blob: e7b36dc4cbdf54efd7dc88e3d7557f3df717d09e [file] [log] [blame]
#pragma once
#include <array>
#include <aspeed/JTABLES.H>
#include <ast_video_types.hpp>
#include <cassert>
#include <cstdint>
#include <iostream>
#include <vector>
template <class T, class Compare>
constexpr const T &clamp(const T &v, const T &lo, const T &hi, Compare comp) {
return assert(!comp(hi, lo)), comp(v, lo) ? lo : comp(hi, v) ? hi : v;
}
template <class T>
constexpr const T &clamp(const T &v, const T &lo, const T &hi) {
return clamp(v, lo, hi, std::less<>());
}
namespace AstVideo {
struct COLOR_CACHE {
unsigned long Color[4];
unsigned char Index[4];
unsigned char BitMapBits;
};
struct RGB {
unsigned char B;
unsigned char G;
unsigned char R;
unsigned char Reserved;
};
enum class JpgBlock {
JPEG_NO_SKIP_CODE = 0x00,
JPEG_SKIP_CODE = 0x08,
JPEG_PASS2_CODE = 0x02,
JPEG_SKIP_PASS2_CODE = 0x0A,
LOW_JPEG_NO_SKIP_CODE = 0x04,
LOW_JPEG_SKIP_CODE = 0x0C,
VQ_NO_SKIP_1_COLOR_CODE = 0x05,
VQ_SKIP_1_COLOR_CODE = 0x0D,
VQ_NO_SKIP_2_COLOR_CODE = 0x06,
VQ_SKIP_2_COLOR_CODE = 0x0E,
VQ_NO_SKIP_4_COLOR_CODE = 0x07,
VQ_SKIP_4_COLOR_CODE = 0x0F,
FRAME_END_CODE = 0x09,
};
class AstJpegDecoder {
public:
AstJpegDecoder() {
// TODO(ed) figure out how to init this in the constructor
YUVBuffer.resize(800 * 600);
OutBuffer.resize(800 * 600);
for (auto &r : OutBuffer) {
r.R = 0x00;
r.G = 0x00;
r.B = 0x00;
r.Reserved = 0xAA;
}
init_jpg_table();
}
void load_quant_table(std::array<long, 64> &quant_table) {
float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
1.0f, 0.785694958f, 0.541196100f, 0.275899379f};
uint8_t j, row, col;
uint8_t tempQT[64];
// Load quantization coefficients from JPG file, scale them for DCT and
// reorder
// from zig-zag order
switch (Y_selector) {
case 0:
std_luminance_qt = Tbl_000Y;
break;
case 1:
std_luminance_qt = Tbl_014Y;
break;
case 2:
std_luminance_qt = Tbl_029Y;
break;
case 3:
std_luminance_qt = Tbl_043Y;
break;
case 4:
std_luminance_qt = Tbl_057Y;
break;
case 5:
std_luminance_qt = Tbl_071Y;
break;
case 6:
std_luminance_qt = Tbl_086Y;
break;
case 7:
std_luminance_qt = Tbl_100Y;
break;
}
set_quant_table(std_luminance_qt, (uint8_t)SCALEFACTOR, tempQT);
for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]];
j = 0;
for (row = 0; row <= 7; row++)
for (col = 0; col <= 7; col++) {
quant_table[j] =
(long)((quant_table[j] * scalefactor[row] * scalefactor[col]) *
65536);
j++;
}
byte_pos += 64;
}
void load_quant_tableCb(std::array<long, 64> &quant_table) {
float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
1.0f, 0.785694958f, 0.541196100f, 0.275899379f};
uint8_t j, row, col;
uint8_t tempQT[64];
// Load quantization coefficients from JPG file, scale them for DCT and
// reorder from zig-zag order
if (Mapping == 0) {
switch (UV_selector) {
case 0:
std_chrominance_qt = Tbl_000Y;
break;
case 1:
std_chrominance_qt = Tbl_014Y;
break;
case 2:
std_chrominance_qt = Tbl_029Y;
break;
case 3:
std_chrominance_qt = Tbl_043Y;
break;
case 4:
std_chrominance_qt = Tbl_057Y;
break;
case 5:
std_chrominance_qt = Tbl_071Y;
break;
case 6:
std_chrominance_qt = Tbl_086Y;
break;
case 7:
std_chrominance_qt = Tbl_100Y;
break;
}
} else {
switch (UV_selector) {
case 0:
std_chrominance_qt = Tbl_000UV;
break;
case 1:
std_chrominance_qt = Tbl_014UV;
break;
case 2:
std_chrominance_qt = Tbl_029UV;
break;
case 3:
std_chrominance_qt = Tbl_043UV;
break;
case 4:
std_chrominance_qt = Tbl_057UV;
break;
case 5:
std_chrominance_qt = Tbl_071UV;
break;
case 6:
std_chrominance_qt = Tbl_086UV;
break;
case 7:
std_chrominance_qt = Tbl_100UV;
break;
}
}
set_quant_table(std_chrominance_qt, (uint8_t)SCALEFACTORUV, tempQT);
for (j = 0; j <= 63; j++) {
quant_table[j] = tempQT[zigzag[j]];
}
j = 0;
for (row = 0; row <= 7; row++) {
for (col = 0; col <= 7; col++) {
quant_table[j] =
(long)((quant_table[j] * scalefactor[row] * scalefactor[col]) *
65536);
j++;
}
}
byte_pos += 64;
}
// Note: Added for Dual_JPEG
void load_advance_quant_table(std::array<long, 64> &quant_table) {
float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
1.0f, 0.785694958f, 0.541196100f, 0.275899379f};
uint8_t j, row, col;
uint8_t tempQT[64];
// Load quantization coefficients from JPG file, scale them for DCT and
// reorder
// from zig-zag order
switch (advance_selector) {
case 0:
std_luminance_qt = Tbl_000Y;
break;
case 1:
std_luminance_qt = Tbl_014Y;
break;
case 2:
std_luminance_qt = Tbl_029Y;
break;
case 3:
std_luminance_qt = Tbl_043Y;
break;
case 4:
std_luminance_qt = Tbl_057Y;
break;
case 5:
std_luminance_qt = Tbl_071Y;
break;
case 6:
std_luminance_qt = Tbl_086Y;
break;
case 7:
std_luminance_qt = Tbl_100Y;
break;
}
// Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG
set_quant_table(std_luminance_qt, (uint8_t)ADVANCESCALEFACTOR, tempQT);
for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]];
j = 0;
for (row = 0; row <= 7; row++)
for (col = 0; col <= 7; col++) {
quant_table[j] =
(long)((quant_table[j] * scalefactor[row] * scalefactor[col]) *
65536);
j++;
}
byte_pos += 64;
}
// Note: Added for Dual-JPEG
void load_advance_quant_tableCb(std::array<long, 64> &quant_table) {
float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
1.0f, 0.785694958f, 0.541196100f, 0.275899379f};
uint8_t j, row, col;
uint8_t tempQT[64];
// Load quantization coefficients from JPG file, scale them for DCT and
// reorder
// from zig-zag order
if (Mapping == 1) {
switch (advance_selector) {
case 0:
std_chrominance_qt = Tbl_000Y;
break;
case 1:
std_chrominance_qt = Tbl_014Y;
break;
case 2:
std_chrominance_qt = Tbl_029Y;
break;
case 3:
std_chrominance_qt = Tbl_043Y;
break;
case 4:
std_chrominance_qt = Tbl_057Y;
break;
case 5:
std_chrominance_qt = Tbl_071Y;
break;
case 6:
std_chrominance_qt = Tbl_086Y;
break;
case 7:
std_chrominance_qt = Tbl_100Y;
break;
}
} else {
switch (advance_selector) {
case 0:
std_chrominance_qt = Tbl_000UV;
break;
case 1:
std_chrominance_qt = Tbl_014UV;
break;
case 2:
std_chrominance_qt = Tbl_029UV;
break;
case 3:
std_chrominance_qt = Tbl_043UV;
break;
case 4:
std_chrominance_qt = Tbl_057UV;
break;
case 5:
std_chrominance_qt = Tbl_071UV;
break;
case 6:
std_chrominance_qt = Tbl_086UV;
break;
case 7:
std_chrominance_qt = Tbl_100UV;
break;
}
}
// Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG
set_quant_table(std_chrominance_qt, (uint8_t)ADVANCESCALEFACTORUV, tempQT);
for (j = 0; j <= 63; j++) quant_table[j] = tempQT[zigzag[j]];
j = 0;
for (row = 0; row <= 7; row++)
for (col = 0; col <= 7; col++) {
quant_table[j] =
(long)((quant_table[j] * scalefactor[row] * scalefactor[col]) *
65536);
j++;
}
byte_pos += 64;
}
void IDCT_transform(short *coef, uint8_t *data, uint8_t nBlock) {
#define FIX_1_082392200 ((int)277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((int)362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((int)473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((int)669) /* FIX(2.613125930) */
#define MULTIPLY(var, cons) ((int)((var) * (cons)) >> 8)
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
int tmp10, tmp11, tmp12, tmp13;
int z5, z10, z11, z12, z13;
int workspace[64]; /* buffers data between passes */
short *inptr = coef;
long *quantptr;
int *wsptr = workspace;
unsigned char *outptr;
unsigned char *r_limit = rlimit_table + 128;
int ctr, dcval, DCTSIZE = 8;
quantptr = &QT[nBlock][0];
// Pass 1: process columns from input (inptr), store into work array(wsptr)
for (ctr = 8; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if ((inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] |
inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] |
inptr[DCTSIZE * 7]) == 0) {
/* AC terms all zero */
dcval = (int)((inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16);
wsptr[DCTSIZE * 0] = dcval;
wsptr[DCTSIZE * 1] = dcval;
wsptr[DCTSIZE * 2] = dcval;
wsptr[DCTSIZE * 3] = dcval;
wsptr[DCTSIZE * 4] = dcval;
wsptr[DCTSIZE * 5] = dcval;
wsptr[DCTSIZE * 6] = dcval;
wsptr[DCTSIZE * 7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = (inptr[DCTSIZE * 0] * quantptr[DCTSIZE * 0]) >> 16;
tmp1 = (inptr[DCTSIZE * 2] * quantptr[DCTSIZE * 2]) >> 16;
tmp2 = (inptr[DCTSIZE * 4] * quantptr[DCTSIZE * 4]) >> 16;
tmp3 = (inptr[DCTSIZE * 6] * quantptr[DCTSIZE * 6]) >> 16;
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = (inptr[DCTSIZE * 1] * quantptr[DCTSIZE * 1]) >> 16;
tmp5 = (inptr[DCTSIZE * 3] * quantptr[DCTSIZE * 3]) >> 16;
tmp6 = (inptr[DCTSIZE * 5] * quantptr[DCTSIZE * 5]) >> 16;
tmp7 = (inptr[DCTSIZE * 7] * quantptr[DCTSIZE * 7]) >> 16;
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
//#define RANGE_MASK 1023; //2 bits wider than legal samples
#define PASS1_BITS 0
#define IDESCALE(x, n) ((int)((x) >> n))
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = data + ctr * 8;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
/* Even part */
tmp10 = ((int)wsptr[0] + (int)wsptr[4]);
tmp11 = ((int)wsptr[0] - (int)wsptr[4]);
tmp13 = ((int)wsptr[2] + (int)wsptr[6]);
tmp12 = MULTIPLY((int)wsptr[2] - (int)wsptr[6], FIX_1_414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (int)wsptr[5] + (int)wsptr[3];
z10 = (int)wsptr[5] - (int)wsptr[3];
z11 = (int)wsptr[1] + (int)wsptr[7];
z12 = (int)wsptr[1] - (int)wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = r_limit[IDESCALE((tmp0 + tmp7), (PASS1_BITS + 3)) & 1023L];
outptr[7] = r_limit[IDESCALE((tmp0 - tmp7), (PASS1_BITS + 3)) & 1023L];
outptr[1] = r_limit[IDESCALE((tmp1 + tmp6), (PASS1_BITS + 3)) & 1023L];
outptr[6] = r_limit[IDESCALE((tmp1 - tmp6), (PASS1_BITS + 3)) & 1023L];
outptr[2] = r_limit[IDESCALE((tmp2 + tmp5), (PASS1_BITS + 3)) & 1023L];
outptr[5] = r_limit[IDESCALE((tmp2 - tmp5), (PASS1_BITS + 3)) & 1023L];
outptr[4] = r_limit[IDESCALE((tmp3 + tmp4), (PASS1_BITS + 3)) & 1023L];
outptr[3] = r_limit[IDESCALE((tmp3 - tmp4), (PASS1_BITS + 3)) & 1023L];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
void YUVToRGB(
int txb, int tyb,
unsigned char
*pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes
struct RGB *pYUV, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes
unsigned char
*pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes
) {
int i, j, pos, m, n;
unsigned char cb, cr, *py, *pcb, *pcr, *py420[4];
int y;
struct RGB *pByte;
int nBlocksInMcu = 6;
unsigned int pixel_x, pixel_y;
pByte = (struct RGB *)pBgr;
if (yuvmode == YuvMode::YUV444) {
py = pYCbCr;
pcb = pYCbCr + 64;
pcr = pcb + 64;
pixel_x = txb * 8;
pixel_y = tyb * 8;
pos = (pixel_y * WIDTH) + pixel_x;
for (j = 0; j < 8; j++) {
for (i = 0; i < 8; i++) {
m = ((j << 3) + i);
y = py[m];
cb = pcb[m];
cr = pcr[m];
n = pos + i;
// For 2Pass. Save the YUV value
pYUV[n].B = cb;
pYUV[n].G = y;
pYUV[n].R = cr;
pByte[n].B = clamp(m_Y[y] + m_CbToB[cb], 0, 0xFF);
pByte[n].G = clamp(m_Y[y] + m_CbToG[cb] + m_CrToG[cr], 0, 0xFF);
pByte[n].R = clamp(m_Y[y] + m_CrToR[cr], 0, 0xFF);
}
pos += WIDTH;
}
} else {
for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64;
pcb = pYCbCr + (nBlocksInMcu - 2) * 64;
pcr = pcb + 64;
pixel_x = txb * 16;
pixel_y = tyb * 16;
pos = (pixel_y * WIDTH) + pixel_x;
for (j = 0; j < 16; j++) {
for (i = 0; i < 16; i++) {
// block number is ((j/8) * 2 + i/8)={0, 1, 2, 3}
y = *(py420[(j >> 3) * 2 + (i >> 3)]++);
m = ((j >> 1) << 3) + (i >> 1);
cb = pcb[m];
cr = pcr[m];
n = pos + i;
pByte[n].B = clamp(m_Y[y] + m_CbToB[cb], 0, 0xFF);
pByte[n].G = clamp(m_Y[y] + m_CbToG[cb] + m_CrToG[cr], 0, 0xFF);
pByte[n].R = clamp(m_Y[y] + m_CrToR[cr], 0, 0xFF);
}
pos += WIDTH;
}
}
}
void YUVToBuffer(
int txb, int tyb,
unsigned char
*pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes
struct RGB
*pYUV, // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes
unsigned char
*pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes
) {
int i, j, pos, m, n;
unsigned char cb, cr, *py, *pcb, *pcr, *py420[4];
int y;
struct RGB *pByte;
int nBlocksInMcu = 6;
unsigned int pixel_x, pixel_y;
pByte = (struct RGB *)pBgr;
if (yuvmode == YuvMode::YUV444) {
py = pYCbCr;
pcb = pYCbCr + 64;
pcr = pcb + 64;
pixel_x = txb * 8;
pixel_y = tyb * 8;
pos = (pixel_y * WIDTH) + pixel_x;
for (j = 0; j < 8; j++) {
for (i = 0; i < 8; i++) {
m = ((j << 3) + i);
n = pos + i;
y = pYUV[n].G + (py[m] - 128);
cb = pYUV[n].B + (pcb[m] - 128);
cr = pYUV[n].R + (pcr[m] - 128);
pYUV[n].B = cb;
pYUV[n].G = y;
pYUV[n].R = cr;
pByte[n].B = clamp(m_Y[y] + m_CbToB[cb], 0, 0xFF);
pByte[n].G = clamp(m_Y[y] + m_CbToG[cb] + m_CrToG[cr], 0, 0xFF);
pByte[n].R = clamp(m_Y[y] + m_CrToR[cr], 0, 0xFF);
}
pos += WIDTH;
}
} else {
for (i = 0; i < nBlocksInMcu - 2; i++) py420[i] = pYCbCr + i * 64;
pcb = pYCbCr + (nBlocksInMcu - 2) * 64;
pcr = pcb + 64;
pixel_x = txb * 16;
pixel_y = tyb * 16;
pos = (pixel_y * WIDTH) + pixel_x;
for (j = 0; j < 16; j++) {
for (i = 0; i < 16; i++) {
// block number is ((j/8) * 2 + i/8)={0, 1, 2, 3}
y = *(py420[(j >> 3) * 2 + (i >> 3)]++);
m = ((j >> 1) << 3) + (i >> 1);
cb = pcb[m];
cr = pcr[m];
n = pos + i;
pByte[n].B = clamp(m_Y[y] + m_CbToB[cb], 0, 0xFF);
pByte[n].G = clamp(m_Y[y] + m_CbToG[cb] + m_CrToG[cr], 0, 0xFF);
pByte[n].R = clamp(m_Y[y] + m_CrToR[cr], 0, 0xFF);
}
pos += WIDTH;
}
}
}
void Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection) {
unsigned char *ptr;
unsigned char byTileYuv[768] = {};
memset(DCT_coeff, 0, 384 * 2);
ptr = byTileYuv;
process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0);
IDCT_transform(DCT_coeff, ptr, QT_TableSelection);
ptr += 64;
if (yuvmode == YuvMode::YUV420) {
process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 64);
IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection);
ptr += 64;
process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 128);
IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection);
ptr += 64;
process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 192);
IDCT_transform(DCT_coeff + 192, ptr, QT_TableSelection);
ptr += 64;
process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 256);
IDCT_transform(DCT_coeff + 256, ptr, QT_TableSelection + 1);
ptr += 64;
process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 320);
IDCT_transform(DCT_coeff + 320, ptr, QT_TableSelection + 1);
} else {
process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64);
IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1);
ptr += 64;
process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128);
IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1);
}
// YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf);
// YUVBuffer for YUV record
YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf);
}
void Decompress_2PASS(int txb, int tyb, char *outBuf,
uint8_t QT_TableSelection) {
unsigned char *ptr;
unsigned char byTileYuv[768];
memset(DCT_coeff, 0, 384 * 2);
ptr = byTileYuv;
process_Huffman_data_unit(YDC_nr, YAC_nr, &DCY, 0);
IDCT_transform(DCT_coeff, ptr, QT_TableSelection);
ptr += 64;
process_Huffman_data_unit(CbDC_nr, CbAC_nr, &DCCb, 64);
IDCT_transform(DCT_coeff + 64, ptr, QT_TableSelection + 1);
ptr += 64;
process_Huffman_data_unit(CrDC_nr, CrAC_nr, &DCCr, 128);
IDCT_transform(DCT_coeff + 128, ptr, QT_TableSelection + 1);
YUVToBuffer(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf);
// YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf);
}
void VQ_Decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection,
struct COLOR_CACHE *VQ) {
unsigned char *ptr, i;
unsigned char byTileYuv[192];
int Data;
ptr = byTileYuv;
if (VQ->BitMapBits == 0) {
for (i = 0; i < 64; i++) {
ptr[0] = (VQ->Color[VQ->Index[0]] & 0xFF0000) >> 16;
ptr[64] = (VQ->Color[VQ->Index[0]] & 0x00FF00) >> 8;
ptr[128] = VQ->Color[VQ->Index[0]] & 0x0000FF;
ptr += 1;
}
} else {
for (i = 0; i < 64; i++) {
Data = (int)lookKbits(VQ->BitMapBits);
ptr[0] = (VQ->Color[VQ->Index[Data]] & 0xFF0000) >> 16;
ptr[64] = (VQ->Color[VQ->Index[Data]] & 0x00FF00) >> 8;
ptr[128] = VQ->Color[VQ->Index[Data]] & 0x0000FF;
ptr += 1;
skipKbits(VQ->BitMapBits);
}
}
// YUVToRGB (txb, tyb, byTileYuv, (unsigned char *)outBuf);
YUVToRGB(txb, tyb, byTileYuv, YUVBuffer.data(), (unsigned char *)outBuf);
}
void MoveBlockIndex(void) {
if (yuvmode == YuvMode::YUV444) {
txb++;
if (txb >= (int)(WIDTH / 8)) {
tyb++;
if (tyb >= (int)(HEIGHT / 8)) tyb = 0;
txb = 0;
}
} else {
txb++;
if (txb >= (int)(WIDTH / 16)) {
tyb++;
if (tyb >= (int)(HEIGHT / 16)) tyb = 0;
txb = 0;
}
}
}
void VQ_Initialize(struct COLOR_CACHE *VQ) {
int i;
for (i = 0; i < 4; i++) {
VQ->Index[i] = i;
}
VQ->Color[0] = 0x008080;
VQ->Color[1] = 0xFF8080;
VQ->Color[2] = 0x808080;
VQ->Color[3] = 0xC08080;
}
void Init_Color_Table() {
int i, x;
int nScale = 1L << 16; // equal to power(2,16)
int nHalf = nScale >> 1;
#define FIX(x) ((int)((x)*nScale + 0.5))
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.597656 * x */
/* Cb=>B value is nearest int to 2.015625 * x */
/* Cr=>G value is scaled-up -0.8125 * x */
/* Cb=>G value is scaled-up -0.390625 * x */
for (i = 0, x = -128; i < 256; i++, x++) {
m_CrToR[i] = (int)(FIX(1.597656) * x + nHalf) >> 16;
m_CbToB[i] = (int)(FIX(2.015625) * x + nHalf) >> 16;
m_CrToG[i] = (int)(-FIX(0.8125) * x + nHalf) >> 16;
m_CbToG[i] = (int)(-FIX(0.390625) * x + nHalf) >> 16;
}
for (i = 0, x = -16; i < 256; i++, x++) {
m_Y[i] = (int)(FIX(1.164) * x + nHalf) >> 16;
}
// For Color Text Enchance Y Re-map. Recommend to disable in default
/*
for (i = 0; i < (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate);
i++) {
temp = (double)i /
VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate;
temp1 = 1.0 / VideoEngineInfo->INFData.Gamma1Parameter;
m_Y[i] =
(BYTE)(VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate * pow (temp,
temp1));
if (m_Y[i] > 255) m_Y[i] = 255;
}
for (i = (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); i < 256;
i++) {
m_Y[i] =
(BYTE)((VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) + (256 -
VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) * ( pow((double)((i -
VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) / (256 -
(VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate))), (1.0 /
VideoEngineInfo->INFData.Gamma2Parameter)) ));
if (m_Y[i] > 255) m_Y[i] = 255;
}
*/
}
void load_Huffman_table(Huffman_table *HT, unsigned char *nrcode,
unsigned char *value, unsigned short int *Huff_code) {
unsigned char k, j, i;
unsigned int code, code_index;
for (j = 1; j <= 16; j++) {
HT->Length[j] = nrcode[j];
}
for (i = 0, k = 1; k <= 16; k++)
for (j = 0; j < HT->Length[k]; j++) {
HT->V[WORD_hi_lo(k, j)] = value[i];
i++;
}
code = 0;
for (k = 1; k <= 16; k++) {
HT->minor_code[k] = (unsigned short int)code;
for (j = 1; j <= HT->Length[k]; j++) code++;
HT->major_code[k] = (unsigned short int)(code - 1);
code *= 2;
if (HT->Length[k] == 0) {
HT->minor_code[k] = 0xFFFF;
HT->major_code[k] = 0;
}
}
HT->Len[0] = 2;
i = 2;
for (code_index = 1; code_index < 65535; code_index++) {
if (code_index < Huff_code[i]) {
HT->Len[code_index] = (unsigned char)Huff_code[i + 1];
} else {
i = i + 2;
HT->Len[code_index] = (unsigned char)Huff_code[i + 1];
}
}
}
void init_jpg_table() {
Init_Color_Table();
prepare_range_limit_table();
load_Huffman_table(&HTDC[0], std_dc_luminance_nrcodes,
std_dc_luminance_values, DC_LUMINANCE_HUFFMANCODE);
load_Huffman_table(&HTAC[0], std_ac_luminance_nrcodes,
std_ac_luminance_values, AC_LUMINANCE_HUFFMANCODE);
load_Huffman_table(&HTDC[1], std_dc_chrominance_nrcodes,
std_dc_chrominance_values, DC_CHROMINANCE_HUFFMANCODE);
load_Huffman_table(&HTAC[1], std_ac_chrominance_nrcodes,
std_ac_chrominance_values, AC_CHROMINANCE_HUFFMANCODE);
}
void prepare_range_limit_table()
/* Allocate and fill in the sample_range_limit table */
{
int j;
rlimit_table = (unsigned char *)malloc(5 * 256L + 128);
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
memset((void *)rlimit_table, 0, 256);
rlimit_table += 256; /* allow negative subscripts of simple table */
/* Main part of "simple" table: limit[x] = x */
for (j = 0; j < 256; j++) rlimit_table[j] = j;
/* End of simple table, rest of first half of post-IDCT table */
for (j = 256; j < 640; j++) rlimit_table[j] = 255;
/* Second half of post-IDCT table */
memset((void *)(rlimit_table + 640), 0, 384);
for (j = 0; j < 128; j++) rlimit_table[j + 1024] = j;
}
inline unsigned short int WORD_hi_lo(uint8_t byte_high, uint8_t byte_low) {
return (byte_high << 8) + byte_low;
}
// river
void process_Huffman_data_unit(uint8_t DC_nr, uint8_t AC_nr,
signed short int *previous_DC,
unsigned short int position) {
uint8_t nr = 0;
uint8_t k;
unsigned short int tmp_Hcode;
uint8_t size_val, count_0;
unsigned short int *min_code;
uint8_t *huff_values;
uint8_t byte_temp;
min_code = HTDC[DC_nr].minor_code;
// maj_code=HTDC[DC_nr].major_code;
huff_values = HTDC[DC_nr].V;
// DC
k = HTDC[DC_nr].Len[(unsigned short int)(codebuf >> 16)];
// river
// tmp_Hcode=lookKbits(k);
tmp_Hcode = (unsigned short int)(codebuf >> (32 - k));
skipKbits(k);
size_val = huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))];
if (size_val == 0)
DCT_coeff[position + 0] = *previous_DC;
else {
DCT_coeff[position + 0] = *previous_DC + getKbits(size_val);
*previous_DC = DCT_coeff[position + 0];
}
// Second, AC coefficient decoding
min_code = HTAC[AC_nr].minor_code;
// maj_code=HTAC[AC_nr].major_code;
huff_values = HTAC[AC_nr].V;
nr = 1; // AC coefficient
do {
k = HTAC[AC_nr].Len[(unsigned short int)(codebuf >> 16)];
tmp_Hcode = (unsigned short int)(codebuf >> (32 - k));
skipKbits(k);
byte_temp =
huff_values[WORD_hi_lo(k, (uint8_t)(tmp_Hcode - min_code[k]))];
size_val = byte_temp & 0xF;
count_0 = byte_temp >> 4;
if (size_val == 0) {
if (count_0 != 0xF) {
break;
}
nr += 16;
} else {
nr += count_0; // skip count_0 zeroes
DCT_coeff[position + dezigzag[nr++]] = getKbits(size_val);
}
} while (nr < 64);
}
unsigned short int lookKbits(uint8_t k) {
unsigned short int revcode;
revcode = (unsigned short int)(codebuf >> (32 - k));
return (revcode);
}
void skipKbits(uint8_t k) {
unsigned long readbuf;
if ((newbits - k) <= 0) {
readbuf = Buffer[buffer_index];
buffer_index++;
codebuf =
(codebuf << k) | ((newbuf | (readbuf >> (newbits))) >> (32 - k));
newbuf = readbuf << (k - newbits);
newbits = 32 + newbits - k;
} else {
codebuf = (codebuf << k) | (newbuf >> (32 - k));
newbuf = newbuf << k;
newbits -= k;
}
}
signed short int getKbits(uint8_t k) {
signed short int signed_wordvalue;
// river
// signed_wordvalue=lookKbits(k);
signed_wordvalue = (unsigned short int)(codebuf >> (32 - k));
if (((1L << (k - 1)) & signed_wordvalue) == 0) {
// neg_pow2 was previously defined as the below. It seemed silly to keep
// a table of values around for something
// THat's relatively easy to compute, so it was replaced with the
// appropriate math
// signed_wordvalue = signed_wordvalue - (0xFFFF >> (16 - k));
std::array<signed short int, 17> neg_pow2 = {
0, -1, -3, -7, -15, -31, -63, -127,
-255, -511, -1023, -2047, -4095, -8191, -16383, -32767};
signed_wordvalue = signed_wordvalue + neg_pow2[k];
}
skipKbits(k);
return signed_wordvalue;
}
int init_JPG_decoding() {
byte_pos = 0;
load_quant_table(QT[0]);
load_quant_tableCb(QT[1]);
// Note: Added for Dual-JPEG
load_advance_quant_table(QT[2]);
load_advance_quant_tableCb(QT[3]);
return 1;
}
void set_quant_table(uint8_t *basic_table, uint8_t scale_factor,
uint8_t *newtable)
// Set quantization table and zigzag reorder it
{
uint8_t i;
long temp;
for (i = 0; i < 64; i++) {
temp = ((long)(basic_table[i] * 16) / scale_factor);
/* limit the values to the valid range */
if (temp <= 0L) temp = 1L;
if (temp > 255L) temp = 255L; /* limit to baseline range if requested */
newtable[zigzag[i]] = (uint8_t)temp;
}
}
void updatereadbuf(uint32_t *codebuf, uint32_t *newbuf, int walks,
int *newbits, std::vector<uint32_t> &Buffer) {
unsigned long readbuf;
if ((*newbits - walks) <= 0) {
readbuf = Buffer[buffer_index];
buffer_index++;
*codebuf = (*codebuf << walks) |
((*newbuf | (readbuf >> (*newbits))) >> (32 - walks));
*newbuf = readbuf << (walks - *newbits);
*newbits = 32 + *newbits - walks;
} else {
*codebuf = (*codebuf << walks) | (*newbuf >> (32 - walks));
*newbuf = *newbuf << walks;
*newbits -= walks;
}
}
uint32_t decode(std::vector<uint32_t> &buffer, unsigned long width,
unsigned long height, YuvMode yuvmode_in, int y_selector,
int uv_selector) {
uint32_t i;
COLOR_CACHE Decode_Color;
if (width != WIDTH || height != HEIGHT || yuvmode_in != yuvmode ||
y_selector != Y_selector || uv_selector != UV_selector) {
init_JPG_decoding();
}
// TODO(ed) use the enum everywhere, not just externally
yuvmode = yuvmode_in; // 0 = YUV444, 1 = YUV420
Y_selector = y_selector; // 0-7
UV_selector = uv_selector; // 0-7
// TODO(ed) Magic number section. Document appropriately
advance_selector = 0; // 0-7
Mapping = 0; // 0 or 1
WIDTH = width;
HEIGHT = height;
VQ_Initialize(&Decode_Color);
// OutputDebugString ("In decode\n");
// GetINFData (VideoEngineInfo);
// AST2000 JPEG block is 16x16(pixels) base
if (yuvmode == YuvMode::YUV420) {
auto remainder = WIDTH % 16;
if (WIDTH % 16) {
WIDTH = WIDTH + 16 - remainder;
}
remainder = HEIGHT % 16;
if (remainder) {
HEIGHT = HEIGHT + 16 - remainder;
}
} else {
if (WIDTH % 8) {
WIDTH = WIDTH + 8 - (WIDTH % 8);
}
if (HEIGHT % 8) {
HEIGHT = HEIGHT + 8 - (HEIGHT % 8);
}
}
int qfactor = 16;
SCALEFACTOR = qfactor;
SCALEFACTORUV = qfactor;
ADVANCESCALEFACTOR = 16;
ADVANCESCALEFACTORUV = 16;
// TODO(ed) cleanup cruft
Buffer = buffer.data();
codebuf = buffer[0];
newbuf = buffer[1];
buffer_index = 2;
txb = tyb = 0;
newbits = 32;
DCY = DCCb = DCCr = 0;
static const uint32_t VQ_HEADER_MASK = 0x01;
static const uint32_t VQ_NO_UPDATE_HEADER = 0x00;
static const uint32_t VQ_UPDATE_HEADER = 0x01;
static const int VQ_NO_UPDATE_LENGTH = 0x03;
static const int VQ_UPDATE_LENGTH = 0x1B;
static const uint32_t VQ_INDEX_MASK = 0x03;
static const uint32_t VQ_COLOR_MASK = 0xFFFFFF;
static const int BLOCK_AST2100_START_LENGTH = 0x04;
static const int BLOCK_AST2100_SKIP_LENGTH = 20; // S:1 H:3 X:8 Y:8
do {
auto block_header = static_cast<JpgBlock>((codebuf >> 28) & 0xFF);
switch (block_header) {
case JpgBlock::JPEG_NO_SKIP_CODE:
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits,
buffer);
Decompress(txb, tyb, (char *)OutBuffer.data(), 0);
break;
case JpgBlock::FRAME_END_CODE:
return 0;
break;
case JpgBlock::JPEG_SKIP_CODE:
txb = (codebuf & 0x0FF00000) >> 20;
tyb = (codebuf & 0x0FF000) >> 12;
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits,
buffer);
Decompress(txb, tyb, (char *)OutBuffer.data(), 0);
break;
case JpgBlock::VQ_NO_SKIP_1_COLOR_CODE:
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 0;
for (i = 0; i < 1; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::VQ_SKIP_1_COLOR_CODE:
txb = (codebuf & 0x0FF00000) >> 20;
tyb = (codebuf & 0x0FF000) >> 12;
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 0;
for (i = 0; i < 1; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::VQ_NO_SKIP_2_COLOR_CODE:
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 1;
for (i = 0; i < 2; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::VQ_SKIP_2_COLOR_CODE:
txb = (codebuf & 0x0FF00000) >> 20;
tyb = (codebuf & 0x0FF000) >> 12;
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 1;
for (i = 0; i < 2; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::VQ_NO_SKIP_4_COLOR_CODE:
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_START_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 2;
for (i = 0; i < 4; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::VQ_SKIP_4_COLOR_CODE:
txb = (codebuf & 0x0FF00000) >> 20;
tyb = (codebuf & 0x0FF000) >> 12;
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits,
buffer);
Decode_Color.BitMapBits = 2;
for (i = 0; i < 4; i++) {
Decode_Color.Index[i] = ((codebuf >> 29) & VQ_INDEX_MASK);
if (((codebuf >> 31) & VQ_HEADER_MASK) == VQ_NO_UPDATE_HEADER) {
updatereadbuf(&codebuf, &newbuf, VQ_NO_UPDATE_LENGTH, &newbits,
buffer);
} else {
Decode_Color.Color[Decode_Color.Index[i]] =
((codebuf >> 5) & VQ_COLOR_MASK);
updatereadbuf(&codebuf, &newbuf, VQ_UPDATE_LENGTH, &newbits,
buffer);
}
}
VQ_Decompress(txb, tyb, (char *)OutBuffer.data(), 0, &Decode_Color);
break;
case JpgBlock::JPEG_SKIP_PASS2_CODE:
txb = (codebuf & 0x0FF00000) >> 20;
tyb = (codebuf & 0x0FF000) >> 12;
updatereadbuf(&codebuf, &newbuf, BLOCK_AST2100_SKIP_LENGTH, &newbits,
buffer);
Decompress_2PASS(txb, tyb, (char *)OutBuffer.data(), 2);
break;
default:
// TODO(ed) propogate errors upstream
return -1;
break;
}
MoveBlockIndex();
} while (buffer_index <= buffer.size());
return -1;
}
#ifdef cimg_version
void dump_to_bitmap_file() {
cimg_library::CImg<unsigned char> image(WIDTH, HEIGHT, 1, 3);
for (int y = 0; y < WIDTH; y++) {
for (int x = 0; x < HEIGHT; x++) {
auto pixel = OutBuffer[x + (y * WIDTH)];
image(x, y, 0) = pixel.R;
image(x, y, 1) = pixel.G;
image(x, y, 2) = pixel.B;
}
}
image.save("/tmp/file2.bmp");
}
#endif
private:
YuvMode yuvmode;
// WIDTH and HEIGHT are the modes your display used
unsigned long WIDTH;
unsigned long HEIGHT;
unsigned char Y_selector;
int SCALEFACTOR;
int SCALEFACTORUV;
int ADVANCESCALEFACTOR;
int ADVANCESCALEFACTORUV;
int Mapping;
unsigned char UV_selector;
unsigned char advance_selector;
int byte_pos; // current byte position
// quantization tables, no more than 4 quantization tables
std::array<std::array<long, 64>, 4> QT;
// DC huffman tables , no more than 4 (0..3)
std::array<Huffman_table, 4> HTDC;
// AC huffman tables (0..3)
std::array<Huffman_table, 4> HTAC;
std::array<int, 256> m_CrToR;
std::array<int, 256> m_CbToB;
std::array<int, 256> m_CrToG;
std::array<int, 256> m_CbToG;
std::array<int, 256> m_Y;
unsigned long buffer_index;
uint32_t codebuf, newbuf, readbuf;
uint8_t *std_luminance_qt;
uint8_t *std_chrominance_qt;
signed short int DCY, DCCb, DCCr; // Coeficientii DC pentru Y,Cb,Cr
signed short int DCT_coeff[384];
// std::vector<signed short int> DCT_coeff; // Current DCT_coefficients
// quantization table number for Y, Cb, Cr
uint8_t YQ_nr = 0, CbQ_nr = 1, CrQ_nr = 1;
// DC Huffman table number for Y,Cb, Cr
uint8_t YDC_nr = 0, CbDC_nr = 1, CrDC_nr = 1;
// AC Huffman table number for Y,Cb, Cr
uint8_t YAC_nr = 0, CbAC_nr = 1, CrAC_nr = 1;
int txb, tyb;
int newbits;
uint8_t *rlimit_table;
std::vector<RGB> YUVBuffer;
// TODO(ed) this shouldn't exist. It is cruft that needs cleaning up'
uint32_t *Buffer;
public:
std::vector<RGB> OutBuffer;
};
}