blob: b42dac6b888c80a298f77254c20166267da2e5bd [file] [log] [blame]
# This file is part of pybootchartgui.
# pybootchartgui is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pybootchartgui is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.
import os
import string
import re
import sys
import tarfile
import time
from collections import defaultdict
from functools import reduce
from .samples import *
from .process_tree import ProcessTree
if sys.version_info >= (3, 0):
long = int
# Parsing produces as its end result a 'Trace'
class Trace:
def __init__(self, writer, paths, options):
self.processes = {}
self.start = {}
self.end = {}
self.min = None
self.max = None
self.headers = None
self.disk_stats = []
self.ps_stats = None
self.taskstats = None
self.cpu_stats = []
self.cmdline = None
self.kernel = None
self.kernel_tree = None
self.filename = None
self.parent_map = None
self.mem_stats = []
self.monitor_disk = None
self.times = [] # Always empty, but expected by draw.py when drawing system charts.
if len(paths):
parse_paths (writer, self, paths)
if not self.valid():
raise ParseError("empty state: '%s' does not contain a valid bootchart" % ", ".join(paths))
if options.full_time:
self.min = min(self.start.keys())
self.max = max(self.end.keys())
# Rendering system charts depends on start and end
# time. Provide them where the original drawing code expects
# them, i.e. in proc_tree.
class BitbakeProcessTree:
def __init__(self, start_time, end_time):
self.start_time = start_time
self.end_time = end_time
self.duration = self.end_time - self.start_time
self.proc_tree = BitbakeProcessTree(min(self.start.keys()),
max(self.end.keys()))
return
# Turn that parsed information into something more useful
# link processes into a tree of pointers, calculate statistics
self.compile(writer)
# Crop the chart to the end of the first idle period after the given
# process
if options.crop_after:
idle = self.crop (writer, options.crop_after)
else:
idle = None
# Annotate other times as the first start point of given process lists
self.times = [ idle ]
if options.annotate:
for procnames in options.annotate:
names = [x[:15] for x in procnames.split(",")]
for proc in self.ps_stats.process_map.values():
if proc.cmd in names:
self.times.append(proc.start_time)
break
else:
self.times.append(None)
self.proc_tree = ProcessTree(writer, self.kernel, self.ps_stats,
self.ps_stats.sample_period,
self.headers.get("profile.process"),
options.prune, idle, self.taskstats,
self.parent_map is not None)
if self.kernel is not None:
self.kernel_tree = ProcessTree(writer, self.kernel, None, 0,
self.headers.get("profile.process"),
False, None, None, True)
def valid(self):
return len(self.processes) != 0
return self.headers != None and self.disk_stats != None and \
self.ps_stats != None and self.cpu_stats != None
def add_process(self, process, start, end):
self.processes[process] = [start, end]
if start not in self.start:
self.start[start] = []
if process not in self.start[start]:
self.start[start].append(process)
if end not in self.end:
self.end[end] = []
if process not in self.end[end]:
self.end[end].append(process)
def compile(self, writer):
def find_parent_id_for(pid):
if pid is 0:
return 0
ppid = self.parent_map.get(pid)
if ppid:
# many of these double forks are so short lived
# that we have no samples, or process info for them
# so climb the parent hierarcy to find one
if int (ppid * 1000) not in self.ps_stats.process_map:
# print "Pid '%d' short lived with no process" % ppid
ppid = find_parent_id_for (ppid)
# else:
# print "Pid '%d' has an entry" % ppid
else:
# print "Pid '%d' missing from pid map" % pid
return 0
return ppid
# merge in the cmdline data
if self.cmdline is not None:
for proc in self.ps_stats.process_map.values():
rpid = int (proc.pid // 1000)
if rpid in self.cmdline:
cmd = self.cmdline[rpid]
proc.exe = cmd['exe']
proc.args = cmd['args']
# else:
# print "proc %d '%s' not in cmdline" % (rpid, proc.exe)
# re-parent any stray orphans if we can
if self.parent_map is not None:
for process in self.ps_stats.process_map.values():
ppid = find_parent_id_for (int(process.pid // 1000))
if ppid:
process.ppid = ppid * 1000
# stitch the tree together with pointers
for process in self.ps_stats.process_map.values():
process.set_parent (self.ps_stats.process_map)
# count on fingers variously
for process in self.ps_stats.process_map.values():
process.calc_stats (self.ps_stats.sample_period)
def crop(self, writer, crop_after):
def is_idle_at(util, start, j):
k = j + 1
while k < len(util) and util[k][0] < start + 300:
k += 1
k = min(k, len(util)-1)
if util[j][1] >= 0.25:
return False
avgload = sum(u[1] for u in util[j:k+1]) / (k-j+1)
if avgload < 0.25:
return True
else:
return False
def is_idle(util, start):
for j in range(0, len(util)):
if util[j][0] < start:
continue
return is_idle_at(util, start, j)
else:
return False
names = [x[:15] for x in crop_after.split(",")]
for proc in self.ps_stats.process_map.values():
if proc.cmd in names or proc.exe in names:
writer.info("selected proc '%s' from list (start %d)"
% (proc.cmd, proc.start_time))
break
if proc is None:
writer.warn("no selected crop proc '%s' in list" % crop_after)
cpu_util = [(sample.time, sample.user + sample.sys + sample.io) for sample in self.cpu_stats]
disk_util = [(sample.time, sample.util) for sample in self.disk_stats]
idle = None
for i in range(0, len(cpu_util)):
if cpu_util[i][0] < proc.start_time:
continue
if is_idle_at(cpu_util, cpu_util[i][0], i) \
and is_idle(disk_util, cpu_util[i][0]):
idle = cpu_util[i][0]
break
if idle is None:
writer.warn ("not idle after proc '%s'" % crop_after)
return None
crop_at = idle + 300
writer.info ("cropping at time %d" % crop_at)
while len (self.cpu_stats) \
and self.cpu_stats[-1].time > crop_at:
self.cpu_stats.pop()
while len (self.disk_stats) \
and self.disk_stats[-1].time > crop_at:
self.disk_stats.pop()
self.ps_stats.end_time = crop_at
cropped_map = {}
for key, value in self.ps_stats.process_map.items():
if (value.start_time <= crop_at):
cropped_map[key] = value
for proc in cropped_map.values():
proc.duration = min (proc.duration, crop_at - proc.start_time)
while len (proc.samples) \
and proc.samples[-1].time > crop_at:
proc.samples.pop()
self.ps_stats.process_map = cropped_map
return idle
class ParseError(Exception):
"""Represents errors during parse of the bootchart."""
def __init__(self, value):
self.value = value
def __str__(self):
return self.value
def _parse_headers(file):
"""Parses the headers of the bootchart."""
def parse(acc, line):
(headers, last) = acc
if '=' in line:
last, value = map (lambda x: x.strip(), line.split('=', 1))
else:
value = line.strip()
headers[last] += value
return headers, last
return reduce(parse, file.read().split('\n'), (defaultdict(str),''))[0]
def _parse_timed_blocks(file):
"""Parses (ie., splits) a file into so-called timed-blocks. A
timed-block consists of a timestamp on a line by itself followed
by zero or more lines of data for that point in time."""
def parse(block):
lines = block.split('\n')
if not lines:
raise ParseError('expected a timed-block consisting a timestamp followed by data lines')
try:
return (int(lines[0]), lines[1:])
except ValueError:
raise ParseError("expected a timed-block, but timestamp '%s' is not an integer" % lines[0])
blocks = file.read().split('\n\n')
return [parse(block) for block in blocks if block.strip() and not block.endswith(' not running\n')]
def _parse_proc_ps_log(writer, file):
"""
* See proc(5) for details.
*
* {pid, comm, state, ppid, pgrp, session, tty_nr, tpgid, flags, minflt, cminflt, majflt, cmajflt, utime, stime,
* cutime, cstime, priority, nice, 0, itrealvalue, starttime, vsize, rss, rlim, startcode, endcode, startstack,
* kstkesp, kstkeip}
"""
processMap = {}
ltime = 0
timed_blocks = _parse_timed_blocks(file)
for time, lines in timed_blocks:
for line in lines:
if not line: continue
tokens = line.split(' ')
if len(tokens) < 21:
continue
offset = [index for index, token in enumerate(tokens[1:]) if token[-1] == ')'][0]
pid, cmd, state, ppid = int(tokens[0]), ' '.join(tokens[1:2+offset]), tokens[2+offset], int(tokens[3+offset])
userCpu, sysCpu, stime = int(tokens[13+offset]), int(tokens[14+offset]), int(tokens[21+offset])
# magic fixed point-ness ...
pid *= 1000
ppid *= 1000
if pid in processMap:
process = processMap[pid]
process.cmd = cmd.strip('()') # why rename after latest name??
else:
process = Process(writer, pid, cmd.strip('()'), ppid, min(time, stime))
processMap[pid] = process
if process.last_user_cpu_time is not None and process.last_sys_cpu_time is not None and ltime is not None:
userCpuLoad, sysCpuLoad = process.calc_load(userCpu, sysCpu, max(1, time - ltime))
cpuSample = CPUSample('null', userCpuLoad, sysCpuLoad, 0.0)
process.samples.append(ProcessSample(time, state, cpuSample))
process.last_user_cpu_time = userCpu
process.last_sys_cpu_time = sysCpu
ltime = time
if len (timed_blocks) < 2:
return None
startTime = timed_blocks[0][0]
avgSampleLength = (ltime - startTime)/(len (timed_blocks) - 1)
return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)
def _parse_taskstats_log(writer, file):
"""
* See bootchart-collector.c for details.
*
* { pid, ppid, comm, cpu_run_real_total, blkio_delay_total, swapin_delay_total }
*
"""
processMap = {}
pidRewrites = {}
ltime = None
timed_blocks = _parse_timed_blocks(file)
for time, lines in timed_blocks:
# we have no 'stime' from taskstats, so prep 'init'
if ltime is None:
process = Process(writer, 1, '[init]', 0, 0)
processMap[1000] = process
ltime = time
# continue
for line in lines:
if not line: continue
tokens = line.split(' ')
if len(tokens) != 6:
continue
opid, ppid, cmd = int(tokens[0]), int(tokens[1]), tokens[2]
cpu_ns, blkio_delay_ns, swapin_delay_ns = long(tokens[-3]), long(tokens[-2]), long(tokens[-1]),
# make space for trees of pids
opid *= 1000
ppid *= 1000
# when the process name changes, we re-write the pid.
if opid in pidRewrites:
pid = pidRewrites[opid]
else:
pid = opid
cmd = cmd.strip('(').strip(')')
if pid in processMap:
process = processMap[pid]
if process.cmd != cmd:
pid += 1
pidRewrites[opid] = pid
# print "process mutation ! '%s' vs '%s' pid %s -> pid %s\n" % (process.cmd, cmd, opid, pid)
process = process.split (writer, pid, cmd, ppid, time)
processMap[pid] = process
else:
process.cmd = cmd;
else:
process = Process(writer, pid, cmd, ppid, time)
processMap[pid] = process
delta_cpu_ns = (float) (cpu_ns - process.last_cpu_ns)
delta_blkio_delay_ns = (float) (blkio_delay_ns - process.last_blkio_delay_ns)
delta_swapin_delay_ns = (float) (swapin_delay_ns - process.last_swapin_delay_ns)
# make up some state data ...
if delta_cpu_ns > 0:
state = "R"
elif delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
state = "D"
else:
state = "S"
# retain the ns timing information into a CPUSample - that tries
# with the old-style to be a %age of CPU used in this time-slice.
if delta_cpu_ns + delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
# print "proc %s cpu_ns %g delta_cpu %g" % (cmd, cpu_ns, delta_cpu_ns)
cpuSample = CPUSample('null', delta_cpu_ns, 0.0,
delta_blkio_delay_ns,
delta_swapin_delay_ns)
process.samples.append(ProcessSample(time, state, cpuSample))
process.last_cpu_ns = cpu_ns
process.last_blkio_delay_ns = blkio_delay_ns
process.last_swapin_delay_ns = swapin_delay_ns
ltime = time
if len (timed_blocks) < 2:
return None
startTime = timed_blocks[0][0]
avgSampleLength = (ltime - startTime)/(len(timed_blocks)-1)
return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)
def _parse_proc_stat_log(file):
samples = []
ltimes = None
for time, lines in _parse_timed_blocks(file):
# skip emtpy lines
if not lines:
continue
# CPU times {user, nice, system, idle, io_wait, irq, softirq}
tokens = lines[0].split()
times = [ int(token) for token in tokens[1:] ]
if ltimes:
user = float((times[0] + times[1]) - (ltimes[0] + ltimes[1]))
system = float((times[2] + times[5] + times[6]) - (ltimes[2] + ltimes[5] + ltimes[6]))
idle = float(times[3] - ltimes[3])
iowait = float(times[4] - ltimes[4])
aSum = max(user + system + idle + iowait, 1)
samples.append( CPUSample(time, user/aSum, system/aSum, iowait/aSum) )
ltimes = times
# skip the rest of statistics lines
return samples
def _parse_reduced_log(file, sample_class):
samples = []
for time, lines in _parse_timed_blocks(file):
samples.append(sample_class(time, *[float(x) for x in lines[0].split()]))
return samples
def _parse_proc_disk_stat_log(file):
"""
Parse file for disk stats, but only look at the whole device, eg. sda,
not sda1, sda2 etc. The format of relevant lines should be:
{major minor name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq}
"""
disk_regex_re = re.compile ('^([hsv]d.|mtdblock\d|mmcblk\d|cciss/c\d+d\d+.*)$')
# this gets called an awful lot.
def is_relevant_line(linetokens):
if len(linetokens) != 14:
return False
disk = linetokens[2]
return disk_regex_re.match(disk)
disk_stat_samples = []
for time, lines in _parse_timed_blocks(file):
sample = DiskStatSample(time)
relevant_tokens = [linetokens for linetokens in map (lambda x: x.split(),lines) if is_relevant_line(linetokens)]
for tokens in relevant_tokens:
disk, rsect, wsect, use = tokens[2], int(tokens[5]), int(tokens[9]), int(tokens[12])
sample.add_diskdata([rsect, wsect, use])
disk_stat_samples.append(sample)
disk_stats = []
for sample1, sample2 in zip(disk_stat_samples[:-1], disk_stat_samples[1:]):
interval = sample1.time - sample2.time
if interval == 0:
interval = 1
sums = [ a - b for a, b in zip(sample1.diskdata, sample2.diskdata) ]
readTput = sums[0] / 2.0 * 100.0 / interval
writeTput = sums[1] / 2.0 * 100.0 / interval
util = float( sums[2] ) / 10 / interval
util = max(0.0, min(1.0, util))
disk_stats.append(DiskSample(sample2.time, readTput, writeTput, util))
return disk_stats
def _parse_reduced_proc_meminfo_log(file):
"""
Parse file for global memory statistics with
'MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree' values
(in that order) directly stored on one line.
"""
used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)
mem_stats = []
for time, lines in _parse_timed_blocks(file):
sample = MemSample(time)
for name, value in zip(used_values, lines[0].split()):
sample.add_value(name, int(value))
if sample.valid():
mem_stats.append(DrawMemSample(sample))
return mem_stats
def _parse_proc_meminfo_log(file):
"""
Parse file for global memory statistics.
The format of relevant lines should be: ^key: value( unit)?
"""
used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)
mem_stats = []
meminfo_re = re.compile(r'([^ \t:]+):\s*(\d+).*')
for time, lines in _parse_timed_blocks(file):
sample = MemSample(time)
for line in lines:
match = meminfo_re.match(line)
if not match:
raise ParseError("Invalid meminfo line \"%s\"" % line)
sample.add_value(match.group(1), int(match.group(2)))
if sample.valid():
mem_stats.append(DrawMemSample(sample))
return mem_stats
def _parse_monitor_disk_log(file):
"""
Parse file with information about amount of diskspace used.
The format of relevant lines should be: ^volume path: number-of-bytes?
"""
disk_stats = []
diskinfo_re = re.compile(r'^(.+):\s*(\d+)$')
for time, lines in _parse_timed_blocks(file):
sample = DiskSpaceSample(time)
for line in lines:
match = diskinfo_re.match(line)
if not match:
raise ParseError("Invalid monitor_disk line \"%s\"" % line)
sample.add_value(match.group(1), int(match.group(2)))
if sample.valid():
disk_stats.append(sample)
return disk_stats
# if we boot the kernel with: initcall_debug printk.time=1 we can
# get all manner of interesting data from the dmesg output
# We turn this into a pseudo-process tree: each event is
# characterised by a
# we don't try to detect a "kernel finished" state - since the kernel
# continues to do interesting things after init is called.
#
# sample input:
# [ 0.000000] ACPI: FACP 3f4fc000 000F4 (v04 INTEL Napa 00000001 MSFT 01000013)
# ...
# [ 0.039993] calling migration_init+0x0/0x6b @ 1
# [ 0.039993] initcall migration_init+0x0/0x6b returned 1 after 0 usecs
def _parse_dmesg(writer, file):
timestamp_re = re.compile ("^\[\s*(\d+\.\d+)\s*]\s+(.*)$")
split_re = re.compile ("^(\S+)\s+([\S\+_-]+) (.*)$")
processMap = {}
idx = 0
inc = 1.0 / 1000000
kernel = Process(writer, idx, "k-boot", 0, 0.1)
processMap['k-boot'] = kernel
base_ts = False
max_ts = 0
for line in file.read().split('\n'):
t = timestamp_re.match (line)
if t is None:
# print "duff timestamp " + line
continue
time_ms = float (t.group(1)) * 1000
# looks like we may have a huge diff after the clock
# has been set up. This could lead to huge graph:
# so huge we will be killed by the OOM.
# So instead of using the plain timestamp we will
# use a delta to first one and skip the first one
# for convenience
if max_ts == 0 and not base_ts and time_ms > 1000:
base_ts = time_ms
continue
max_ts = max(time_ms, max_ts)
if base_ts:
# print "fscked clock: used %f instead of %f" % (time_ms - base_ts, time_ms)
time_ms -= base_ts
m = split_re.match (t.group(2))
if m is None:
continue
# print "match: '%s'" % (m.group(1))
type = m.group(1)
func = m.group(2)
rest = m.group(3)
if t.group(2).startswith ('Write protecting the') or \
t.group(2).startswith ('Freeing unused kernel memory'):
kernel.duration = time_ms / 10
continue
# print "foo: '%s' '%s' '%s'" % (type, func, rest)
if type == "calling":
ppid = kernel.pid
p = re.match ("\@ (\d+)", rest)
if p is not None:
ppid = float (p.group(1)) // 1000
# print "match: '%s' ('%g') at '%s'" % (func, ppid, time_ms)
name = func.split ('+', 1) [0]
idx += inc
processMap[func] = Process(writer, ppid + idx, name, ppid, time_ms / 10)
elif type == "initcall":
# print "finished: '%s' at '%s'" % (func, time_ms)
if func in processMap:
process = processMap[func]
process.duration = (time_ms / 10) - process.start_time
else:
print("corrupted init call for %s" % (func))
elif type == "async_waiting" or type == "async_continuing":
continue # ignore
return processMap.values()
#
# Parse binary pacct accounting file output if we have one
# cf. /usr/include/linux/acct.h
#
def _parse_pacct(writer, file):
# read LE int32
def _read_le_int32(file):
byts = file.read(4)
return (ord(byts[0])) | (ord(byts[1]) << 8) | \
(ord(byts[2]) << 16) | (ord(byts[3]) << 24)
parent_map = {}
parent_map[0] = 0
while file.read(1) != "": # ignore flags
ver = file.read(1)
if ord(ver) < 3:
print("Invalid version 0x%x" % (ord(ver)))
return None
file.seek (14, 1) # user, group etc.
pid = _read_le_int32 (file)
ppid = _read_le_int32 (file)
# print "Parent of %d is %d" % (pid, ppid)
parent_map[pid] = ppid
file.seek (4 + 4 + 16, 1) # timings
file.seek (16, 1) # acct_comm
return parent_map
def _parse_paternity_log(writer, file):
parent_map = {}
parent_map[0] = 0
for line in file.read().split('\n'):
if not line:
continue
elems = line.split(' ') # <Child> <Parent>
if len (elems) >= 2:
# print "paternity of %d is %d" % (int(elems[0]), int(elems[1]))
parent_map[int(elems[0])] = int(elems[1])
else:
print("Odd paternity line '%s'" % (line))
return parent_map
def _parse_cmdline_log(writer, file):
cmdLines = {}
for block in file.read().split('\n\n'):
lines = block.split('\n')
if len (lines) >= 3:
# print "Lines '%s'" % (lines[0])
pid = int (lines[0])
values = {}
values['exe'] = lines[1].lstrip(':')
args = lines[2].lstrip(':').split('\0')
args.pop()
values['args'] = args
cmdLines[pid] = values
return cmdLines
def _parse_bitbake_buildstats(writer, state, filename, file):
paths = filename.split("/")
task = paths[-1]
pn = paths[-2]
start = None
end = None
for line in file:
if line.startswith("Started:"):
start = int(float(line.split()[-1]))
elif line.startswith("Ended:"):
end = int(float(line.split()[-1]))
if start and end:
state.add_process(pn + ":" + task, start, end)
def get_num_cpus(headers):
"""Get the number of CPUs from the system.cpu header property. As the
CPU utilization graphs are relative, the number of CPUs currently makes
no difference."""
if headers is None:
return 1
if headers.get("system.cpu.num"):
return max (int (headers.get("system.cpu.num")), 1)
cpu_model = headers.get("system.cpu")
if cpu_model is None:
return 1
mat = re.match(".*\\((\\d+)\\)", cpu_model)
if mat is None:
return 1
return max (int(mat.group(1)), 1)
def _do_parse(writer, state, filename, file):
writer.info("parsing '%s'" % filename)
t1 = time.process_time()
name = os.path.basename(filename)
if name == "proc_diskstats.log":
state.disk_stats = _parse_proc_disk_stat_log(file)
elif name == "reduced_proc_diskstats.log":
state.disk_stats = _parse_reduced_log(file, DiskSample)
elif name == "proc_stat.log":
state.cpu_stats = _parse_proc_stat_log(file)
elif name == "reduced_proc_stat.log":
state.cpu_stats = _parse_reduced_log(file, CPUSample)
elif name == "proc_meminfo.log":
state.mem_stats = _parse_proc_meminfo_log(file)
elif name == "reduced_proc_meminfo.log":
state.mem_stats = _parse_reduced_proc_meminfo_log(file)
elif name == "cmdline2.log":
state.cmdline = _parse_cmdline_log(writer, file)
elif name == "monitor_disk.log":
state.monitor_disk = _parse_monitor_disk_log(file)
elif not filename.endswith('.log'):
_parse_bitbake_buildstats(writer, state, filename, file)
t2 = time.process_time()
writer.info(" %s seconds" % str(t2-t1))
return state
def parse_file(writer, state, filename):
if state.filename is None:
state.filename = filename
basename = os.path.basename(filename)
with open(filename, "r") as file:
return _do_parse(writer, state, filename, file)
def parse_paths(writer, state, paths):
for path in paths:
if state.filename is None:
state.filename = path
root, extension = os.path.splitext(path)
if not(os.path.exists(path)):
writer.warn("warning: path '%s' does not exist, ignoring." % path)
continue
#state.filename = path
if os.path.isdir(path):
files = sorted([os.path.join(path, f) for f in os.listdir(path)])
state = parse_paths(writer, state, files)
elif extension in [".tar", ".tgz", ".gz"]:
if extension == ".gz":
root, extension = os.path.splitext(root)
if extension != ".tar":
writer.warn("warning: can only handle zipped tar files, not zipped '%s'-files; ignoring" % extension)
continue
tf = None
try:
writer.status("parsing '%s'" % path)
tf = tarfile.open(path, 'r:*')
for name in tf.getnames():
state = _do_parse(writer, state, name, tf.extractfile(name))
except tarfile.ReadError as error:
raise ParseError("error: could not read tarfile '%s': %s." % (path, error))
finally:
if tf != None:
tf.close()
else:
state = parse_file(writer, state, path)
return state
def split_res(res, options):
""" Split the res into n pieces """
res_list = []
if options.num > 1:
s_list = sorted(res.start.keys())
frag_size = len(s_list) / float(options.num)
# Need the top value
if frag_size > int(frag_size):
frag_size = int(frag_size + 1)
else:
frag_size = int(frag_size)
start = 0
end = frag_size
while start < end:
state = Trace(None, [], None)
if options.full_time:
state.min = min(res.start.keys())
state.max = max(res.end.keys())
for i in range(start, end):
# Add this line for reference
#state.add_process(pn + ":" + task, start, end)
for p in res.start[s_list[i]]:
state.add_process(p, s_list[i], res.processes[p][1])
start = end
end = end + frag_size
if end > len(s_list):
end = len(s_list)
res_list.append(state)
else:
res_list.append(res)
return res_list