u-boot: Ensure we rebuild on change of VERSION_ID

Systems utilising the obmc-ubi-fs DISTRO_FEATURE may fail to boot a
freshly built image under some circumstances. Typically the error will
be a mismatch in the u-boot environment between the value set in
`kernelname` and the on-flash volume name for the kernel. They differ in
the "Image ID" portion.

The image ID is derived from the VERSION_ID field of `/etc/os-release`,
and is currently added to the u-boot environment by sed-patching both a
patch file adding the necessary information to the appropriate u-boot
header, and the u-boot header itself.

Why the current approach is wrong requires a bit of background on
bitbake:

1. bitbake tasks must be idempotent
2. Building on 1, bitbake caches build state using stamp files
3. bitbake tasks will not be re-run if a stamp exists and the task
   input state matches
4. bitbake requires actions execute in the appropriate build phase

To the issues:

A. The sed-patching was performed by hooking the do_configure() task.
   This is wrong: There's a do_patch() phase whose purpose is to handle
   modifying the source tree, and will handle cache invalidation
   appropriately. The patch modifies the recipe to append the
   sed-patching to the do_patch() phase when the obmc-ubi-fs
   DISTRO_FEATURE is enabled.

B. Sed-patching a patch is unnecessary. We can just sed the target file.
   By appending to the do_patch() phase we know the patches listed in
   SRC_URI have be applied, so drop any mangling of the patch. Note that
   as the existing approach hooked do_configure(), the source (including
   the patch) will not be redeployed, therefore the patch may remain in
   its mangled state.

C. The search regex of the sed line only accounted for the case where
   the source was freshly unpacked and patched, and `kernelname` was
   assigned `kernel-0`. This will not be the case under a rebuild of a
   new commit to the OpenBMC repository that doesn't touch u-boot, as
   the source will not be redeployed due to the caching behaviour.

D: We need an explicit dependency for the do_patch() phase on
   os-release:do_populate_sysroot to ensure that if os-release changes
   that we redo the patch phase to pick up the new image ID in the
   u-boot environment.

The change addresses all of the issues outlined above.

Change-Id: I01c95693053cb58aa0c0a90da04a03bca8eeec9e
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
1 file changed
tree: 67ca377e7b14ab776080445aca92e7d0fab4c30d
  1. import-layers/
  2. meta-openbmc-bsp/
  3. meta-openbmc-machines/
  4. meta-phosphor/
  5. .gitignore
  6. .gitreview
  7. .templateconf
  8. openbmc-env
  9. README.md
  10. setup
README.md

OpenBMC

Build Status

The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.

Setting up your OpenBMC project

1) Prerequisite

  • Ubuntu 14.04
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
  • Fedora 23
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake
sudo dnf groupinstall "C Development Tools and Libraries"

2) Download the source

git clone git@github.com:openbmc/openbmc.git
cd openbmc

3) Target your hardware

Any build requires an environment variable known as TEMPLATECONF to be set to a hardware target. OpenBMC has placed all known hardware targets in a standard directory structure meta-openbmc-machines/meta-[architecture]/meta-[company]/meta-[target]. You can see all of the known targets with find meta-openbmc-machines -type d -name conf. Choose the hardware target and then move to the next step. Additional examples can be found in the OpenBMC Cheatsheet

MachineTEMPLATECONF
Palmettometa-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf
Zaiusmeta-openbmc-machines/meta-openpower/meta-ingrasys/meta-zaius/conf
Witherspoonmeta-openbmc-machines/meta-openpower/meta-ibm/meta-witherspoon/conf

As an example target Palmetto

export TEMPLATECONF=meta-openbmc-machines/meta-openpower/meta-ibm/meta-palmetto/conf

4) Build

. openbmc-env
bitbake obmc-phosphor-image

Additional details can be found in the docs repository.

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Features of OpenBMC

Feature List

  • REST Management
  • IPMI
  • SSH based SOL
  • Power and Cooling Management
  • Event Logs
  • Zeroconf discoverable
  • Sensors
  • Inventory
  • LED Management
  • Host Watchdog
  • Simulation
  • Code Update Support for multiple BMC/BIOS images
  • POWER On Chip Controller (OCC) Support

Features In Progress

  • Full IPMI 2.0 Compliance with DCMI
  • Verified Boot
  • HTML5 Java Script Web User Interface
  • BMC RAS

Features Requested but need help

  • OpenCompute Redfish Compliance
  • OpenBMC performance monitoring
  • cgroup user management and policies
  • Remote KVM
  • Remote USB
  • OpenStack Ironic Integration
  • QEMU enhancements

Finding out more

Dive deeper in to OpenBMC by opening the docs repository.

Contact