poky: subtree update:0ac99625bf..796be0593a

Alexander Kanavin (31):
      netbase: upgrade 6.1 -> 6.2
      meson: upgrade 0.55.1 -> 0.56.0
      vulkan-samples: update to latest revision
      libcap: update 2.44 -> 2.45
      bind: upgrade 9.16.7 -> 9.16.9
      quota: upgrade 4.05 -> 4.06
      pango: upgrade 1.46.2 -> 1.48.0
      elfutils: upgrade 0.181 -> 0.182
      ifupdown: upgrade 0.8.35 -> 0.8.36
      createrepo-c: upgrade 0.16.1 -> 0.16.2
      acpica: upgrade 20200925 -> 20201113
      grep: upgrade 3.5 -> 3.6
      man-pages: upgrade 5.08 -> 5.09
      stress-ng: upgrade 0.11.23 -> 0.11.24
      libhandy: upgrade 1.0.1 -> 1.0.2
      piglit: upgrade to latest revision
      xkbcomp: upgrade 1.4.3 -> 1.4.4
      lz4: upgrade 1.9.2 -> 1.9.3
      bison: upgrade 3.7.3 -> 3.7.4
      python3-setuptools-scm: fix upstream version check
      cantarell-fonts: update 0.0.25 -> 0.201
      meta/lib/oe/reproducible.py: gitsm:// works just as fine as git:// for timestamps
      llvm: fix reproducibility
      ruby: fix reproducibility
      webkitgtk: fix reproducibility
      ffmpeg: fix reproducibility
      piglit: fix reproducibility
      serf: do not install the static library
      llvm: sort the lists in generated source reproducibibly
      kea: fix reproducibility
      poky.conf: do not write current date into distro version, use git hash instead

Andrej Valek (1):
      kernel-dummy: fix executing unexpected tasks

Anuj Mittal (1):
      releases.rst: add gatesgarth to current releases

Brett Warren (1):
      libffi: add patch to revert clang VFP workaround

Chandana kalluri (1):
      populate_sdk_ext: use SDK_CUSTOM_TEPLATECONF variable to enable custom templateconf.cfg

Changqing Li (1):
      buildtools-tarball: add wic dependency into extended buildtools

Diego Sueiro (2):
      modutils-initscripts: Fix modules.dep creation when USE_DEPMOD="0"
      initscripts: Change execution order between checkroot and modutils

Dmitry Baryshkov (2):
      linux-firmware: upgrade 20201022 -> 20201118
      linux-firmware: package ath11k firmware

Fabio Berton (1):
      mesa: Update 20.2.1 -> 20.2.4

Gratian Crisan (1):
      kernel-module-split.bbclass: fix kernel modules getting marked as CONFFILES

Jack Mitchell (3):
      Revert "connman: set service to conflict with systemd-networkd"
      systemd-conf: add PACKAGECONFIG to enable/disable auto ethernet DHCP
      systemd-conf: match ethernet interfaces by type rather than globbing

Joshua Watt (2):
      bitbake: hashserv: client: Fix AF_UNIX path length limits
      bitbake: hashserv: Fix broken AF_UNIX path length limit

Kai Kang (2):
      systemd-systemctl-native: capable to call without argument
      systemd.bbclass: update command to check systemctl available

Kevin Hao (1):
      tune-octeontx2.inc: Add tune for Marvell OCTEON TX2 core

Li Wang (2):
      qemu: CVE-2020-29129 CVE-2020-29130
      qemu: CVE-2020-25624

Luca Boccassi (1):
      dbus: move messagebus user to dbus-common package

Michael Halstead (1):
      releases: conf: add link to 3.1.4, update to include 3.1.4

Nicolas Dechesne (19):
      sphinx: add .vscode in .gitignore
      {dev,kernel,sdk}-manual: replace hardcoded release version with &DISTRO;
      sphinx: replace bitbake labels with references to corresponding title
      brief-yoctoprojectqs: replace labels with references to section title
      dev-manual: replace labels with references to section title
      ref-manual: replace labels with references to section title
      sdk-manual: replace labels with references to section title
      overview-manual: remove unused labels
      dev-manual: remove unused labels
      sphinx: rename top level document in each manual
      sphinx: use absolute paths for :doc: references
      test-manual: remove 'test-manual' from filenames
      toaster-manual: remove 'toaster-manual' from filenames
      dev-manual: remove 'dev-manual' from filenames
      kernel-dev: remove 'kernel-dev' from filenames
      profile-manual: remove 'profile-manual' from filenames
      overview-manual: remove 'overview-manual' from filenames
      sdk-manual: remove 'sdk' from filenames
      ref-manual: remove 'ref' from filenames

Paul Barker (5):
      documentation: Simplify yocto_wiki links
      documentation: Simplify yocto_git links
      ref-manual: Simplify oe_git links
      poky.conf: Add opensuseleap-15.2 and fedora-33 to tested distros
      poky.conf: Drop fedora-30 from tested distros

Peter Kjellerstedt (2):
      pseudo: Simplify pseudo_client_ignore_path_chroot()
      bitbake.conf: Add all layers (from BBLAYERS) to PSEUDO_IGNORE_PATHS

Richard Purdie (8):
      lz4: Use the new branch naming from upstream
      Revert "bitbake.conf: Add all layers (from BBLAYERS) to PSEUDO_IGNORE_PATHS"
      build-appliance-image: Update to master head revision
      bitbake: Revert "fetch2: use relative symlinks for anything pulled from PREMIRRORS"
      build-appliance-image: Update to master head revision
      metadata_scm: Fix signature handling of METADATA_REVISION and METADATA_BRANCH
      poky: Set SDK_VERSION explicitly
      build-appliance-image: Update to master head revision

Ross Burton (9):
      oeqa/devtool: use Yocto mirror for pv-1.5.3 tarball
      image_types: remove obsolete tar comment
      image_types: sort tarball file listings
      package_manager/ipk: neaten OPKGLIBDIR logic
      ldconfig-native: don't write auxiliary cache
      package_manager/ipk: improve remove_packaging_data
      oeqa/selftest/containerimage: update for improved cleanup
      coreutils: add SUSE-specific issues to CVE whitelist
      bitbake: msg: use safe YAML loader

Sinan Kaya (1):
      poky-tiny: enable section removal

Tomasz Dziendzielski (1):
      pseudo: Update to print PSEUDO_LOGFILE in abort message on path mismatches

sangeeta jain (1):
      meta/lib/oeqa/manual/oe-core.json: Update test_bitbake_devshell

zangrc (3):
      libinput: upgrade 1.16.3 -> 1.16.4
      lighttpd: upgrade 1.4.55 -> 1.4.56
      sysstat: upgrade 12.4.0 -> 12.4.1

Signed-off-by: Andrew Geissler <geissonator@yahoo.com>
Change-Id: I65f2f1c9d44433f3e62609240012c42256679b51
diff --git a/poky/documentation/sdk-manual/extensible.rst b/poky/documentation/sdk-manual/extensible.rst
new file mode 100644
index 0000000..c94213d
--- /dev/null
+++ b/poky/documentation/sdk-manual/extensible.rst
@@ -0,0 +1,1312 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+************************
+Using the Extensible SDK
+************************
+
+This chapter describes the extensible SDK and how to install it.
+Information covers the pieces of the SDK, how to install it, and
+presents a look at using the ``devtool`` functionality. The extensible
+SDK makes it easy to add new applications and libraries to an image,
+modify the source for an existing component, test changes on the target
+hardware, and ease integration into the rest of the
+:term:`OpenEmbedded Build System`.
+
+.. note::
+
+   For a side-by-side comparison of main features supported for an
+   extensible SDK as compared to a standard SDK, see the "
+   Introduction
+   " section.
+
+In addition to the functionality available through ``devtool``, you can
+alternatively make use of the toolchain directly, for example from
+Makefile and Autotools. See the "`Using the SDK Toolchain
+Directly <#sdk-working-projects>`__" chapter for more information.
+
+Why use the Extensible SDK and What is in It?
+=============================================
+
+The extensible SDK provides a cross-development toolchain and libraries
+tailored to the contents of a specific image. You would use the
+Extensible SDK if you want a toolchain experience supplemented with the
+powerful set of ``devtool`` commands tailored for the Yocto Project
+environment.
+
+The installed extensible SDK consists of several files and directories.
+Basically, it contains an SDK environment setup script, some
+configuration files, an internal build system, and the ``devtool``
+functionality.
+
+Installing the Extensible SDK
+=============================
+
+The first thing you need to do is install the SDK on your :term:`Build
+Host` by running the ``*.sh`` installation script.
+
+You can download a tarball installer, which includes the pre-built
+toolchain, the ``runqemu`` script, the internal build system,
+``devtool``, and support files from the appropriate
+:yocto_dl:`toolchain </releases/yocto/yocto-&DISTRO;/toolchain/>` directory within the Index of
+Releases. Toolchains are available for several 32-bit and 64-bit
+architectures with the ``x86_64`` directories, respectively. The
+toolchains the Yocto Project provides are based off the
+``core-image-sato`` and ``core-image-minimal`` images and contain
+libraries appropriate for developing against that image.
+
+The names of the tarball installer scripts are such that a string
+representing the host system appears first in the filename and then is
+immediately followed by a string representing the target architecture.
+An extensible SDK has the string "-ext" as part of the name. Following
+is the general form:
+::
+
+   poky-glibc-host_system-image_type-arch-toolchain-ext-release_version.sh
+
+   Where:
+       host_system is a string representing your development system:
+
+                  i686 or x86_64.
+
+       image_type is the image for which the SDK was built:
+
+                  core-image-sato or core-image-minimal
+
+       arch is a string representing the tuned target architecture:
+
+                  aarch64, armv5e, core2-64, i586, mips32r2, mips64, ppc7400, or cortexa8hf-neon
+
+       release_version is a string representing the release number of the Yocto Project:
+
+                  &DISTRO;, &DISTRO;+snapshot
+
+For example, the following SDK installer is for a 64-bit
+development host system and a i586-tuned target architecture based off
+the SDK for ``core-image-sato`` and using the current DISTRO snapshot:
+::
+
+   poky-glibc-x86_64-core-image-sato-i586-toolchain-ext-DISTRO.sh
+
+.. note::
+
+   As an alternative to downloading an SDK, you can build the SDK
+   installer. For information on building the installer, see the "
+   Building an SDK Installer
+   " section.
+
+The SDK and toolchains are self-contained and by default are installed
+into the ``poky_sdk`` folder in your home directory. You can choose to
+install the extensible SDK in any location when you run the installer.
+However, because files need to be written under that directory during
+the normal course of operation, the location you choose for installation
+must be writable for whichever users need to use the SDK.
+
+The following command shows how to run the installer given a toolchain
+tarball for a 64-bit x86 development host system and a 64-bit x86 target
+architecture. The example assumes the SDK installer is located in
+``~/Downloads/`` and has execution rights.
+
+.. note::
+
+   If you do not have write permissions for the directory into which you
+   are installing the SDK, the installer notifies you and exits. For
+   that case, set up the proper permissions in the directory and run the
+   installer again.
+
+::
+
+   $ ./Downloads/poky-glibc-x86_64-core-image-minimal-core2-64-toolchain-ext-2.5.sh
+   Poky (Yocto Project Reference Distro) Extensible SDK installer version 2.5
+   ==========================================================================
+   Enter target directory for SDK (default: ~/poky_sdk):
+   You are about to install the SDK to "/home/scottrif/poky_sdk". Proceed [Y/n]? Y
+   Extracting SDK..............done
+   Setting it up...
+   Extracting buildtools...
+   Preparing build system...
+   Parsing recipes: 100% |##################################################################| Time: 0:00:52
+   Initialising tasks: 100% |###############################################################| Time: 0:00:00
+   Checking sstate mirror object availability: 100% |#######################################| Time: 0:00:00
+   Loading cache: 100% |####################################################################| Time: 0:00:00
+   Initialising tasks: 100% |###############################################################| Time: 0:00:00
+   done
+   SDK has been successfully set up and is ready to be used.
+   Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
+    $ . /home/scottrif/poky_sdk/environment-setup-core2-64-poky-linux
+
+Running the Extensible SDK Environment Setup Script
+===================================================
+
+Once you have the SDK installed, you must run the SDK environment setup
+script before you can actually use the SDK. This setup script resides in
+the directory you chose when you installed the SDK, which is either the
+default ``poky_sdk`` directory or the directory you chose during
+installation.
+
+Before running the script, be sure it is the one that matches the
+architecture for which you are developing. Environment setup scripts
+begin with the string "``environment-setup``" and include as part of
+their name the tuned target architecture. As an example, the following
+commands set the working directory to where the SDK was installed and
+then source the environment setup script. In this example, the setup
+script is for an IA-based target machine using i586 tuning:
+::
+
+   $ cd /home/scottrif/poky_sdk
+   $ source environment-setup-core2-64-poky-linux
+   SDK environment now set up; additionally you may now run devtool to perform development tasks.
+   Run devtool --help for further details.
+
+Running the setup script defines many environment variables needed in
+order to use the SDK (e.g. ``PATH``,
+:term:`CC`,
+:term:`LD`, and so forth). If you want to
+see all the environment variables the script exports, examine the
+installation file itself.
+
+Using ``devtool`` in Your SDK Workflow
+======================================
+
+The cornerstone of the extensible SDK is a command-line tool called
+``devtool``. This tool provides a number of features that help you
+build, test and package software within the extensible SDK, and
+optionally integrate it into an image built by the OpenEmbedded build
+system.
+
+.. note::
+
+   The use of
+   devtool
+   is not limited to the extensible SDK. You can use
+   devtool
+   to help you easily develop any project whose build output must be
+   part of an image built using the build system.
+
+The ``devtool`` command line is organized similarly to
+:ref:`overview-manual/development-environment:git` in that it has a number of
+sub-commands for each function. You can run ``devtool --help`` to see
+all the commands.
+
+.. note::
+
+   See the "
+   devtool
+    Quick Reference
+   " in the Yocto Project Reference Manual for a
+   devtool
+   quick reference.
+
+Three ``devtool`` subcommands exist that provide entry-points into
+development:
+
+-  *devtool add*: Assists in adding new software to be built.
+
+-  *devtool modify*: Sets up an environment to enable you to modify
+   the source of an existing component.
+
+-  *devtool upgrade*: Updates an existing recipe so that you can
+   build it for an updated set of source files.
+
+As with the build system, "recipes" represent software packages within
+``devtool``. When you use ``devtool add``, a recipe is automatically
+created. When you use ``devtool modify``, the specified existing recipe
+is used in order to determine where to get the source code and how to
+patch it. In both cases, an environment is set up so that when you build
+the recipe a source tree that is under your control is used in order to
+allow you to make changes to the source as desired. By default, new
+recipes and the source go into a "workspace" directory under the SDK.
+
+The remainder of this section presents the ``devtool add``,
+``devtool modify``, and ``devtool upgrade`` workflows.
+
+Use ``devtool add`` to Add an Application
+-----------------------------------------
+
+The ``devtool add`` command generates a new recipe based on existing
+source code. This command takes advantage of the
+:ref:`devtool-the-workspace-layer-structure`
+layer that many ``devtool`` commands use. The command is flexible enough
+to allow you to extract source code into both the workspace or a
+separate local Git repository and to use existing code that does not
+need to be extracted.
+
+Depending on your particular scenario, the arguments and options you use
+with ``devtool add`` form different combinations. The following diagram
+shows common development flows you would use with the ``devtool add``
+command:
+
+.. image:: figures/sdk-devtool-add-flow.png
+   :align: center
+
+1. *Generating the New Recipe*: The top part of the flow shows three
+   scenarios by which you could use ``devtool add`` to generate a recipe
+   based on existing source code.
+
+   In a shared development environment, it is typical for other
+   developers to be responsible for various areas of source code. As a
+   developer, you are probably interested in using that source code as
+   part of your development within the Yocto Project. All you need is
+   access to the code, a recipe, and a controlled area in which to do
+   your work.
+
+   Within the diagram, three possible scenarios feed into the
+   ``devtool add`` workflow:
+
+   -  *Left*: The left scenario in the figure represents a common
+      situation where the source code does not exist locally and needs
+      to be extracted. In this situation, the source code is extracted
+      to the default workspace - you do not want the files in some
+      specific location outside of the workspace. Thus, everything you
+      need will be located in the workspace:
+      ::
+
+         $ devtool add recipe fetchuri
+
+      With this command, ``devtool`` extracts the upstream
+      source files into a local Git repository within the ``sources``
+      folder. The command then creates a recipe named recipe and a
+      corresponding append file in the workspace. If you do not provide
+      recipe, the command makes an attempt to determine the recipe name.
+
+   -  *Middle*: The middle scenario in the figure also represents a
+      situation where the source code does not exist locally. In this
+      case, the code is again upstream and needs to be extracted to some
+      local area - this time outside of the default workspace.
+
+      .. note::
+
+         If required,
+         devtool
+         always creates a Git repository locally during the extraction.
+
+      Furthermore, the first positional argument srctree in this case
+      identifies where the ``devtool add`` command will locate the
+      extracted code outside of the workspace. You need to specify an
+      empty directory:
+      ::
+
+         $ devtool add recipe srctree fetchuri
+
+      In summary,
+      the source code is pulled from fetchuri and extracted into the
+      location defined by srctree as a local Git repository.
+
+      Within workspace, ``devtool`` creates a recipe named recipe along
+      with an associated append file.
+
+   -  *Right*: The right scenario in the figure represents a situation
+      where the srctree has been previously prepared outside of the
+      ``devtool`` workspace.
+
+      The following command provides a new recipe name and identifies
+      the existing source tree location:
+      ::
+
+         $ devtool add recipe srctree
+
+      The command examines the source code and creates a recipe named
+      recipe for the code and places the recipe into the workspace.
+
+      Because the extracted source code already exists, ``devtool`` does
+      not try to relocate the source code into the workspace - only the
+      new recipe is placed in the workspace.
+
+      Aside from a recipe folder, the command also creates an associated
+      append folder and places an initial ``*.bbappend`` file within.
+
+2. *Edit the Recipe*: You can use ``devtool edit-recipe`` to open up the
+   editor as defined by the ``$EDITOR`` environment variable and modify
+   the file:
+   ::
+
+      $ devtool edit-recipe recipe
+
+   From within the editor, you
+   can make modifications to the recipe that take affect when you build
+   it later.
+
+3. *Build the Recipe or Rebuild the Image*: The next step you take
+   depends on what you are going to do with the new code.
+
+   If you need to eventually move the build output to the target
+   hardware, use the following ``devtool`` command:
+   :;
+
+      $ devtool build recipe
+
+   On the other hand, if you want an image to contain the recipe's
+   packages from the workspace for immediate deployment onto a device
+   (e.g. for testing purposes), you can use the ``devtool build-image``
+   command:
+   ::
+
+      $ devtool build-image image
+
+4. *Deploy the Build Output*: When you use the ``devtool build`` command
+   to build out your recipe, you probably want to see if the resulting
+   build output works as expected on the target hardware.
+
+   .. note::
+
+      This step assumes you have a previously built image that is
+      already either running in QEMU or is running on actual hardware.
+      Also, it is assumed that for deployment of the image to the
+      target, SSH is installed in the image and, if the image is running
+      on real hardware, you have network access to and from your
+      development machine.
+
+   You can deploy your build output to that target hardware by using the
+   ``devtool deploy-target`` command: $ devtool deploy-target recipe
+   target The target is a live target machine running as an SSH server.
+
+   You can, of course, also deploy the image you build to actual
+   hardware by using the ``devtool build-image`` command. However,
+   ``devtool`` does not provide a specific command that allows you to
+   deploy the image to actual hardware.
+
+5. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+   creates any patches corresponding to commits in the local Git
+   repository, moves the new recipe to a more permanent layer, and then
+   resets the recipe so that the recipe is built normally rather than
+   from the workspace.
+   ::
+
+      $ devtool finish recipe layer
+
+   .. note::
+
+      Any changes you want to turn into patches must be committed to the
+      Git repository in the source tree.
+
+   As mentioned, the ``devtool finish`` command moves the final recipe
+   to its permanent layer.
+
+   As a final process of the ``devtool finish`` command, the state of
+   the standard layers and the upstream source is restored so that you
+   can build the recipe from those areas rather than the workspace.
+
+   .. note::
+
+      You can use the
+      devtool reset
+      command to put things back should you decide you do not want to
+      proceed with your work. If you do use this command, realize that
+      the source tree is preserved.
+
+Use ``devtool modify`` to Modify the Source of an Existing Component
+--------------------------------------------------------------------
+
+The ``devtool modify`` command prepares the way to work on existing code
+that already has a local recipe in place that is used to build the
+software. The command is flexible enough to allow you to extract code
+from an upstream source, specify the existing recipe, and keep track of
+and gather any patch files from other developers that are associated
+with the code.
+
+Depending on your particular scenario, the arguments and options you use
+with ``devtool modify`` form different combinations. The following
+diagram shows common development flows for the ``devtool modify``
+command:
+
+.. image:: figures/sdk-devtool-modify-flow.png
+   :align: center
+
+1. *Preparing to Modify the Code*: The top part of the flow shows three
+   scenarios by which you could use ``devtool modify`` to prepare to
+   work on source files. Each scenario assumes the following:
+
+   -  The recipe exists locally in a layer external to the ``devtool``
+      workspace.
+
+   -  The source files exist either upstream in an un-extracted state or
+      locally in a previously extracted state.
+
+   The typical situation is where another developer has created a layer
+   for use with the Yocto Project and their recipe already resides in
+   that layer. Furthermore, their source code is readily available
+   either upstream or locally.
+
+   -  *Left*: The left scenario in the figure represents a common
+      situation where the source code does not exist locally and it
+      needs to be extracted from an upstream source. In this situation,
+      the source is extracted into the default ``devtool`` workspace
+      location. The recipe, in this scenario, is in its own layer
+      outside the workspace (i.e. ``meta-``\ layername).
+
+      The following command identifies the recipe and, by default,
+      extracts the source files:
+      ::
+
+         $ devtool modify recipe
+
+      Once
+      ``devtool``\ locates the recipe, ``devtool`` uses the recipe's
+      :term:`SRC_URI` statements to
+      locate the source code and any local patch files from other
+      developers.
+
+      With this scenario, no srctree argument exists. Consequently, the
+      default behavior of the ``devtool modify`` command is to extract
+      the source files pointed to by the ``SRC_URI`` statements into a
+      local Git structure. Furthermore, the location for the extracted
+      source is the default area within the ``devtool`` workspace. The
+      result is that the command sets up both the source code and an
+      append file within the workspace while the recipe remains in its
+      original location.
+
+      Additionally, if you have any non-patch local files (i.e. files
+      referred to with ``file://`` entries in ``SRC_URI`` statement
+      excluding ``*.patch/`` or ``*.diff``), these files are copied to
+      an ``oe-local-files`` folder under the newly created source tree.
+      Copying the files here gives you a convenient area from which you
+      can modify the files. Any changes or additions you make to those
+      files are incorporated into the build the next time you build the
+      software just as are other changes you might have made to the
+      source.
+
+   -  *Middle*: The middle scenario in the figure represents a situation
+      where the source code also does not exist locally. In this case,
+      the code is again upstream and needs to be extracted to some local
+      area as a Git repository. The recipe, in this scenario, is again
+      local and in its own layer outside the workspace.
+
+      The following command tells ``devtool`` the recipe with which to
+      work and, in this case, identifies a local area for the extracted
+      source files that exists outside of the default ``devtool``
+      workspace:
+      ::
+
+         $ devtool modify recipe srctree
+
+      .. note::
+
+         You cannot provide a URL for
+         srctree
+         using the
+         devtool
+         command.
+
+      As with all extractions, the command uses the recipe's ``SRC_URI``
+      statements to locate the source files and any associated patch
+      files. Non-patch files are copied to an ``oe-local-files`` folder
+      under the newly created source tree.
+
+      Once the files are located, the command by default extracts them
+      into srctree.
+
+      Within workspace, ``devtool`` creates an append file for the
+      recipe. The recipe remains in its original location but the source
+      files are extracted to the location you provide with srctree.
+
+   -  *Right*: The right scenario in the figure represents a situation
+      where the source tree (srctree) already exists locally as a
+      previously extracted Git structure outside of the ``devtool``
+      workspace. In this example, the recipe also exists elsewhere
+      locally in its own layer.
+
+      The following command tells ``devtool`` the recipe with which to
+      work, uses the "-n" option to indicate source does not need to be
+      extracted, and uses srctree to point to the previously extracted
+      source files:
+      ::
+
+         $ devtool modify -n recipe srctree
+
+      If an ``oe-local-files`` subdirectory happens to exist and it
+      contains non-patch files, the files are used. However, if the
+      subdirectory does not exist and you run the ``devtool finish``
+      command, any non-patch files that might exist next to the recipe
+      are removed because it appears to ``devtool`` that you have
+      deleted those files.
+
+      Once the ``devtool modify`` command finishes, it creates only an
+      append file for the recipe in the ``devtool`` workspace. The
+      recipe and the source code remain in their original locations.
+
+2. *Edit the Source*: Once you have used the ``devtool modify`` command,
+   you are free to make changes to the source files. You can use any
+   editor you like to make and save your source code modifications.
+
+3. *Build the Recipe or Rebuild the Image*: The next step you take
+   depends on what you are going to do with the new code.
+
+   If you need to eventually move the build output to the target
+   hardware, use the following ``devtool`` command:
+   ::
+
+      $ devtool build recipe
+
+   On the other hand, if you want an image to contain the recipe's
+   packages from the workspace for immediate deployment onto a device
+   (e.g. for testing purposes), you can use the ``devtool build-image``
+   command: $ devtool build-image image
+
+4. *Deploy the Build Output*: When you use the ``devtool build`` command
+   to build out your recipe, you probably want to see if the resulting
+   build output works as expected on target hardware.
+
+   .. note::
+
+      This step assumes you have a previously built image that is
+      already either running in QEMU or running on actual hardware.
+      Also, it is assumed that for deployment of the image to the
+      target, SSH is installed in the image and if the image is running
+      on real hardware that you have network access to and from your
+      development machine.
+
+   You can deploy your build output to that target hardware by using the
+   ``devtool deploy-target`` command:
+   ::
+
+      $ devtool deploy-target recipe target
+
+   The target is a live target machine running as an SSH server.
+
+   You can, of course, use other methods to deploy the image you built
+   using the ``devtool build-image`` command to actual hardware.
+   ``devtool`` does not provide a specific command to deploy the image
+   to actual hardware.
+
+5. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+   creates any patches corresponding to commits in the local Git
+   repository, updates the recipe to point to them (or creates a
+   ``.bbappend`` file to do so, depending on the specified destination
+   layer), and then resets the recipe so that the recipe is built
+   normally rather than from the workspace.
+   ::
+
+      $ devtool finish recipe layer
+
+   .. note::
+
+      Any changes you want to turn into patches must be staged and
+      committed within the local Git repository before you use the
+      devtool finish
+      command.
+
+   Because there is no need to move the recipe, ``devtool finish``
+   either updates the original recipe in the original layer or the
+   command creates a ``.bbappend`` file in a different layer as provided
+   by layer. Any work you did in the ``oe-local-files`` directory is
+   preserved in the original files next to the recipe during the
+   ``devtool finish`` command.
+
+   As a final process of the ``devtool finish`` command, the state of
+   the standard layers and the upstream source is restored so that you
+   can build the recipe from those areas rather than from the workspace.
+
+   .. note::
+
+      You can use the
+      devtool reset
+      command to put things back should you decide you do not want to
+      proceed with your work. If you do use this command, realize that
+      the source tree is preserved.
+
+Use ``devtool upgrade`` to Create a Version of the Recipe that Supports a Newer Version of the Software
+-------------------------------------------------------------------------------------------------------
+
+The ``devtool upgrade`` command upgrades an existing recipe to that of a
+more up-to-date version found upstream. Throughout the life of software,
+recipes continually undergo version upgrades by their upstream
+publishers. You can use the ``devtool upgrade`` workflow to make sure
+your recipes you are using for builds are up-to-date with their upstream
+counterparts.
+
+.. note::
+
+   Several methods exist by which you can upgrade recipes -
+   devtool upgrade
+   happens to be one. You can read about all the methods by which you
+   can upgrade recipes in the "
+   Upgrading Recipes
+   " section of the Yocto Project Development Tasks Manual.
+
+The ``devtool upgrade`` command is flexible enough to allow you to
+specify source code revision and versioning schemes, extract code into
+or out of the ``devtool``
+:ref:`devtool-the-workspace-layer-structure`,
+and work with any source file forms that the
+:ref:`fetchers <bitbake:bitbake-user-manual/bitbake-user-manual-fetching:fetchers>` support.
+
+The following diagram shows the common development flow used with the
+``devtool upgrade`` command:
+
+.. image:: figures/sdk-devtool-upgrade-flow.png
+   :align: center
+
+1. *Initiate the Upgrade*: The top part of the flow shows the typical
+   scenario by which you use the ``devtool upgrade`` command. The
+   following conditions exist:
+
+   -  The recipe exists in a local layer external to the ``devtool``
+      workspace.
+
+   -  The source files for the new release exist in the same location
+      pointed to by :term:`SRC_URI`
+      in the recipe (e.g. a tarball with the new version number in the
+      name, or as a different revision in the upstream Git repository).
+
+   A common situation is where third-party software has undergone a
+   revision so that it has been upgraded. The recipe you have access to
+   is likely in your own layer. Thus, you need to upgrade the recipe to
+   use the newer version of the software:
+   ::
+
+      $ devtool upgrade -V version recipe
+
+   By default, the ``devtool upgrade`` command extracts source
+   code into the ``sources`` directory in the
+   :ref:`devtool-the-workspace-layer-structure`.
+   If you want the code extracted to any other location, you need to
+   provide the srctree positional argument with the command as follows:
+   $ devtool upgrade -V version recipe srctree
+
+   .. note::
+
+      In this example, the "-V" option specifies the new version. If you
+      don't use "-V", the command upgrades the recipe to the latest
+      version.
+
+   If the source files pointed to by the ``SRC_URI`` statement in the
+   recipe are in a Git repository, you must provide the "-S" option and
+   specify a revision for the software.
+
+   Once ``devtool`` locates the recipe, it uses the ``SRC_URI`` variable
+   to locate the source code and any local patch files from other
+   developers. The result is that the command sets up the source code,
+   the new version of the recipe, and an append file all within the
+   workspace.
+
+   Additionally, if you have any non-patch local files (i.e. files
+   referred to with ``file://`` entries in ``SRC_URI`` statement
+   excluding ``*.patch/`` or ``*.diff``), these files are copied to an
+   ``oe-local-files`` folder under the newly created source tree.
+   Copying the files here gives you a convenient area from which you can
+   modify the files. Any changes or additions you make to those files
+   are incorporated into the build the next time you build the software
+   just as are other changes you might have made to the source.
+
+2. *Resolve any Conflicts created by the Upgrade*: Conflicts could exist
+   due to the software being upgraded to a new version. Conflicts occur
+   if your recipe specifies some patch files in ``SRC_URI`` that
+   conflict with changes made in the new version of the software. For
+   such cases, you need to resolve the conflicts by editing the source
+   and following the normal ``git rebase`` conflict resolution process.
+
+   Before moving onto the next step, be sure to resolve any such
+   conflicts created through use of a newer or different version of the
+   software.
+
+3. *Build the Recipe or Rebuild the Image*: The next step you take
+   depends on what you are going to do with the new code.
+
+   If you need to eventually move the build output to the target
+   hardware, use the following ``devtool`` command:
+   ::
+
+      $ devtool build recipe
+
+   On the other hand, if you want an image to contain the recipe's
+   packages from the workspace for immediate deployment onto a device
+   (e.g. for testing purposes), you can use the ``devtool build-image``
+   command:
+   ::
+
+      $ devtool build-image image
+
+4. *Deploy the Build Output*: When you use the ``devtool build`` command
+   or ``bitbake`` to build your recipe, you probably want to see if the
+   resulting build output works as expected on target hardware.
+
+   .. note::
+
+      This step assumes you have a previously built image that is
+      already either running in QEMU or running on actual hardware.
+      Also, it is assumed that for deployment of the image to the
+      target, SSH is installed in the image and if the image is running
+      on real hardware that you have network access to and from your
+      development machine.
+
+   You can deploy your build output to that target hardware by using the
+   ``devtool deploy-target`` command: $ devtool deploy-target recipe
+   target The target is a live target machine running as an SSH server.
+
+   You can, of course, also deploy the image you build using the
+   ``devtool build-image`` command to actual hardware. However,
+   ``devtool`` does not provide a specific command that allows you to do
+   this.
+
+5. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+   creates any patches corresponding to commits in the local Git
+   repository, moves the new recipe to a more permanent layer, and then
+   resets the recipe so that the recipe is built normally rather than
+   from the workspace.
+
+   Any work you did in the ``oe-local-files`` directory is preserved in
+   the original files next to the recipe during the ``devtool finish``
+   command.
+
+   If you specify a destination layer that is the same as the original
+   source, then the old version of the recipe and associated files are
+   removed prior to adding the new version.
+   ::
+
+      $ devtool finish recipe layer
+
+   .. note::
+
+      Any changes you want to turn into patches must be committed to the
+      Git repository in the source tree.
+
+   As a final process of the ``devtool finish`` command, the state of
+   the standard layers and the upstream source is restored so that you
+   can build the recipe from those areas rather than the workspace.
+
+   .. note::
+
+      You can use the
+      devtool reset
+      command to put things back should you decide you do not want to
+      proceed with your work. If you do use this command, realize that
+      the source tree is preserved.
+
+A Closer Look at ``devtool add``
+================================
+
+The ``devtool add`` command automatically creates a recipe based on the
+source tree you provide with the command. Currently, the command has
+support for the following:
+
+-  Autotools (``autoconf`` and ``automake``)
+
+-  CMake
+
+-  Scons
+
+-  ``qmake``
+
+-  Plain ``Makefile``
+
+-  Out-of-tree kernel module
+
+-  Binary package (i.e. "-b" option)
+
+-  Node.js module
+
+-  Python modules that use ``setuptools`` or ``distutils``
+
+Apart from binary packages, the determination of how a source tree
+should be treated is automatic based on the files present within that
+source tree. For example, if a ``CMakeLists.txt`` file is found, then
+the source tree is assumed to be using CMake and is treated accordingly.
+
+.. note::
+
+   In most cases, you need to edit the automatically generated recipe in
+   order to make it build properly. Typically, you would go through
+   several edit and build cycles until the recipe successfully builds.
+   Once the recipe builds, you could use possible further iterations to
+   test the recipe on the target device.
+
+The remainder of this section covers specifics regarding how parts of
+the recipe are generated.
+
+Name and Version
+----------------
+
+If you do not specify a name and version on the command line,
+``devtool add`` uses various metadata within the source tree in an
+attempt to determine the name and version of the software being built.
+Based on what the tool determines, ``devtool`` sets the name of the
+created recipe file accordingly.
+
+If ``devtool`` cannot determine the name and version, the command prints
+an error. For such cases, you must re-run the command and provide the
+name and version, just the name, or just the version as part of the
+command line.
+
+Sometimes the name or version determined from the source tree might be
+incorrect. For such a case, you must reset the recipe:
+::
+
+   $ devtool reset -n recipename
+
+After running the ``devtool reset`` command, you need to
+run ``devtool add`` again and provide the name or the version.
+
+Dependency Detection and Mapping
+--------------------------------
+
+The ``devtool add`` command attempts to detect build-time dependencies
+and map them to other recipes in the system. During this mapping, the
+command fills in the names of those recipes as part of the
+:term:`DEPENDS` variable within the
+recipe. If a dependency cannot be mapped, ``devtool`` places a comment
+in the recipe indicating such. The inability to map a dependency can
+result from naming not being recognized or because the dependency simply
+is not available. For cases where the dependency is not available, you
+must use the ``devtool add`` command to add an additional recipe that
+satisfies the dependency. Once you add that recipe, you need to update
+the ``DEPENDS`` variable in the original recipe to include the new
+recipe.
+
+If you need to add runtime dependencies, you can do so by adding the
+following to your recipe:
+::
+
+   RDEPENDS_${PN} += "dependency1 dependency2 ..."
+
+.. note::
+
+   The
+   devtool add
+   command often cannot distinguish between mandatory and optional
+   dependencies. Consequently, some of the detected dependencies might
+   in fact be optional. When in doubt, consult the documentation or the
+   configure script for the software the recipe is building for further
+   details. In some cases, you might find you can substitute the
+   dependency with an option that disables the associated functionality
+   passed to the configure script.
+
+License Detection
+-----------------
+
+The ``devtool add`` command attempts to determine if the software you
+are adding is able to be distributed under a common, open-source
+license. If so, the command sets the
+:term:`LICENSE` value accordingly.
+You should double-check the value added by the command against the
+documentation or source files for the software you are building and, if
+necessary, update that ``LICENSE`` value.
+
+The ``devtool add`` command also sets the
+:term:`LIC_FILES_CHKSUM`
+value to point to all files that appear to be license-related. Realize
+that license statements often appear in comments at the top of source
+files or within the documentation. In such cases, the command does not
+recognize those license statements. Consequently, you might need to
+amend the ``LIC_FILES_CHKSUM`` variable to point to one or more of those
+comments if present. Setting ``LIC_FILES_CHKSUM`` is particularly
+important for third-party software. The mechanism attempts to ensure
+correct licensing should you upgrade the recipe to a newer upstream
+version in future. Any change in licensing is detected and you receive
+an error prompting you to check the license text again.
+
+If the ``devtool add`` command cannot determine licensing information,
+``devtool`` sets the ``LICENSE`` value to "CLOSED" and leaves the
+``LIC_FILES_CHKSUM`` value unset. This behavior allows you to continue
+with development even though the settings are unlikely to be correct in
+all cases. You should check the documentation or source files for the
+software you are building to determine the actual license.
+
+Adding Makefile-Only Software
+-----------------------------
+
+The use of Make by itself is very common in both proprietary and
+open-source software. Unfortunately, Makefiles are often not written
+with cross-compilation in mind. Thus, ``devtool add`` often cannot do
+very much to ensure that these Makefiles build correctly. It is very
+common, for example, to explicitly call ``gcc`` instead of using the
+:term:`CC` variable. Usually, in a
+cross-compilation environment, ``gcc`` is the compiler for the build
+host and the cross-compiler is named something similar to
+``arm-poky-linux-gnueabi-gcc`` and might require arguments (e.g. to
+point to the associated sysroot for the target machine).
+
+When writing a recipe for Makefile-only software, keep the following in
+mind:
+
+-  You probably need to patch the Makefile to use variables instead of
+   hardcoding tools within the toolchain such as ``gcc`` and ``g++``.
+
+-  The environment in which Make runs is set up with various standard
+   variables for compilation (e.g. ``CC``, ``CXX``, and so forth) in a
+   similar manner to the environment set up by the SDK's environment
+   setup script. One easy way to see these variables is to run the
+   ``devtool build`` command on the recipe and then look in
+   ``oe-logs/run.do_compile``. Towards the top of this file, a list of
+   environment variables exists that are being set. You can take
+   advantage of these variables within the Makefile.
+
+-  If the Makefile sets a default for a variable using "=", that default
+   overrides the value set in the environment, which is usually not
+   desirable. For this case, you can either patch the Makefile so it
+   sets the default using the "?=" operator, or you can alternatively
+   force the value on the ``make`` command line. To force the value on
+   the command line, add the variable setting to
+   :term:`EXTRA_OEMAKE` or
+   :term:`PACKAGECONFIG_CONFARGS`
+   within the recipe. Here is an example using ``EXTRA_OEMAKE``:
+   ::
+
+      EXTRA_OEMAKE += "'CC=${CC}' 'CXX=${CXX}'"
+
+   In the above example,
+   single quotes are used around the variable settings as the values are
+   likely to contain spaces because required default options are passed
+   to the compiler.
+
+-  Hardcoding paths inside Makefiles is often problematic in a
+   cross-compilation environment. This is particularly true because
+   those hardcoded paths often point to locations on the build host and
+   thus will either be read-only or will introduce contamination into
+   the cross-compilation because they are specific to the build host
+   rather than the target. Patching the Makefile to use prefix variables
+   or other path variables is usually the way to handle this situation.
+
+-  Sometimes a Makefile runs target-specific commands such as
+   ``ldconfig``. For such cases, you might be able to apply patches that
+   remove these commands from the Makefile.
+
+Adding Native Tools
+-------------------
+
+Often, you need to build additional tools that run on the :term:`Build
+Host` as opposed to
+the target. You should indicate this requirement by using one of the
+following methods when you run ``devtool add``:
+
+-  Specify the name of the recipe such that it ends with "-native".
+   Specifying the name like this produces a recipe that only builds for
+   the build host.
+
+-  Specify the "DASHDASHalso-native" option with the ``devtool add``
+   command. Specifying this option creates a recipe file that still
+   builds for the target but also creates a variant with a "-native"
+   suffix that builds for the build host.
+
+.. note::
+
+   If you need to add a tool that is shipped as part of a source tree
+   that builds code for the target, you can typically accomplish this by
+   building the native and target parts separately rather than within
+   the same compilation process. Realize though that with the
+   "DASHDASHalso-native" option, you can add the tool using just one
+   recipe file.
+
+Adding Node.js Modules
+----------------------
+
+You can use the ``devtool add`` command two different ways to add
+Node.js modules: 1) Through ``npm`` and, 2) from a repository or local
+source.
+
+Use the following form to add Node.js modules through ``npm``:
+::
+
+   $ devtool add "npm://registry.npmjs.org;name=forever;version=0.15.1"
+
+The name and
+version parameters are mandatory. Lockdown and shrinkwrap files are
+generated and pointed to by the recipe in order to freeze the version
+that is fetched for the dependencies according to the first time. This
+also saves checksums that are verified on future fetches. Together,
+these behaviors ensure the reproducibility and integrity of the build.
+
+.. note::
+
+   -  You must use quotes around the URL. The ``devtool add`` does not
+      require the quotes, but the shell considers ";" as a splitter
+      between multiple commands. Thus, without the quotes,
+      ``devtool add`` does not receive the other parts, which results in
+      several "command not found" errors.
+
+   -  In order to support adding Node.js modules, a ``nodejs`` recipe
+      must be part of your SDK.
+
+As mentioned earlier, you can also add Node.js modules directly from a
+repository or local source tree. To add modules this way, use
+``devtool add`` in the following form:
+::
+
+   $ devtool add https://github.com/diversario/node-ssdp
+
+In this example, ``devtool``
+fetches the specified Git repository, detects the code as Node.js code,
+fetches dependencies using ``npm``, and sets
+:term:`SRC_URI` accordingly.
+
+Working With Recipes
+====================
+
+When building a recipe using the ``devtool build`` command, the typical
+build progresses as follows:
+
+1. Fetch the source
+
+2. Unpack the source
+
+3. Configure the source
+
+4. Compile the source
+
+5. Install the build output
+
+6. Package the installed output
+
+For recipes in the workspace, fetching and unpacking is disabled as the
+source tree has already been prepared and is persistent. Each of these
+build steps is defined as a function (task), usually with a "do\_" prefix
+(e.g. :ref:`ref-tasks-fetch`,
+:ref:`ref-tasks-unpack`, and so
+forth). These functions are typically shell scripts but can instead be
+written in Python.
+
+If you look at the contents of a recipe, you will see that the recipe
+does not include complete instructions for building the software.
+Instead, common functionality is encapsulated in classes inherited with
+the ``inherit`` directive. This technique leaves the recipe to describe
+just the things that are specific to the software being built. A
+:ref:`base <ref-classes-base>` class exists that
+is implicitly inherited by all recipes and provides the functionality
+that most recipes typically need.
+
+The remainder of this section presents information useful when working
+with recipes.
+
+Finding Logs and Work Files
+---------------------------
+
+After the first run of the ``devtool build`` command, recipes that were
+previously created using the ``devtool add`` command or whose sources
+were modified using the ``devtool modify`` command contain symbolic
+links created within the source tree:
+
+-  ``oe-logs``: This link points to the directory in which log files and
+   run scripts for each build step are created.
+
+-  ``oe-workdir``: This link points to the temporary work area for the
+   recipe. The following locations under ``oe-workdir`` are particularly
+   useful:
+
+   -  ``image/``: Contains all of the files installed during the
+      :ref:`ref-tasks-install` stage.
+      Within a recipe, this directory is referred to by the expression
+      ``${``\ :term:`D`\ ``}``.
+
+   -  ``sysroot-destdir/``: Contains a subset of files installed within
+      ``do_install`` that have been put into the shared sysroot. For
+      more information, see the "`Sharing Files Between
+      Recipes <#sdk-sharing-files-between-recipes>`__" section.
+
+   -  ``packages-split/``: Contains subdirectories for each package
+      produced by the recipe. For more information, see the
+      "`Packaging <#sdk-packaging>`__" section.
+
+You can use these links to get more information on what is happening at
+each build step.
+
+Setting Configure Arguments
+---------------------------
+
+If the software your recipe is building uses GNU autoconf, then a fixed
+set of arguments is passed to it to enable cross-compilation plus any
+extras specified by
+:term:`EXTRA_OECONF` or
+:term:`PACKAGECONFIG_CONFARGS`
+set within the recipe. If you wish to pass additional options, add them
+to ``EXTRA_OECONF`` or ``PACKAGECONFIG_CONFARGS``. Other supported build
+tools have similar variables (e.g.
+:term:`EXTRA_OECMAKE` for
+CMake, :term:`EXTRA_OESCONS`
+for Scons, and so forth). If you need to pass anything on the ``make``
+command line, you can use ``EXTRA_OEMAKE`` or the
+:term:`PACKAGECONFIG_CONFARGS`
+variables to do so.
+
+You can use the ``devtool configure-help`` command to help you set the
+arguments listed in the previous paragraph. The command determines the
+exact options being passed, and shows them to you along with any custom
+arguments specified through ``EXTRA_OECONF`` or
+``PACKAGECONFIG_CONFARGS``. If applicable, the command also shows you
+the output of the configure script's "DASHDASHhelp" option as a
+reference.
+
+Sharing Files Between Recipes
+-----------------------------
+
+Recipes often need to use files provided by other recipes on the
+:term:`Build Host`. For example,
+an application linking to a common library needs access to the library
+itself and its associated headers. The way this access is accomplished
+within the extensible SDK is through the sysroot. One sysroot exists per
+"machine" for which the SDK is being built. In practical terms, this
+means a sysroot exists for the target machine, and a sysroot exists for
+the build host.
+
+Recipes should never write files directly into the sysroot. Instead,
+files should be installed into standard locations during the
+:ref:`ref-tasks-install` task within
+the ``${``\ :term:`D`\ ``}`` directory. A
+subset of these files automatically goes into the sysroot. The reason
+for this limitation is that almost all files that go into the sysroot
+are cataloged in manifests in order to ensure they can be removed later
+when a recipe is modified or removed. Thus, the sysroot is able to
+remain free from stale files.
+
+Packaging
+---------
+
+Packaging is not always particularly relevant within the extensible SDK.
+However, if you examine how build output gets into the final image on
+the target device, it is important to understand packaging because the
+contents of the image are expressed in terms of packages and not
+recipes.
+
+During the :ref:`ref-tasks-package`
+task, files installed during the
+:ref:`ref-tasks-install` task are
+split into one main package, which is almost always named the same as
+the recipe, and into several other packages. This separation exists
+because not all of those installed files are useful in every image. For
+example, you probably do not need any of the documentation installed in
+a production image. Consequently, for each recipe the documentation
+files are separated into a ``-doc`` package. Recipes that package
+software containing optional modules or plugins might undergo additional
+package splitting as well.
+
+After building a recipe, you can see where files have gone by looking in
+the ``oe-workdir/packages-split`` directory, which contains a
+subdirectory for each package. Apart from some advanced cases, the
+:term:`PACKAGES` and
+:term:`FILES` variables controls
+splitting. The ``PACKAGES`` variable lists all of the packages to be
+produced, while the ``FILES`` variable specifies which files to include
+in each package by using an override to specify the package. For
+example, ``FILES_${PN}`` specifies the files to go into the main package
+(i.e. the main package has the same name as the recipe and
+``${``\ :term:`PN`\ ``}`` evaluates to the
+recipe name). The order of the ``PACKAGES`` value is significant. For
+each installed file, the first package whose ``FILES`` value matches the
+file is the package into which the file goes. Defaults exist for both
+the ``PACKAGES`` and ``FILES`` variables. Consequently, you might find
+you do not even need to set these variables in your recipe unless the
+software the recipe is building installs files into non-standard
+locations.
+
+Restoring the Target Device to its Original State
+=================================================
+
+If you use the ``devtool deploy-target`` command to write a recipe's
+build output to the target, and you are working on an existing component
+of the system, then you might find yourself in a situation where you
+need to restore the original files that existed prior to running the
+``devtool deploy-target`` command. Because the ``devtool deploy-target``
+command backs up any files it overwrites, you can use the
+``devtool undeploy-target`` command to restore those files and remove
+any other files the recipe deployed. Consider the following example:
+::
+
+   $ devtool undeploy-target lighttpd root@192.168.7.2
+
+If you have deployed
+multiple applications, you can remove them all using the "-a" option
+thus restoring the target device to its original state:
+::
+
+   $ devtool undeploy-target -a root@192.168.7.2
+
+Information about files deployed to
+the target as well as any backed up files are stored on the target
+itself. This storage, of course, requires some additional space on the
+target machine.
+
+.. note::
+
+   The
+   devtool deploy-target
+   and
+   devtool undeploy-target
+   commands do not currently interact with any package management system
+   on the target device (e.g. RPM or OPKG). Consequently, you should not
+   intermingle
+   devtool deploy-target
+   and package manager operations on the target device. Doing so could
+   result in a conflicting set of files.
+
+Installing Additional Items Into the Extensible SDK
+===================================================
+
+Out of the box the extensible SDK typically only comes with a small
+number of tools and libraries. A minimal SDK starts mostly empty and is
+populated on-demand. Sometimes you must explicitly install extra items
+into the SDK. If you need these extra items, you can first search for
+the items using the ``devtool search`` command. For example, suppose you
+need to link to libGL but you are not sure which recipe provides libGL.
+You can use the following command to find out:
+::
+
+   $ devtool search libGL mesa
+
+A free implementation of the OpenGL API Once you know the recipe
+(i.e. ``mesa`` in this example), you can install it:
+::
+
+   $ devtool sdk-install mesa
+
+By default, the ``devtool sdk-install`` command assumes
+the item is available in pre-built form from your SDK provider. If the
+item is not available and it is acceptable to build the item from
+source, you can add the "-s" option as follows:
+::
+
+   $ devtool sdk-install -s mesa
+
+It is important to remember that building the item from source
+takes significantly longer than installing the pre-built artifact. Also,
+if no recipe exists for the item you want to add to the SDK, you must
+instead add the item using the ``devtool add`` command.
+
+Applying Updates to an Installed Extensible SDK
+===============================================
+
+If you are working with an installed extensible SDK that gets
+occasionally updated (e.g. a third-party SDK), then you will need to
+manually "pull down" the updates into the installed SDK.
+
+To update your installed SDK, use ``devtool`` as follows:
+::
+
+   $ devtool sdk-update
+
+The previous command assumes your SDK provider has set the
+default update URL for you through the
+:term:`SDK_UPDATE_URL`
+variable as described in the "`Providing Updates to the Extensible SDK
+After
+Installation <#sdk-providing-updates-to-the-extensible-sdk-after-installation>`__"
+section. If the SDK provider has not set that default URL, you need to
+specify it yourself in the command as follows: $ devtool sdk-update
+path_to_update_directory
+
+.. note::
+
+   The URL needs to point specifically to a published SDK and not to an
+   SDK installer that you would download and install.
+
+Creating a Derivative SDK With Additional Components
+====================================================
+
+You might need to produce an SDK that contains your own custom
+libraries. A good example would be if you were a vendor with customers
+that use your SDK to build their own platform-specific software and
+those customers need an SDK that has custom libraries. In such a case,
+you can produce a derivative SDK based on the currently installed SDK
+fairly easily by following these steps:
+
+1. If necessary, install an extensible SDK that you want to use as a
+   base for your derivative SDK.
+
+2. Source the environment script for the SDK.
+
+3. Add the extra libraries or other components you want by using the
+   ``devtool add`` command.
+
+4. Run the ``devtool build-sdk`` command.
+
+The previous steps take the recipes added to the workspace and construct
+a new SDK installer that contains those recipes and the resulting binary
+artifacts. The recipes go into their own separate layer in the
+constructed derivative SDK, which leaves the workspace clean and ready
+for users to add their own recipes.