commit | 66160e9b8617fdbc00ae9dcce49a8afbdce475b3 | [log] [tgz] |
---|---|---|
author | Andrew Geissler <geissonator@yahoo.com> | Tue Oct 20 13:49:36 2020 -0500 |
committer | Andrew Geissler <geissonator@yahoo.com> | Thu Oct 22 14:13:32 2020 -0500 |
tree | fb361c98aac2e0e06f6dffd82107b1984aaf6ce3 | |
parent | 8f1ebaba28c59f19b12de7ecfdcc5b4c4ac4ce92 [diff] |
wdt-on-panic: remove from withespoon and mihawk At a high level, the purpose of this feature was to utilize the BMC hardware watchdogs to switch the BMC boot flash when certain errors were hit which were preventing the BMC from booting. At a high level, this worked but some critical issues were found with this: - No failure data is gathered to understand why the boot flash was switched - No event or error is logged to notify the user of the system that the boot flash has switched - At times, switching sides didn't help because the BMC network information was not properly copied to the other boot flash which caused even more confusion for the user Give the above, this patch proposes a reset on this logic until we can come back and address the above issues and get this working end to end. (From meta-ibm rev: d5069cffe865ea104915d8e0fdbe8d7d145644fc) Signed-off-by: Andrew Geissler <geissonator@yahoo.com> Change-Id: I8c8d2b30c80940f4674e6c6848bd22f759e943a5 Signed-off-by: Andrew Geissler <geissonator@yahoo.com>
The OpenBMC project can be described as a Linux distribution for embedded devices that have a BMC; typically, but not limited to, things like servers, top of rack switches or RAID appliances. The OpenBMC stack uses technologies such as Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your server platform.
sudo apt-get install -y git build-essential libsdl1.2-dev texinfo gawk chrpath diffstat
sudo dnf install -y git patch diffstat texinfo chrpath SDL-devel bitbake \ rpcgen perl-Thread-Queue perl-bignum perl-Crypt-OpenSSL-Bignum sudo dnf groupinstall "C Development Tools and Libraries"
git clone git@github.com:openbmc/openbmc.git cd openbmc
Any build requires an environment set up according to your hardware target. There is a special script in the root of this repository that can be used to configure the environment as needed. The script is called setup
and takes the name of your hardware target as an argument.
The script needs to be sourced while in the top directory of the OpenBMC repository clone, and, if run without arguments, will display the list of supported hardware targets, see the following example:
$ . setup <machine> [build_dir] Target machine must be specified. Use one of: centriq2400-rep nicole stardragon4800-rep2 f0b olympus swift fp5280g2 olympus-nuvoton tiogapass gsj on5263m5 vesnin hr630 palmetto witherspoon hr855xg2 qemuarm witherspoon-128 lanyang quanta-q71l witherspoon-tacoma mihawk rainier yosemitev2 msn romulus zaius neptune s2600wf
Once you know the target (e.g. romulus), source the setup
script as follows:
. setup romulus build
For evb-ast2500, please use the below command to specify the machine config, because the machine in meta-aspeed
layer is in a BSP layer and does not build the openbmc image.
TEMPLATECONF=meta-evb/meta-evb-aspeed/meta-evb-ast2500/conf . openbmc-env
bitbake obmc-phosphor-image
Additional details can be found in the docs repository.
The OpenBMC community maintains a set of tutorials new users can go through to get up to speed on OpenBMC development out here
Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check
directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.
Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.
Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.
Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.
Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.
First, please do a search on the internet. There's a good chance your question has already been asked.
For general questions, please use the openbmc tag on Stack Overflow. Please review the discussion on Stack Overflow licensing before posting any code.
For technical discussions, please see contact info below for IRC and mailing list information. Please don't file an issue to ask a question. You'll get faster results by using the mailing list or IRC.
Feature List
Features In Progress
Features Requested but need help
Dive deeper into OpenBMC by opening the docs repository.
The Technical Steering Committee (TSC) guides the project. Members are: