc;

-		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)

-			return FLASH_ERR_VERIFY_FAILURE;

-	}

-	return 0;

-}

-

-static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,

-				  const uint8_t *golden_buf, uint8_t *test_buf)

-{

-	int i, rc;

-	int good_pass = -1, pass_count = 0;

-	uint32_t shift = (hdiv - 1) << 2;

-	uint32_t mask = ~(0xfu << shift);

-

-#define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))

-

-	/* Try HCLK delay 0..5, each one with/without delay and look for a

-	 * good pair.

-	 */

-	for (i = 0; i < 12; i++) {

-		bool pass;

-

-		ct->fread_timing_val &= mask;

-		ct->fread_timing_val |= FREAD_TPASS(i) << shift;

-		ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

-		rc = ast_sf_check_reads(ct, golden_buf, test_buf);

-		if (rc && rc != FLASH_ERR_VERIFY_FAILURE)

-			return rc;

-		pass = (rc == 0);

-		FL_DBG("  * [%08x] %d HCLK delay, %dns DI delay : %s\n",

-		       ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");

-		if (pass) {

-			pass_count++;

-			if (pass_count == 3) {

-				good_pass = i - 1;

-				break;

-			}

-		} else

-			pass_count = 0;

-	}

-

-	/* No good setting for this frequency */

-	if (good_pass < 0)

-		return FLASH_ERR_VERIFY_FAILURE;

-

-	/* We have at least one pass of margin, let's use first pass */

-	ct->fread_timing_val &= mask;

-	ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;

-	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

-	FL_DBG("AST:  * -> good is pass %d [0x%08x]\n",

-	       good_pass, ct->fread_timing_val);

-	return 0;

-}

-

-static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)

-{

-	const uint32_t *tb32 = (const uint32_t *)test_buf;

-	uint32_t i, cnt = 0;

-

-	/* We check if we have enough words that are neither all 0

-	 * nor all 1's so the calibration can be considered valid.

-	 *

-	 * I use an arbitrary threshold for now of 64

-	 */

-	size >>= 2;

-	for (i = 0; i < size; i++) {

-		if (tb32[i] != 0 && tb32[i] != 0xffffffff)

-			cnt++;

-	}

-	return cnt >= 64;

-}

-

-static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct, struct flash_info *info,

-				 uint32_t max_freq)

-{

-	uint8_t *golden_buf, *test_buf;

-	int i, rc, best_div = -1;

-	uint32_t save_read_val = ct->ctl_read_val;

-

-	test_buf = malloc(CALIBRATE_BUF_SIZE * 2);

-	golden_buf = test_buf + CALIBRATE_BUF_SIZE;

-

-	/* We start with the dumbest setting and read some data */

-	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x00 << 24) | /* CE# max */

-		(0x03 << 16) | /* use normal reads */

-		(0x00 <<  8) | /* HCLK/16 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);        /* normal read */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);

-	if (rc) {

-		free(test_buf);

-		return rc;

-	}

-

-	/* Establish our read mode with freq field set to 0 */

-	ct->ctl_read_val = save_read_val & 0xfffff0ff;

-

-	/* Check if calibration data is suitable */

-	if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {

-		FL_INF("AST: Calibration area too uniform, "

-		       "using low speed\n");

-		ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-		free(test_buf);

-		return 0;

-	}

-

-	/* Now we iterate the HCLK dividers until we find our breaking point */

-	for (i = 5; i > 0; i--) {

-		uint32_t tv, freq;

-

-		/* Compare timing to max */

-		freq = ast_ahb_freq / i;

-		if (freq >= max_freq)

-			continue;

-

-		/* Set the timing */

-		tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);

-		ast_ahb_writel(tv, ct->ctl_reg);

-		FL_DBG("AST: Trying HCLK/%d...\n", i);

-		rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);

-

-		/* Some other error occurred, bail out */

-		if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {

-			free(test_buf);

-			return rc;

-		}

-		if (rc == 0)

-			best_div = i;

-	}

-	free(test_buf);

-

-	/* Nothing found ? */

-	if (best_div < 0)

-		FL_ERR("AST: No good frequency, using dumb slow\n");

-	else {

-		FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);

-		ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);

-	}

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	return 0;

-}

-

-static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)

-{

-	int i;

-

-	/* It appears that running commands at HCLK/2 on some micron

-	 * chips results in occasionally reads of bogus status (that

-	 * or unrelated chip hangs).

-	 *

-	 * Since we cannot calibrate properly the reads for commands,

-	 * instead, let's limit our SPI frequency to HCLK/4 to stay

-	 * on the safe side of things

-	 */

-#define MIN_CMD_FREQ	4

-	for (i = MIN_CMD_FREQ; i <= 5; i++) {

-		uint32_t freq = ast_ahb_freq / i;

-		if (freq >= max_freq)

-			continue;

-		*ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);

-		return i;

-	}

-	return 0;

-}

-

-static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)

-{

-	int rc, div;

-	uint8_t srcr[2];

-

-	/*

-	 * Those Macronix chips support dual reads at 104Mhz

-	 * and dual IO at 84Mhz with 4 dummies.

-	 *

-	 * Our calibration algo should give us something along

-	 * the lines of HCLK/3 (HCLK/2 seems to work sometimes

-	 * but appears to be fairly unreliable) which is 64Mhz

-	 *

-	 * So we chose dual IO mode.

-	 *

-	 * The CE# inactive width for reads must be 7ns, we set it

-	 * to 3T which is about 15ns at the fastest speed we support

-	 * HCLK/2) as I've had issue with smaller values.

-	 *

-	 * For write and program it's 30ns so let's set the value

-	 * for normal ops to 6T.

-	 *

-	 * Preserve the current 4b mode.

-	 */

-	FL_DBG("AST: Setting up Macronix...\n");

-

-	/*

-	 * Read the status and config registers

-	 */

-	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to read status\n");

-		return rc;

-	}

-	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to read configuration\n");

-		return rc;

-	}

-

-	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

-

-	/* Switch to 8 dummy cycles to enable 104Mhz operations */

-	srcr[1] = (srcr[1] & 0x3f) | 0x80;

-

-	rc = fl_wren(&ct->ops);

-	if (rc) {

-		FL_ERR("AST: Failed to WREN for Macronix config\n");

-		return rc;

-	}

-

-	rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to write Macronix config\n");

-		return rc;

-	}

-	rc = fl_sync_wait_idle(&ct->ops);;

-	if (rc != 0) {

-		FL_ERR("AST: Failed waiting for config write\n");

-		return rc;

-	}

-

-	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

-

-	/* Use 2READ */

-	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

-		(0x03 << 28) | /* Dual IO */

-		(0x0d << 24) | /* CE# width 3T */

-		(0xbb << 16) | /* 2READ command */

-		(0x00 <<  8) | /* HCLK/16 (optimize later) */

-		(0x02 <<  6) | /* 2 bytes dummy cycle (8 clocks) */

-		(0x01);	       /* fast read */

-

-	/* Configure SPI flash read timing */

-	rc = ast_sf_optimize_reads(ct, info, 104000000);

-	if (rc) {

-		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

-		return rc;

-	}

-

-	/*

-	 * For other commands and writes also increase the SPI clock

-	 * to HCLK/2 since the chip supports up to 133Mhz and set

-	 * CE# inactive to 6T. We request a timing that is 20% below

-	 * the limit of the chip, so about 106Mhz which should fit.

-	 */

-	ct->ctl_val = (ct->ctl_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x0a << 24) | /* CE# width 6T (b1010) */

-		(0x00 << 16) | /* no command */

-		(0x00 <<  8) | /* HCLK/16 (done later) */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);	       /* normal read */

-

-	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);

-	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

-

-	/* Update chip with current read config */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-	return 0;

-}

-

-static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)

-{

-	int rc, div;

-

-	FL_DBG("AST: Setting up Windbond...\n");

-

-	/*

-	 * This Windbond chip support dual reads at 104Mhz

-	 * with 8 dummy cycles.

-	 *

-	 * The CE# inactive width for reads must be 10ns, we set it

-	 * to 3T which is about 15.6ns.

-	 */

-	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

-		(0x02 << 28) | /* Dual bit data only */

-		(0x0e << 24) | /* CE# width 2T (b1110) */

-		(0x3b << 16) | /* DREAD command */

-		(0x00 <<  8) | /* HCLK/16 */

-		(0x01 <<  6) | /* 1-byte dummy cycle */

-		(0x01);	       /* fast read */

-

-	/* Configure SPI flash read timing */

-	rc = ast_sf_optimize_reads(ct, info, 104000000);

-	if (rc) {

-		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

-		return rc;

-	}

-

-	/*

-	 * For other commands and writes also increase the SPI clock

-	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive

-	 * for write and erase is 50ns so let's set it to 10T.

-	 */

-	ct->ctl_val = (ct->ctl_read_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x06 << 24) | /* CE# width 10T (b0110) */

-		(0x00 << 16) | /* no command */

-		(0x00 <<  8) | /* HCLK/16 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x01);	       /* fast read */

-

-	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);

-	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

-

-	/* Update chip with current read config */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-	return 0;

-}

-

-static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)

-{

-	uint8_t	vconf, ext_id[6];

-	int rc, div;

-

-	FL_DBG("AST: Setting up Micron...\n");

-

-	/*

-	 * Read the extended chip ID to try to detect old vs. new

-	 * flashes since old Micron flashes have a lot of issues

-	 */

-	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");

-		return 0;

-	}

-	/* Check ID matches expectations */

-	if (ext_id[0] != ((info->id >> 16) & 0xff) ||

-	    ext_id[1] != ((info->id >>  8) & 0xff) ||

-	    ext_id[2] != ((info->id      ) & 0xff)) {

-		FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");

-		return 0;

-	}

-	FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);

-

-	/* Check for old (<45nm) chips, don't try to be fancy on those */

-	if (!(ext_id[4] & 0x40)) {

-		FL_DBG("AST: Old chip, using dumb timings\n");

-		goto dumb;

-	}

-

-	/*

-	 * Read the micron specific volatile configuration reg

-	 */

-	rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");

-		goto dumb;

-	}

-	FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);

-

-	/* Switch to 8 dummy cycles (we might be able to operate with 4

-	 * but let's keep some margin

-	 */

-	vconf = (vconf & 0x0f) | 0x80;

-

-	rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);

-	if (rc != 0) {

-		FL_ERR("AST: Failed to write Micron vconf, "

-		       " sticking to dumb speed\n");

-		goto dumb;

-	}

-	rc = fl_sync_wait_idle(&ct->ops);;

-	if (rc != 0) {

-		FL_ERR("AST: Failed waiting for config write\n");

-		return rc;

-	}

-	FL_DBG("AST: Updated to  : 0x%02x\n", vconf);

-

-	/*

-	 * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz

-	 *

-	 * The CE# inactive width for reads must be 20ns, we set it

-	 * to 4T which is about 20.8ns.

-	 */

-	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

-		(0x03 << 28) | /* Single bit */

-		(0x0c << 24) | /* CE# 4T */

-		(0xbb << 16) | /* 2READ command */

-		(0x00 <<  8) | /* HCLK/16 (optimize later) */

-		(0x02 <<  6) | /* 8 dummy cycles (2 bytes) */

-		(0x01);	       /* fast read */

-

-	/* Configure SPI flash read timing */

-	rc = ast_sf_optimize_reads(ct, info, 133000000);

-	if (rc) {

-		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);

-		return rc;

-	}

-

-	/*

-	 * For other commands and writes also increase the SPI clock

-	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive

-	 * for write and erase is 50ns so let's set it to 10T.

-	 */

-	ct->ctl_val = (ct->ctl_read_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x06 << 24) | /* CE# width 10T (b0110) */

-		(0x00 << 16) | /* no command */

-		(0x00 <<  8) | /* HCLK/16 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);	       /* norm read */

-

-	div = ast_sf_get_hclk(&ct->ctl_val, 133000000);

-	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

-

-	/* Update chip with current read config */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	return 0;

-

- dumb:

-	ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x00 << 24) | /* CE# max */

-		(0x03 << 16) | /* use normal reads */

-		(0x06 <<  8) | /* HCLK/4 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);	       /* normal read */

-

-	/* Update chip with current read config */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	return 0;

-}

-

-static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);	

-	struct flash_info *info = ctrl->finfo;

-

-	(void)tsize;

-

-	/*

-	 * Configure better timings and read mode for known

-	 * flash chips

-	 */

-	switch(info->id) {		

-	case 0xc22019: /* MX25L25635F */

-	case 0xc2201a: /* MX66L51235F */

-		return ast_sf_setup_macronix(ct, info);

-	case 0xef4018: /* W25Q128BV */

-		return ast_sf_setup_winbond(ct, info);

-	case 0x20ba20: /* MT25Qx512xx */

-		return ast_sf_setup_micron(ct, info);

-	}

-	/* No special tuning */

-	return 0;

-}

-

-static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)

-{

-	uint32_t reg;

-

-	ct->ctl_reg = PNOR_SPI_FCTL_CTRL;

-	ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;

-	ct->flash = PNOR_FLASH_BASE;

-

-	/* Enable writing to the controller */

-	reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);

-	if (reg == 0xffffffff) {

-		FL_ERR("AST_SF: Failed read from controller config\n");

-		return false;

-	}

-	ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);

-

-	/*

-	 * Snapshot control reg and sanitize it for our

-	 * use, switching to 1-bit mode, clearing user

-	 * mode if set, etc...

-	 *

-	 * Also configure SPI clock to something safe

-	 * like HCLK/8 (24Mhz)

-	 */

-	ct->ctl_val = ast_ahb_readl(ct->ctl_reg);

-	if (ct->ctl_val == 0xffffffff) {

-		FL_ERR("AST_SF: Failed read from controller control\n");

-		return false;

-	}

-

-	ct->ctl_val = (ct->ctl_val & 0x2000) |

-		(0x00 << 28) | /* Single bit */

-		(0x00 << 24) | /* CE# width 16T */

-		(0x00 << 16) | /* no command */

-		(0x04 <<  8) | /* HCLK/8 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);	       /* normal read */

-

-	/* Initial read mode is default */

-	ct->ctl_read_val = ct->ctl_val;

-

-	/* Initial read timings all 0 */

-	ct->fread_timing_val = 0;

-

-	/* Configure for read */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

-

-	if (ct->ctl_val & 0x2000)

-		ct->mode_4b = true;

-	else

-		ct->mode_4b = false;

-

-	return true;

-}

-

-static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)

-{

-	ct->ctl_reg = BMC_SPI_FCTL_CTRL;

-	ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;

-	ct->flash = BMC_FLASH_BASE;

-

-	/*

-	 * Snapshot control reg and sanitize it for our

-	 * use, switching to 1-bit mode, clearing user

-	 * mode if set, etc...

-	 *

-	 * Also configure SPI clock to something safe

-	 * like HCLK/8 (24Mhz)

-	 */

-	ct->ctl_val =

-		(0x00 << 28) | /* Single bit */

-		(0x00 << 24) | /* CE# width 16T */

-		(0x00 << 16) | /* no command */

-		(0x04 <<  8) | /* HCLK/8 */

-		(0x00 <<  6) | /* no dummy cycle */

-		(0x00);	       /* normal read */

-

-	/* Initial read mode is default */

-	ct->ctl_read_val = ct->ctl_val;

-

-	/* Initial read timings all 0 */

-	ct->fread_timing_val = 0;

-

-	/* Configure for read */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

-

-	ct->mode_4b = false;

-

-	return true;

-}

-

-int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)

-{

-	struct ast_sf_ctrl *ct;

-

-	if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC)

-		return -EINVAL;

-

-	*ctrl = NULL;

-	ct = malloc(sizeof(*ct));

-	if (!ct) {

-		FL_ERR("AST_SF: Failed to allocate\n");

-		return -ENOMEM;

-	}

-	memset(ct, 0, sizeof(*ct));

-	ct->type = type;

-	ct->ops.cmd_wr = ast_sf_cmd_wr;

-	ct->ops.cmd_rd = ast_sf_cmd_rd;

-	ct->ops.set_4b = ast_sf_set_4b;

-	ct->ops.read = ast_sf_read;

-	ct->ops.setup = ast_sf_setup;

-

-	ast_get_ahb_freq();

-

-	if (type == AST_SF_TYPE_PNOR) {

-		if (!ast_sf_init_pnor(ct))

-			goto fail;

-	} else {

-		if (!ast_sf_init_bmc(ct))

-			goto fail;

-	}

-

-	*ctrl = &ct->ops;

-

-	return 0;

- fail:

-	free(ct);

-	return -EIO;

-}

-

-void ast_sf_close(struct spi_flash_ctrl *ctrl)

-{

-	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

-

-	/* Restore control reg to read */

-	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

-

-	/* Additional cleanup */

-	if (ct->type == AST_SF_TYPE_PNOR) {

-		uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);

-		if (reg != 0xffffffff)

-			ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);

-	}

-

-	/* Free the whole lot */

-	free(ct);

-}

-

+/* Copyright 2013-2014 IBM Corp.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * 	http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ * implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <stdint.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <errno.h>
+#include <stdio.h>
+#include <string.h>
+
+#include <libflash/libflash.h>
+#include <libflash/libflash-priv.h>
+
+#include "ast.h"
+
+#ifndef __unused
+#define __unused __attribute__((unused))
+#endif
+
+#define CALIBRATE_BUF_SIZE	16384
+
+struct ast_sf_ctrl {
+	/* We have 2 controllers, one for the BMC flash, one for the PNOR */
+	uint8_t			type;
+
+	/* Address and previous value of the ctrl register */
+	uint32_t		ctl_reg;
+
+	/* Control register value for normal commands */
+	uint32_t		ctl_val;
+
+	/* Control register value for (fast) reads */
+	uint32_t		ctl_read_val;
+
+	/* Flash read timing register  */
+	uint32_t		fread_timing_reg;
+	uint32_t		fread_timing_val;
+
+	/* Address of the flash mapping */
+	uint32_t		flash;
+
+	/* Current 4b mode */
+	bool			mode_4b;
+
+	/* Callbacks */
+	struct spi_flash_ctrl	ops;
+};
+
+static uint32_t ast_ahb_freq;
+
+static const uint32_t ast_ct_hclk_divs[] = {
+	0xf, /* HCLK */
+	0x7, /* HCLK/2 */
+	0xe, /* HCLK/3 */
+	0x6, /* HCLK/4 */
+	0xd, /* HCLK/5 */
+};
+
+static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)
+{
+	/* Switch to user mode, CE# dropped */
+	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
+
+	/* user mode, CE# active */
+	ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);
+
+	/* write cmd */
+	return ast_copy_to_ahb(ct->flash, &cmd, 1);
+}
+
+static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)
+{
+	/* clear CE# */
+	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
+
+	/* Switch back to read mode */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+}
+
+static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)
+{
+	const void *ap;
+
+	/* Layout address MSB first in memory */
+	addr = cpu_to_be32(addr);
+
+	/* Send the right amount of bytes */
+	ap = (char *)&addr;
+
+	if (ct->mode_4b)
+		return ast_copy_to_ahb(ct->flash, ap, 4);
+	else
+		return ast_copy_to_ahb(ct->flash, ap + 1, 3);
+}
+
+static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,
+			 bool has_addr, uint32_t addr, void *buffer,
+			 uint32_t size)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+	int rc;
+
+	rc = ast_sf_start_cmd(ct, cmd);
+	if (rc)
+		goto bail;
+	if (has_addr) {
+		rc = ast_sf_send_addr(ct, addr);
+		if (rc)
+			goto bail;
+	}
+	if (buffer && size)
+		rc = ast_copy_from_ahb(buffer, ct->flash, size);
+ bail:
+	ast_sf_end_cmd(ct);
+	return rc;
+}
+
+static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,
+			 bool has_addr, uint32_t addr, const void *buffer,
+			 uint32_t size)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+	int rc;
+
+	rc = ast_sf_start_cmd(ct, cmd);
+	if (rc)
+		goto bail;
+	if (has_addr) {
+		rc = ast_sf_send_addr(ct, addr);
+		if (rc)
+			goto bail;
+	}
+	if (buffer && size)
+		rc = ast_copy_to_ahb(ct->flash, buffer, size);
+ bail:
+	ast_sf_end_cmd(ct);
+	return rc;
+}
+
+static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+	uint32_t ce_ctrl = 0;
+
+	if (ct->type == AST_SF_TYPE_BMC && ct->ops.finfo->size > 0x1000000)
+		ce_ctrl = ast_ahb_readl(BMC_SPI_FCTL_CE_CTRL);
+
+	/*
+	 * We update the "old" value as well since when quitting
+	 * we don't restore the mode of the flash itself so we need
+	 * to leave the controller in a compatible setup
+	 */
+	if (enable) {
+		ct->ctl_val |= 0x2000;
+		ct->ctl_read_val |= 0x2000;
+		ce_ctrl |= 0x1;
+	} else {
+		ct->ctl_val &= ~0x2000;
+		ct->ctl_read_val &= ~0x2000;
+		ce_ctrl &= ~0x1;
+	}
+	ct->mode_4b = enable;
+
+	/* Update read mode */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	if (ce_ctrl)
+		ast_ahb_writel(ce_ctrl, BMC_SPI_FCTL_CE_CTRL);
+
+	return 0;
+}
+
+static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
+		       void *buf, uint32_t len)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+	/*
+	 * We are in read mode by default. We don't yet support fancy
+	 * things like fast read or X2 mode
+	 */
+	return ast_copy_from_ahb(buf, ct->flash + pos, len);
+}
+
+static void ast_get_ahb_freq(void)
+{
+	static const uint32_t cpu_freqs_24_48[] = {
+		384000000,
+		360000000,
+		336000000,
+		408000000
+	};
+	static const uint32_t cpu_freqs_25[] = {
+		400000000,
+		375000000,
+		350000000,
+		425000000
+	};
+	static const uint32_t ahb_div[] = { 1, 2, 4, 3 };
+	uint32_t strap, cpu_clk, div;
+
+	if (ast_ahb_freq)
+		return;
+
+	/* HW strapping gives us the CPU freq and AHB divisor */
+	strap = ast_ahb_readl(SCU_HW_STRAPPING);
+	if (strap & 0x00800000) {
+		FL_DBG("AST: CLKIN 25Mhz\n");
+		cpu_clk = cpu_freqs_25[(strap >> 8) & 3];
+	} else {
+		FL_DBG("AST: CLKIN 24/48Mhz\n");
+		cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];
+	}
+	FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);
+	div = ahb_div[(strap >> 10) & 3];
+	ast_ahb_freq = cpu_clk / div;
+	FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);
+}
+
+static int ast_sf_check_reads(struct ast_sf_ctrl *ct,
+			      const uint8_t *golden_buf, uint8_t *test_buf)
+{
+	int i, rc;
+
+	for (i = 0; i < 10; i++) {
+		rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);
+		if (rc)
+			return rc;
+		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)
+			return FLASH_ERR_VERIFY_FAILURE;
+	}
+	return 0;
+}
+
+static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,
+				  const uint8_t *golden_buf, uint8_t *test_buf)
+{
+	int i, rc;
+	int good_pass = -1, pass_count = 0;
+	uint32_t shift = (hdiv - 1) << 2;
+	uint32_t mask = ~(0xfu << shift);
+
+#define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))
+
+	/* Try HCLK delay 0..5, each one with/without delay and look for a
+	 * good pair.
+	 */
+	for (i = 0; i < 12; i++) {
+		bool pass;
+
+		ct->fread_timing_val &= mask;
+		ct->fread_timing_val |= FREAD_TPASS(i) << shift;
+		ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+		rc = ast_sf_check_reads(ct, golden_buf, test_buf);
+		if (rc && rc != FLASH_ERR_VERIFY_FAILURE)
+			return rc;
+		pass = (rc == 0);
+		FL_DBG("  * [%08x] %d HCLK delay, %dns DI delay : %s\n",
+		       ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");
+		if (pass) {
+			pass_count++;
+			if (pass_count == 3) {
+				good_pass = i - 1;
+				break;
+			}
+		} else
+			pass_count = 0;
+	}
+
+	/* No good setting for this frequency */
+	if (good_pass < 0)
+		return FLASH_ERR_VERIFY_FAILURE;
+
+	/* We have at least one pass of margin, let's use first pass */
+	ct->fread_timing_val &= mask;
+	ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;
+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+	FL_DBG("AST:  * -> good is pass %d [0x%08x]\n",
+	       good_pass, ct->fread_timing_val);
+	return 0;
+}
+
+static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)
+{
+	const uint32_t *tb32 = (const uint32_t *)test_buf;
+	uint32_t i, cnt = 0;
+
+	/* We check if we have enough words that are neither all 0
+	 * nor all 1's so the calibration can be considered valid.
+	 *
+	 * I use an arbitrary threshold for now of 64
+	 */
+	size >>= 2;
+	for (i = 0; i < size; i++) {
+		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
+			cnt++;
+	}
+	return cnt >= 64;
+}
+
+static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct,
+				 struct flash_info *info __unused,
+				 uint32_t max_freq)
+{
+	uint8_t *golden_buf, *test_buf;
+	int i, rc, best_div = -1;
+	uint32_t save_read_val = ct->ctl_read_val;
+
+	test_buf = malloc(CALIBRATE_BUF_SIZE * 2);
+	golden_buf = test_buf + CALIBRATE_BUF_SIZE;
+
+	/* We start with the dumbest setting and read some data */
+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x00 << 24) | /* CE# max */
+		(0x03 << 16) | /* use normal reads */
+		(0x00 <<  8) | /* HCLK/16 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);        /* normal read */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);
+	if (rc) {
+		free(test_buf);
+		return rc;
+	}
+
+	/* Establish our read mode with freq field set to 0 */
+	ct->ctl_read_val = save_read_val & 0xfffff0ff;
+
+	/* Check if calibration data is suitable */
+	if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {
+		FL_INF("AST: Calibration area too uniform, "
+		       "using low speed\n");
+		ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+		free(test_buf);
+		return 0;
+	}
+
+	/* Now we iterate the HCLK dividers until we find our breaking point */
+	for (i = 5; i > 0; i--) {
+		uint32_t tv, freq;
+
+		/* Compare timing to max */
+		freq = ast_ahb_freq / i;
+		if (freq >= max_freq)
+			continue;
+
+		/* Set the timing */
+		tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);
+		ast_ahb_writel(tv, ct->ctl_reg);
+		FL_DBG("AST: Trying HCLK/%d...\n", i);
+		rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);
+
+		/* Some other error occurred, bail out */
+		if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {
+			free(test_buf);
+			return rc;
+		}
+		if (rc == 0)
+			best_div = i;
+	}
+	free(test_buf);
+
+	/* Nothing found ? */
+	if (best_div < 0)
+		FL_ERR("AST: No good frequency, using dumb slow\n");
+	else {
+		FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);
+		ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);
+	}
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	return 0;
+}
+
+static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)
+{
+	int i;
+
+	/* It appears that running commands at HCLK/2 on some micron
+	 * chips results in occasionally reads of bogus status (that
+	 * or unrelated chip hangs).
+	 *
+	 * Since we cannot calibrate properly the reads for commands,
+	 * instead, let's limit our SPI frequency to HCLK/4 to stay
+	 * on the safe side of things
+	 */
+#define MIN_CMD_FREQ	4
+	for (i = MIN_CMD_FREQ; i <= 5; i++) {
+		uint32_t freq = ast_ahb_freq / i;
+		if (freq >= max_freq)
+			continue;
+		*ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);
+		return i;
+	}
+	return 0;
+}
+
+static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+	int rc, div __unused;
+	uint8_t srcr[2];
+
+	/*
+	 * Those Macronix chips support dual reads at 104Mhz
+	 * and dual IO at 84Mhz with 4 dummies.
+	 *
+	 * Our calibration algo should give us something along
+	 * the lines of HCLK/3 (HCLK/2 seems to work sometimes
+	 * but appears to be fairly unreliable) which is 64Mhz
+	 *
+	 * So we chose dual IO mode.
+	 *
+	 * The CE# inactive width for reads must be 7ns, we set it
+	 * to 3T which is about 15ns at the fastest speed we support
+	 * HCLK/2) as I've had issue with smaller values.
+	 *
+	 * For write and program it's 30ns so let's set the value
+	 * for normal ops to 6T.
+	 *
+	 * Preserve the current 4b mode.
+	 */
+	FL_DBG("AST: Setting up Macronix...\n");
+
+	/*
+	 * Read the status and config registers
+	 */
+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to read status\n");
+		return rc;
+	}
+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to read configuration\n");
+		return rc;
+	}
+
+	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
+
+	/* Switch to 8 dummy cycles to enable 104Mhz operations */
+	srcr[1] = (srcr[1] & 0x3f) | 0x80;
+
+	rc = fl_wren(&ct->ops);
+	if (rc) {
+		FL_ERR("AST: Failed to WREN for Macronix config\n");
+		return rc;
+	}
+
+	rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to write Macronix config\n");
+		return rc;
+	}
+	rc = fl_sync_wait_idle(&ct->ops);;
+	if (rc != 0) {
+		FL_ERR("AST: Failed waiting for config write\n");
+		return rc;
+	}
+
+	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
+
+	/* Use 2READ */
+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+		(0x03 << 28) | /* Dual IO */
+		(0x0d << 24) | /* CE# width 3T */
+		(0xbb << 16) | /* 2READ command */
+		(0x00 <<  8) | /* HCLK/16 (optimize later) */
+		(0x02 <<  6) | /* 2 bytes dummy cycle (8 clocks) */
+		(0x01);	       /* fast read */
+
+	/* Configure SPI flash read timing */
+	rc = ast_sf_optimize_reads(ct, info, 104000000);
+	if (rc) {
+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * For other commands and writes also increase the SPI clock
+	 * to HCLK/2 since the chip supports up to 133Mhz and set
+	 * CE# inactive to 6T. We request a timing that is 20% below
+	 * the limit of the chip, so about 106Mhz which should fit.
+	 */
+	ct->ctl_val = (ct->ctl_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x0a << 24) | /* CE# width 6T (b1010) */
+		(0x00 << 16) | /* no command */
+		(0x00 <<  8) | /* HCLK/16 (done later) */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);	       /* normal read */
+
+	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+	/* Update chip with current read config */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+	return 0;
+}
+
+static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+	int rc, div __unused;
+
+	FL_DBG("AST: Setting up Windbond...\n");
+
+	/*
+	 * This Windbond chip support dual reads at 104Mhz
+	 * with 8 dummy cycles.
+	 *
+	 * The CE# inactive width for reads must be 10ns, we set it
+	 * to 3T which is about 15.6ns.
+	 */
+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+		(0x02 << 28) | /* Dual bit data only */
+		(0x0e << 24) | /* CE# width 2T (b1110) */
+		(0x3b << 16) | /* DREAD command */
+		(0x00 <<  8) | /* HCLK/16 */
+		(0x01 <<  6) | /* 1-byte dummy cycle */
+		(0x01);	       /* fast read */
+
+	/* Configure SPI flash read timing */
+	rc = ast_sf_optimize_reads(ct, info, 104000000);
+	if (rc) {
+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * For other commands and writes also increase the SPI clock
+	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
+	 * for write and erase is 50ns so let's set it to 10T.
+	 */
+	ct->ctl_val = (ct->ctl_read_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x06 << 24) | /* CE# width 10T (b0110) */
+		(0x00 << 16) | /* no command */
+		(0x00 <<  8) | /* HCLK/16 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x01);	       /* fast read */
+
+	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+	/* Update chip with current read config */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+	return 0;
+}
+
+static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+	uint8_t	vconf, ext_id[6];
+	int rc, div __unused;
+
+	FL_DBG("AST: Setting up Micron...\n");
+
+	/*
+	 * Read the extended chip ID to try to detect old vs. new
+	 * flashes since old Micron flashes have a lot of issues
+	 */
+	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");
+		return 0;
+	}
+	/* Check ID matches expectations */
+	if (ext_id[0] != ((info->id >> 16) & 0xff) ||
+	    ext_id[1] != ((info->id >>  8) & 0xff) ||
+	    ext_id[2] != ((info->id      ) & 0xff)) {
+		FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");
+		return 0;
+	}
+	FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);
+
+	/* Check for old (<45nm) chips, don't try to be fancy on those */
+	if (!(ext_id[4] & 0x40)) {
+		FL_DBG("AST: Old chip, using dumb timings\n");
+		goto dumb;
+	}
+
+	/*
+	 * Read the micron specific volatile configuration reg
+	 */
+	rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");
+		goto dumb;
+	}
+	FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);
+
+	/* Switch to 8 dummy cycles (we might be able to operate with 4
+	 * but let's keep some margin
+	 */
+	vconf = (vconf & 0x0f) | 0x80;
+
+	rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);
+	if (rc != 0) {
+		FL_ERR("AST: Failed to write Micron vconf, "
+		       " sticking to dumb speed\n");
+		goto dumb;
+	}
+	rc = fl_sync_wait_idle(&ct->ops);;
+	if (rc != 0) {
+		FL_ERR("AST: Failed waiting for config write\n");
+		return rc;
+	}
+	FL_DBG("AST: Updated to  : 0x%02x\n", vconf);
+
+	/*
+	 * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz
+	 *
+	 * The CE# inactive width for reads must be 20ns, we set it
+	 * to 4T which is about 20.8ns.
+	 */
+	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+		(0x03 << 28) | /* Single bit */
+		(0x0c << 24) | /* CE# 4T */
+		(0xbb << 16) | /* 2READ command */
+		(0x00 <<  8) | /* HCLK/16 (optimize later) */
+		(0x02 <<  6) | /* 8 dummy cycles (2 bytes) */
+		(0x01);	       /* fast read */
+
+	/* Configure SPI flash read timing */
+	rc = ast_sf_optimize_reads(ct, info, 133000000);
+	if (rc) {
+		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * For other commands and writes also increase the SPI clock
+	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
+	 * for write and erase is 50ns so let's set it to 10T.
+	 */
+	ct->ctl_val = (ct->ctl_read_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x06 << 24) | /* CE# width 10T (b0110) */
+		(0x00 << 16) | /* no command */
+		(0x00 <<  8) | /* HCLK/16 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);	       /* norm read */
+
+	div = ast_sf_get_hclk(&ct->ctl_val, 133000000);
+	FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+	/* Update chip with current read config */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	return 0;
+
+ dumb:
+	ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x00 << 24) | /* CE# max */
+		(0x03 << 16) | /* use normal reads */
+		(0x06 <<  8) | /* HCLK/4 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);	       /* normal read */
+
+	/* Update chip with current read config */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	return 0;
+}
+
+static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+	struct flash_info *info = ctrl->finfo;
+
+	(void)tsize;
+
+	/*
+	 * Configure better timings and read mode for known
+	 * flash chips
+	 */
+	switch(info->id) {
+	case 0xc22018: /* MX25L12835F */
+	case 0xc22019: /* MX25L25635F */
+	case 0xc2201a: /* MX66L51235F */
+		return ast_sf_setup_macronix(ct, info);
+	case 0xef4018: /* W25Q128BV */
+		return ast_sf_setup_winbond(ct, info);
+	case 0x20ba20: /* MT25Qx512xx */
+		return ast_sf_setup_micron(ct, info);
+	}
+	/* No special tuning */
+	return 0;
+}
+
+static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)
+{
+	uint32_t reg;
+
+	ct->ctl_reg = PNOR_SPI_FCTL_CTRL;
+	ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;
+	ct->flash = PNOR_FLASH_BASE;
+
+	/* Enable writing to the controller */
+	reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
+	if (reg == 0xffffffff) {
+		FL_ERR("AST_SF: Failed read from controller config\n");
+		return false;
+	}
+	ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);
+
+	/*
+	 * Snapshot control reg and sanitize it for our
+	 * use, switching to 1-bit mode, clearing user
+	 * mode if set, etc...
+	 *
+	 * Also configure SPI clock to something safe
+	 * like HCLK/8 (24Mhz)
+	 */
+	ct->ctl_val = ast_ahb_readl(ct->ctl_reg);
+	if (ct->ctl_val == 0xffffffff) {
+		FL_ERR("AST_SF: Failed read from controller control\n");
+		return false;
+	}
+
+	ct->ctl_val = (ct->ctl_val & 0x2000) |
+		(0x00 << 28) | /* Single bit */
+		(0x00 << 24) | /* CE# width 16T */
+		(0x00 << 16) | /* no command */
+		(0x04 <<  8) | /* HCLK/8 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);	       /* normal read */
+
+	/* Initial read mode is default */
+	ct->ctl_read_val = ct->ctl_val;
+
+	/* Initial read timings all 0 */
+	ct->fread_timing_val = 0;
+
+	/* Configure for read */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+
+	if (ct->ctl_val & 0x2000)
+		ct->mode_4b = true;
+	else
+		ct->mode_4b = false;
+
+	return true;
+}
+
+static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)
+{
+	ct->ctl_reg = BMC_SPI_FCTL_CTRL;
+	ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;
+	ct->flash = BMC_FLASH_BASE;
+
+	/*
+	 * Snapshot control reg and sanitize it for our
+	 * use, switching to 1-bit mode, clearing user
+	 * mode if set, etc...
+	 *
+	 * Also configure SPI clock to something safe
+	 * like HCLK/8 (24Mhz)
+	 */
+	ct->ctl_val =
+		(0x00 << 28) | /* Single bit */
+		(0x00 << 24) | /* CE# width 16T */
+		(0x00 << 16) | /* no command */
+		(0x04 <<  8) | /* HCLK/8 */
+		(0x00 <<  6) | /* no dummy cycle */
+		(0x00);	       /* normal read */
+
+	/* Initial read mode is default */
+	ct->ctl_read_val = ct->ctl_val;
+
+	/* Initial read timings all 0 */
+	ct->fread_timing_val = 0;
+
+	/* Configure for read */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+
+	ct->mode_4b = false;
+
+	return true;
+}
+
+static int ast_mem_set4b(struct spi_flash_ctrl *ctrl __unused,
+			 bool enable __unused)
+{
+	return 0;
+}
+
+static int ast_mem_setup(struct spi_flash_ctrl *ctrl __unused,
+			 uint32_t *tsize __unused)
+{
+	return 0;
+}
+
+static int ast_mem_chipid(struct spi_flash_ctrl *ctrl __unused, uint8_t *id_buf,
+			  uint32_t *id_size)
+{
+	if (*id_size < 3)
+		return -1;
+
+	id_buf[0] = 0xaa;
+	id_buf[1] = 0x55;
+	id_buf[2] = 0xaa;
+	*id_size = 3;
+	return 0;
+}
+
+static int ast_mem_write(struct spi_flash_ctrl *ctrl, uint32_t pos,
+			const void *buf, uint32_t len)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+	/*
+	 * This only works when the ahb is pointed at system memory.
+	 */
+	return ast_copy_to_ahb(ct->flash + pos, buf, len);
+}
+
+static int ast_mem_erase(struct spi_flash_ctrl *ctrl, uint32_t addr, uint32_t size)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+	uint32_t pos, len, end = addr + size;
+	uint64_t zero = 0;
+	int ret;
+
+	for (pos = addr; pos < end; pos += sizeof(zero)) {
+		if (pos + sizeof(zero) > end)
+			len = end - pos;
+		else
+			len = sizeof(zero);
+
+		ret = ast_copy_to_ahb(ct->flash + pos, &zero, len);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)
+{
+	struct ast_sf_ctrl *ct;
+
+	if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC
+	    && type != AST_SF_TYPE_MEM)
+		return -EINVAL;
+
+	*ctrl = NULL;
+	ct = malloc(sizeof(*ct));
+	if (!ct) {
+		FL_ERR("AST_SF: Failed to allocate\n");
+		return -ENOMEM;
+	}
+	memset(ct, 0, sizeof(*ct));
+	ct->type = type;
+
+	if (type == AST_SF_TYPE_MEM) {
+		ct->ops.cmd_wr = NULL;
+		ct->ops.cmd_rd = NULL;
+		ct->ops.read = ast_sf_read;
+		ct->ops.set_4b = ast_mem_set4b;
+		ct->ops.write = ast_mem_write;
+		ct->ops.erase = ast_mem_erase;
+		ct->ops.setup = ast_mem_setup;
+		ct->ops.chip_id = ast_mem_chipid;
+		ct->flash = PNOR_FLASH_BASE;
+	} else {
+		ct->ops.cmd_wr = ast_sf_cmd_wr;
+		ct->ops.cmd_rd = ast_sf_cmd_rd;
+		ct->ops.set_4b = ast_sf_set_4b;
+		ct->ops.read = ast_sf_read;
+		ct->ops.setup = ast_sf_setup;
+	}
+
+	ast_get_ahb_freq();
+
+	if (type == AST_SF_TYPE_PNOR) {
+		if (!ast_sf_init_pnor(ct))
+			goto fail;
+	} else if (type == AST_SF_TYPE_BMC) {
+		if (!ast_sf_init_bmc(ct))
+			goto fail;
+	}
+
+	*ctrl = &ct->ops;
+
+	return 0;
+ fail:
+	free(ct);
+	return -EIO;
+}
+
+void ast_sf_close(struct spi_flash_ctrl *ctrl)
+{
+	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+	/* Restore control reg to read */
+	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+	/* Additional cleanup */
+	if (ct->type == AST_SF_TYPE_PNOR) {
+		uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
+		if (reg != 0xffffffff)
+			ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);
+	}
+
+	/* Free the whole lot */
+	free(ct);
+}