| #pragma once |
| |
| #include <aspeed/JTABLES.H> |
| |
| #include <array> |
| #include <ast_video_types.hpp> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <iostream> |
| #include <vector> |
| |
| namespace ast_video |
| { |
| |
| struct ColorCache |
| { |
| ColorCache() : |
| color{0x008080, 0xFF8080, 0x808080, 0xC08080}, index{0, 1, 2, 3} |
| { |
| } |
| |
| unsigned long color[4]; |
| unsigned char index[4]; |
| unsigned char bitMapBits{}; |
| }; |
| |
| struct RGB |
| { |
| unsigned char b; |
| unsigned char g; |
| unsigned char r; |
| unsigned char reserved; |
| }; |
| |
| enum class JpgBlock |
| { |
| JPEG_NO_SKIP_CODE = 0x00, |
| JPEG_SKIP_CODE = 0x08, |
| |
| JPEG_PASS2_CODE = 0x02, |
| JPEG_SKIP_PASS2_CODE = 0x0A, |
| |
| LOW_JPEG_NO_SKIP_CODE = 0x04, |
| LOW_JPEG_SKIP_CODE = 0x0C, |
| |
| VQ_NO_SKIP_1_COLOR_CODE = 0x05, |
| VQ_SKIP_1_COLOR_CODE = 0x0D, |
| |
| VQ_NO_SKIP_2_COLOR_CODE = 0x06, |
| VQ_SKIP_2_COLOR_CODE = 0x0E, |
| |
| VQ_NO_SKIP_4_COLOR_CODE = 0x07, |
| VQ_SKIP_4_COLOR_CODE = 0x0F, |
| |
| FRAME_END_CODE = 0x09, |
| |
| }; |
| |
| class AstJpegDecoder |
| { |
| public: |
| AstJpegDecoder() |
| { |
| // TODO(ed) figure out how to init this in the constructor |
| yuvBuffer.resize(1920 * 1200); |
| outBuffer.resize(1920 * 1200); |
| for (auto &r : outBuffer) |
| { |
| r.r = 0x00; |
| r.g = 0x00; |
| r.b = 0x00; |
| r.reserved = 0xAA; |
| } |
| |
| int qfactor = 16; |
| |
| scalefactor = qfactor; |
| scalefactoruv = qfactor; |
| advancescalefactor = 16; |
| advancescalefactoruv = 16; |
| initJpgTable(); |
| } |
| |
| void loadQuantTable(std::array<long, 64> &quant_table) |
| { |
| float scalefactorF[8] = {1.0f, 1.387039845f, 1.306562965f, |
| 1.175875602f, 1.0f, 0.785694958f, |
| 0.541196100f, 0.275899379f}; |
| uint8_t j, row, col; |
| std::array<uint8_t, 64> tempQT{}; |
| |
| // Load quantization coefficients from JPG file, scale them for DCT and |
| // reorder |
| // from zig-zag order |
| switch (ySelector) |
| { |
| case 0: |
| stdLuminanceQt = tbl000Y; |
| break; |
| case 1: |
| stdLuminanceQt = tbl014Y; |
| break; |
| case 2: |
| stdLuminanceQt = tbl029Y; |
| break; |
| case 3: |
| stdLuminanceQt = tbl043Y; |
| break; |
| case 4: |
| stdLuminanceQt = tbl057Y; |
| break; |
| case 5: |
| stdLuminanceQt = tbl071Y; |
| break; |
| case 6: |
| stdLuminanceQt = tbl086Y; |
| break; |
| case 7: |
| stdLuminanceQt = tbl100Y; |
| break; |
| } |
| setQuantTable(stdLuminanceQt, static_cast<uint8_t>(scalefactor), |
| tempQT); |
| |
| for (j = 0; j <= 63; j++) |
| { |
| quant_table[j] = tempQT[zigzag[j]]; |
| } |
| j = 0; |
| for (row = 0; row <= 7; row++) |
| { |
| for (col = 0; col <= 7; col++) |
| { |
| quant_table[j] = static_cast<long>( |
| (quant_table[j] * scalefactorF[row] * scalefactorF[col]) * |
| 65536); |
| j++; |
| } |
| } |
| bytePos += 64; |
| } |
| |
| void loadQuantTableCb(std::array<long, 64> &quant_table) |
| { |
| float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| uint8_t j, row, col; |
| std::array<uint8_t, 64> tempQT{}; |
| |
| // Load quantization coefficients from JPG file, scale them for DCT and |
| // reorder from zig-zag order |
| if (mapping == 0) |
| { |
| switch (uvSelector) |
| { |
| case 0: |
| stdChrominanceQt = tbl000Y; |
| break; |
| case 1: |
| stdChrominanceQt = tbl014Y; |
| break; |
| case 2: |
| stdChrominanceQt = tbl029Y; |
| break; |
| case 3: |
| stdChrominanceQt = tbl043Y; |
| break; |
| case 4: |
| stdChrominanceQt = tbl057Y; |
| break; |
| case 5: |
| stdChrominanceQt = tbl071Y; |
| break; |
| case 6: |
| stdChrominanceQt = tbl086Y; |
| break; |
| case 7: |
| stdChrominanceQt = tbl100Y; |
| break; |
| } |
| } |
| else |
| { |
| switch (uvSelector) |
| { |
| case 0: |
| stdChrominanceQt = tbl000Uv; |
| break; |
| case 1: |
| stdChrominanceQt = tbl014Uv; |
| break; |
| case 2: |
| stdChrominanceQt = tbl029Uv; |
| break; |
| case 3: |
| stdChrominanceQt = tbl043Uv; |
| break; |
| case 4: |
| stdChrominanceQt = tbl057Uv; |
| break; |
| case 5: |
| stdChrominanceQt = tbl071Uv; |
| break; |
| case 6: |
| stdChrominanceQt = tbl086Uv; |
| break; |
| case 7: |
| stdChrominanceQt = tbl100Uv; |
| break; |
| } |
| } |
| setQuantTable(stdChrominanceQt, static_cast<uint8_t>(scalefactoruv), |
| tempQT); |
| |
| for (j = 0; j <= 63; j++) |
| { |
| quant_table[j] = tempQT[zigzag[j]]; |
| } |
| j = 0; |
| for (row = 0; row <= 7; row++) |
| { |
| for (col = 0; col <= 7; col++) |
| { |
| quant_table[j] = static_cast<long>( |
| (quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 65536); |
| j++; |
| } |
| } |
| bytePos += 64; |
| } |
| // Note: Added for Dual_JPEG |
| void loadAdvanceQuantTable(std::array<long, 64> &quant_table) |
| { |
| float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| uint8_t j, row, col; |
| std::array<uint8_t, 64> tempQT{}; |
| |
| // Load quantization coefficients from JPG file, scale them for DCT and |
| // reorder |
| // from zig-zag order |
| switch (advanceSelector) |
| { |
| case 0: |
| stdLuminanceQt = tbl000Y; |
| break; |
| case 1: |
| stdLuminanceQt = tbl014Y; |
| break; |
| case 2: |
| stdLuminanceQt = tbl029Y; |
| break; |
| case 3: |
| stdLuminanceQt = tbl043Y; |
| break; |
| case 4: |
| stdLuminanceQt = tbl057Y; |
| break; |
| case 5: |
| stdLuminanceQt = tbl071Y; |
| break; |
| case 6: |
| stdLuminanceQt = tbl086Y; |
| break; |
| case 7: |
| stdLuminanceQt = tbl100Y; |
| break; |
| } |
| // Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG |
| setQuantTable(stdLuminanceQt, static_cast<uint8_t>(advancescalefactor), |
| tempQT); |
| |
| for (j = 0; j <= 63; j++) |
| { |
| quant_table[j] = tempQT[zigzag[j]]; |
| } |
| j = 0; |
| for (row = 0; row <= 7; row++) |
| { |
| for (col = 0; col <= 7; col++) |
| { |
| quant_table[j] = static_cast<long>( |
| (quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 65536); |
| j++; |
| } |
| } |
| bytePos += 64; |
| } |
| |
| // Note: Added for Dual-JPEG |
| void loadAdvanceQuantTableCb(std::array<long, 64> &quant_table) |
| { |
| float scalefactor[8] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f, |
| 1.0f, 0.785694958f, 0.541196100f, 0.275899379f}; |
| uint8_t j, row, col; |
| std::array<uint8_t, 64> tempQT{}; |
| |
| // Load quantization coefficients from JPG file, scale them for DCT and |
| // reorder |
| // from zig-zag order |
| if (mapping == 1) |
| { |
| switch (advanceSelector) |
| { |
| case 0: |
| stdChrominanceQt = tbl000Y; |
| break; |
| case 1: |
| stdChrominanceQt = tbl014Y; |
| break; |
| case 2: |
| stdChrominanceQt = tbl029Y; |
| break; |
| case 3: |
| stdChrominanceQt = tbl043Y; |
| break; |
| case 4: |
| stdChrominanceQt = tbl057Y; |
| break; |
| case 5: |
| stdChrominanceQt = tbl071Y; |
| break; |
| case 6: |
| stdChrominanceQt = tbl086Y; |
| break; |
| case 7: |
| stdChrominanceQt = tbl100Y; |
| break; |
| } |
| } |
| else |
| { |
| switch (advanceSelector) |
| { |
| case 0: |
| stdChrominanceQt = tbl000Uv; |
| break; |
| case 1: |
| stdChrominanceQt = tbl014Uv; |
| break; |
| case 2: |
| stdChrominanceQt = tbl029Uv; |
| break; |
| case 3: |
| stdChrominanceQt = tbl043Uv; |
| break; |
| case 4: |
| stdChrominanceQt = tbl057Uv; |
| break; |
| case 5: |
| stdChrominanceQt = tbl071Uv; |
| break; |
| case 6: |
| stdChrominanceQt = tbl086Uv; |
| break; |
| case 7: |
| stdChrominanceQt = tbl100Uv; |
| break; |
| } |
| } |
| // Note: pass ADVANCE SCALE FACTOR to sub-function in Dual-JPEG |
| setQuantTable(stdChrominanceQt, |
| static_cast<uint8_t>(advancescalefactoruv), tempQT); |
| |
| for (j = 0; j <= 63; j++) |
| { |
| quant_table[j] = tempQT[zigzag[j]]; |
| } |
| j = 0; |
| for (row = 0; row <= 7; row++) |
| { |
| for (col = 0; col <= 7; col++) |
| { |
| quant_table[j] = static_cast<long>( |
| (quant_table[j] * scalefactor[row] * scalefactor[col]) * |
| 65536); |
| j++; |
| } |
| } |
| bytePos += 64; |
| } |
| |
| void idctTransform(short *coef, uint8_t *data, uint8_t nBlock) |
| { |
| #define FIX_1_082392200 ((int)277) /* FIX(1.082392200) */ |
| #define FIX_1_414213562 ((int)362) /* FIX(1.414213562) */ |
| #define FIX_1_847759065 ((int)473) /* FIX(1.847759065) */ |
| #define FIX_2_613125930 ((int)669) /* FIX(2.613125930) */ |
| |
| #define MULTIPLY(var, cons) ((int)((var) * (cons)) >> 8) |
| |
| int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| int tmp10, tmp11, tmp12, tmp13; |
| int z5, z10, z11, z12, z13; |
| int workspace[64]; /* buffers data between passes */ |
| |
| short *inptr = coef; |
| long *quantptr; |
| int *wsptr = workspace; |
| unsigned char *outptr; |
| unsigned char *rLimit = rlimitTable + 128; |
| int ctr, dcval, dctsize = 8; |
| |
| quantptr = &qt[nBlock][0]; |
| |
| // Pass 1: process columns from input (inptr), store into work |
| // array(wsptr) |
| |
| for (ctr = 8; ctr > 0; ctr--) |
| { |
| /* Due to quantization, we will usually find that many of the input |
| * coefficients are zero, especially the AC terms. We can exploit |
| * this by short-circuiting the IDCT calculation for any column in |
| * which all the AC terms are zero. In that case each output is |
| * equal to the DC coefficient (with scale factor as needed). With |
| * typical images and quantization tables, half or more of the |
| * column DCT calculations can be simplified this way. |
| */ |
| |
| if ((inptr[dctsize * 1] | inptr[dctsize * 2] | inptr[dctsize * 3] | |
| inptr[dctsize * 4] | inptr[dctsize * 5] | inptr[dctsize * 6] | |
| inptr[dctsize * 7]) == 0) |
| { |
| /* AC terms all zero */ |
| dcval = static_cast<int>( |
| (inptr[dctsize * 0] * quantptr[dctsize * 0]) >> 16); |
| |
| wsptr[dctsize * 0] = dcval; |
| wsptr[dctsize * 1] = dcval; |
| wsptr[dctsize * 2] = dcval; |
| wsptr[dctsize * 3] = dcval; |
| wsptr[dctsize * 4] = dcval; |
| wsptr[dctsize * 5] = dcval; |
| wsptr[dctsize * 6] = dcval; |
| wsptr[dctsize * 7] = dcval; |
| |
| inptr++; /* advance pointers to next column */ |
| quantptr++; |
| wsptr++; |
| continue; |
| } |
| |
| /* Even part */ |
| |
| tmp0 = (inptr[dctsize * 0] * quantptr[dctsize * 0]) >> 16; |
| tmp1 = (inptr[dctsize * 2] * quantptr[dctsize * 2]) >> 16; |
| tmp2 = (inptr[dctsize * 4] * quantptr[dctsize * 4]) >> 16; |
| tmp3 = (inptr[dctsize * 6] * quantptr[dctsize * 6]) >> 16; |
| |
| tmp10 = tmp0 + tmp2; /* phase 3 */ |
| tmp11 = tmp0 - tmp2; |
| |
| tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
| tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
| |
| tmp0 = tmp10 + tmp13; /* phase 2 */ |
| tmp3 = tmp10 - tmp13; |
| tmp1 = tmp11 + tmp12; |
| tmp2 = tmp11 - tmp12; |
| |
| /* Odd part */ |
| |
| tmp4 = (inptr[dctsize * 1] * quantptr[dctsize * 1]) >> 16; |
| tmp5 = (inptr[dctsize * 3] * quantptr[dctsize * 3]) >> 16; |
| tmp6 = (inptr[dctsize * 5] * quantptr[dctsize * 5]) >> 16; |
| tmp7 = (inptr[dctsize * 7] * quantptr[dctsize * 7]) >> 16; |
| |
| z13 = tmp6 + tmp5; /* phase 6 */ |
| z10 = tmp6 - tmp5; |
| z11 = tmp4 + tmp7; |
| z12 = tmp4 - tmp7; |
| |
| tmp7 = z11 + z13; /* phase 5 */ |
| tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
| |
| z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
| tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
| tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
| |
| tmp6 = tmp12 - tmp7; /* phase 2 */ |
| tmp5 = tmp11 - tmp6; |
| tmp4 = tmp10 + tmp5; |
| |
| wsptr[dctsize * 0] = (tmp0 + tmp7); |
| wsptr[dctsize * 7] = (tmp0 - tmp7); |
| wsptr[dctsize * 1] = (tmp1 + tmp6); |
| wsptr[dctsize * 6] = (tmp1 - tmp6); |
| wsptr[dctsize * 2] = (tmp2 + tmp5); |
| wsptr[dctsize * 5] = (tmp2 - tmp5); |
| wsptr[dctsize * 4] = (tmp3 + tmp4); |
| wsptr[dctsize * 3] = (tmp3 - tmp4); |
| |
| inptr++; /* advance pointers to next column */ |
| quantptr++; |
| wsptr++; |
| } |
| |
| /* Pass 2: process rows from work array, store into output array. */ |
| /* Note that we must descale the results by a factor of 8 == 2**3, */ |
| /* and also undo the PASS1_BITS scaling. */ |
| |
| //#define RANGE_MASK 1023; //2 bits wider than legal samples |
| #define PASS1_BITS 0 |
| #define IDESCALE(x, n) ((int)((x) >> (n))) |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < dctsize; ctr++) |
| { |
| outptr = data + ctr * 8; |
| |
| /* Rows of zeroes can be exploited in the same way as we did with |
| * columns. However, the column calculation has created many nonzero |
| * AC terms, so the simplification applies less often (typically 5% |
| * to 10% of the time). On machines with very fast multiplication, |
| * it's possible that the test takes more time than it's worth. In |
| * that case this section may be commented out. |
| */ |
| /* Even part */ |
| |
| tmp10 = (wsptr[0] + wsptr[4]); |
| tmp11 = (wsptr[0] - wsptr[4]); |
| |
| tmp13 = (wsptr[2] + wsptr[6]); |
| tmp12 = MULTIPLY((int)wsptr[2] - (int)wsptr[6], FIX_1_414213562) - |
| tmp13; |
| |
| tmp0 = tmp10 + tmp13; |
| tmp3 = tmp10 - tmp13; |
| tmp1 = tmp11 + tmp12; |
| tmp2 = tmp11 - tmp12; |
| |
| /* Odd part */ |
| |
| z13 = wsptr[5] + wsptr[3]; |
| z10 = wsptr[5] - wsptr[3]; |
| z11 = wsptr[1] + wsptr[7]; |
| z12 = wsptr[1] - wsptr[7]; |
| |
| tmp7 = z11 + z13; /* phase 5 */ |
| tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
| |
| z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
| tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
| tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
| |
| tmp6 = tmp12 - tmp7; /* phase 2 */ |
| tmp5 = tmp11 - tmp6; |
| tmp4 = tmp10 + tmp5; |
| |
| /* Final output stage: scale down by a factor of 8 and range-limit |
| */ |
| |
| outptr[0] = |
| rLimit[IDESCALE((tmp0 + tmp7), (PASS1_BITS + 3)) & 1023L]; |
| outptr[7] = |
| rLimit[IDESCALE((tmp0 - tmp7), (PASS1_BITS + 3)) & 1023L]; |
| outptr[1] = |
| rLimit[IDESCALE((tmp1 + tmp6), (PASS1_BITS + 3)) & 1023L]; |
| outptr[6] = |
| rLimit[IDESCALE((tmp1 - tmp6), (PASS1_BITS + 3)) & 1023L]; |
| outptr[2] = |
| rLimit[IDESCALE((tmp2 + tmp5), (PASS1_BITS + 3)) & 1023L]; |
| outptr[5] = |
| rLimit[IDESCALE((tmp2 - tmp5), (PASS1_BITS + 3)) & 1023L]; |
| outptr[4] = |
| rLimit[IDESCALE((tmp3 + tmp4), (PASS1_BITS + 3)) & 1023L]; |
| outptr[3] = |
| rLimit[IDESCALE((tmp3 - tmp4), (PASS1_BITS + 3)) & 1023L]; |
| |
| wsptr += dctsize; /* advance pointer to next row */ |
| } |
| } |
| void yuvToRgb( |
| int txb, int tyb, |
| unsigned char |
| *pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| struct RGB *pYUV, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| unsigned char |
| *pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| ) |
| { |
| int i, j, pos, m, n; |
| unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; |
| int y; |
| struct RGB *pByte; |
| int nBlocksInMcu = 6; |
| unsigned int pixelX, pixelY; |
| |
| pByte = reinterpret_cast<struct RGB *>(pBgr); |
| if (yuvmode == YuvMode::YUV444) |
| { |
| py = pYCbCr; |
| pcb = pYCbCr + 64; |
| pcr = pcb + 64; |
| |
| pixelX = txb * 8; |
| pixelY = tyb * 8; |
| pos = (pixelY * width) + pixelX; |
| |
| for (j = 0; j < 8; j++) |
| { |
| for (i = 0; i < 8; i++) |
| { |
| m = ((j << 3) + i); |
| y = py[m]; |
| cb = pcb[m]; |
| cr = pcr[m]; |
| n = pos + i; |
| // For 2Pass. Save the YUV value |
| pYUV[n].b = cb; |
| pYUV[n].g = y; |
| pYUV[n].r = cr; |
| pByte[n].b = rlimitTable[mY[y] + mCbToB[cb]]; |
| pByte[n].g = rlimitTable[mY[y] + mCbToG[cb] + mCrToG[cr]]; |
| pByte[n].r = rlimitTable[mY[y] + mCrToR[cr]]; |
| } |
| pos += width; |
| } |
| } |
| else |
| { |
| for (i = 0; i < nBlocksInMcu - 2; i++) |
| { |
| py420[i] = pYCbCr + i * 64; |
| } |
| pcb = pYCbCr + (nBlocksInMcu - 2) * 64; |
| pcr = pcb + 64; |
| |
| pixelX = txb * 16; |
| pixelY = tyb * 16; |
| pos = (pixelY * width) + pixelX; |
| |
| for (j = 0; j < 16; j++) |
| { |
| for (i = 0; i < 16; i++) |
| { |
| // block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} |
| y = *(py420[(j >> 3) * 2 + (i >> 3)]++); |
| m = ((j >> 1) << 3) + (i >> 1); |
| cb = pcb[m]; |
| cr = pcr[m]; |
| n = pos + i; |
| pByte[n].b = rlimitTable[mY[y] + mCbToB[cb]]; |
| pByte[n].g = rlimitTable[mY[y] + mCbToG[cb] + mCrToG[cr]]; |
| pByte[n].r = rlimitTable[mY[y] + mCrToR[cr]]; |
| } |
| pos += width; |
| } |
| } |
| } |
| void yuvToBuffer( |
| int txb, int tyb, |
| unsigned char |
| *pYCbCr, // in, Y: 256 or 64 bytes; Cb: 64 bytes; Cr: 64 bytes |
| struct RGB |
| *pYUV, // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| unsigned char |
| *pBgr // out, BGR format, 16*16*3 = 768 bytes; or 8*8*3=192 bytes |
| ) |
| { |
| int i, j, pos, m, n; |
| unsigned char cb, cr, *py, *pcb, *pcr, *py420[4]; |
| int y; |
| struct RGB *pByte; |
| int nBlocksInMcu = 6; |
| unsigned int pixelX, pixelY; |
| |
| pByte = reinterpret_cast<struct RGB *>(pBgr); |
| if (yuvmode == YuvMode::YUV444) |
| { |
| py = pYCbCr; |
| pcb = pYCbCr + 64; |
| pcr = pcb + 64; |
| |
| pixelX = txb * 8; |
| pixelY = tyb * 8; |
| pos = (pixelY * width) + pixelX; |
| |
| for (j = 0; j < 8; j++) |
| { |
| for (i = 0; i < 8; i++) |
| { |
| m = ((j << 3) + i); |
| n = pos + i; |
| y = pYUV[n].g + (py[m] - 128); |
| cb = pYUV[n].b + (pcb[m] - 128); |
| cr = pYUV[n].r + (pcr[m] - 128); |
| pYUV[n].b = cb; |
| pYUV[n].g = y; |
| pYUV[n].r = cr; |
| pByte[n].b = rlimitTable[mY[y] + mCbToB[cb]]; |
| pByte[n].g = rlimitTable[mY[y] + mCbToG[cb] + mCrToG[cr]]; |
| pByte[n].r = rlimitTable[mY[y] + mCrToR[cr]]; |
| } |
| pos += width; |
| } |
| } |
| else |
| { |
| for (i = 0; i < nBlocksInMcu - 2; i++) |
| { |
| py420[i] = pYCbCr + i * 64; |
| } |
| pcb = pYCbCr + (nBlocksInMcu - 2) * 64; |
| pcr = pcb + 64; |
| |
| pixelX = txb * 16; |
| pixelY = tyb * 16; |
| pos = (pixelY * width) + pixelX; |
| |
| for (j = 0; j < 16; j++) |
| { |
| for (i = 0; i < 16; i++) |
| { |
| // block number is ((j/8) * 2 + i/8)={0, 1, 2, 3} |
| y = *(py420[(j >> 3) * 2 + (i >> 3)]++); |
| m = ((j >> 1) << 3) + (i >> 1); |
| cb = pcb[m]; |
| cr = pcr[m]; |
| n = pos + i; |
| pByte[n].b = rlimitTable[mY[y] + mCbToB[cb]]; |
| pByte[n].g = rlimitTable[mY[y] + mCbToG[cb] + mCrToG[cr]]; |
| pByte[n].r = rlimitTable[mY[y] + mCrToR[cr]]; |
| } |
| pos += width; |
| } |
| } |
| } |
| void decompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection) |
| { |
| unsigned char *ptr; |
| unsigned char byTileYuv[768] = {}; |
| |
| memset(dctCoeff, 0, 384 * 2); |
| ptr = byTileYuv; |
| processHuffmanDataUnit(ydcNr, yacNr, &dcy, 0); |
| idctTransform(dctCoeff, ptr, QT_TableSelection); |
| ptr += 64; |
| |
| if (yuvmode == YuvMode::YUV420) |
| { |
| processHuffmanDataUnit(ydcNr, yacNr, &dcy, 64); |
| idctTransform(dctCoeff + 64, ptr, QT_TableSelection); |
| ptr += 64; |
| |
| processHuffmanDataUnit(ydcNr, yacNr, &dcy, 128); |
| idctTransform(dctCoeff + 128, ptr, QT_TableSelection); |
| ptr += 64; |
| |
| processHuffmanDataUnit(ydcNr, yacNr, &dcy, 192); |
| idctTransform(dctCoeff + 192, ptr, QT_TableSelection); |
| ptr += 64; |
| |
| processHuffmanDataUnit(cbDcNr, cbAcNr, &dcCb, 256); |
| idctTransform(dctCoeff + 256, ptr, QT_TableSelection + 1); |
| ptr += 64; |
| |
| processHuffmanDataUnit(crDcNr, crAcNr, &dcCr, 320); |
| idctTransform(dctCoeff + 320, ptr, QT_TableSelection + 1); |
| } |
| else |
| { |
| processHuffmanDataUnit(cbDcNr, cbAcNr, &dcCb, 64); |
| idctTransform(dctCoeff + 64, ptr, QT_TableSelection + 1); |
| ptr += 64; |
| |
| processHuffmanDataUnit(crDcNr, crAcNr, &dcCr, 128); |
| idctTransform(dctCoeff + 128, ptr, QT_TableSelection + 1); |
| } |
| |
| // yuvToRgb (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| // yuvBuffer for YUV record |
| yuvToRgb(txb, tyb, byTileYuv, yuvBuffer.data(), |
| reinterpret_cast<unsigned char *>(outBuf)); |
| } |
| |
| void decompress2Pass(int txb, int tyb, char *outBuf, |
| uint8_t QT_TableSelection) |
| { |
| unsigned char *ptr; |
| unsigned char byTileYuv[768]; |
| memset(dctCoeff, 0, 384 * 2); |
| |
| ptr = byTileYuv; |
| processHuffmanDataUnit(ydcNr, yacNr, &dcy, 0); |
| idctTransform(dctCoeff, ptr, QT_TableSelection); |
| ptr += 64; |
| |
| processHuffmanDataUnit(cbDcNr, cbAcNr, &dcCb, 64); |
| idctTransform(dctCoeff + 64, ptr, QT_TableSelection + 1); |
| ptr += 64; |
| |
| processHuffmanDataUnit(crDcNr, crAcNr, &dcCr, 128); |
| idctTransform(dctCoeff + 128, ptr, QT_TableSelection + 1); |
| |
| yuvToBuffer(txb, tyb, byTileYuv, yuvBuffer.data(), |
| reinterpret_cast<unsigned char *>(outBuf)); |
| // yuvToRgb (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| } |
| |
| void vqDecompress(int txb, int tyb, char *outBuf, uint8_t QT_TableSelection, |
| struct ColorCache *VQ) |
| { |
| unsigned char *ptr, i; |
| unsigned char byTileYuv[192]; |
| int data; |
| |
| ptr = byTileYuv; |
| if (VQ->bitMapBits == 0) |
| { |
| for (i = 0; i < 64; i++) |
| { |
| ptr[0] = (VQ->color[VQ->index[0]] & 0xFF0000) >> 16; |
| ptr[64] = (VQ->color[VQ->index[0]] & 0x00FF00) >> 8; |
| ptr[128] = VQ->color[VQ->index[0]] & 0x0000FF; |
| ptr += 1; |
| } |
| } |
| else |
| { |
| for (i = 0; i < 64; i++) |
| { |
| data = static_cast<int>(lookKbits(VQ->bitMapBits)); |
| ptr[0] = (VQ->color[VQ->index[data]] & 0xFF0000) >> 16; |
| ptr[64] = (VQ->color[VQ->index[data]] & 0x00FF00) >> 8; |
| ptr[128] = VQ->color[VQ->index[data]] & 0x0000FF; |
| ptr += 1; |
| skipKbits(VQ->bitMapBits); |
| } |
| } |
| // yuvToRgb (txb, tyb, byTileYuv, (unsigned char *)outBuf); |
| yuvToRgb(txb, tyb, byTileYuv, yuvBuffer.data(), |
| reinterpret_cast<unsigned char *>(outBuf)); |
| } |
| |
| void moveBlockIndex() |
| { |
| if (yuvmode == YuvMode::YUV444) |
| { |
| txb++; |
| if (txb >= static_cast<int>(width / 8)) |
| { |
| tyb++; |
| if (tyb >= static_cast<int>(height / 8)) |
| { |
| tyb = 0; |
| } |
| txb = 0; |
| } |
| } |
| else |
| { |
| txb++; |
| if (txb >= static_cast<int>(width / 16)) |
| { |
| tyb++; |
| if (tyb >= static_cast<int>(height / 16)) |
| { |
| tyb = 0; |
| } |
| txb = 0; |
| } |
| } |
| } |
| |
| void initColorTable() |
| { |
| int i, x; |
| int nScale = 1L << 16; // equal to power(2,16) |
| int nHalf = nScale >> 1; |
| |
| #define FIX(x) ((int)((x)*nScale + 0.5)) |
| |
| /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
| /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
| /* Cr=>r value is nearest int to 1.597656 * x */ |
| /* Cb=>b value is nearest int to 2.015625 * x */ |
| /* Cr=>g value is scaled-up -0.8125 * x */ |
| /* Cb=>g value is scaled-up -0.390625 * x */ |
| for (i = 0, x = -128; i < 256; i++, x++) |
| { |
| mCrToR[i] = (FIX(1.597656) * x + nHalf) >> 16; |
| mCbToB[i] = (FIX(2.015625) * x + nHalf) >> 16; |
| mCrToG[i] = (-FIX(0.8125) * x + nHalf) >> 16; |
| mCbToG[i] = (-FIX(0.390625) * x + nHalf) >> 16; |
| } |
| for (i = 0, x = -16; i < 256; i++, x++) |
| { |
| mY[i] = (FIX(1.164) * x + nHalf) >> 16; |
| } |
| // For color Text Enchance Y Re-map. Recommend to disable in default |
| /* |
| for (i = 0; i < |
| (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); i++) { temp = |
| (double)i / VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate; temp1 |
| = 1.0 / VideoEngineInfo->INFData.Gamma1Parameter; mY[i] = |
| (BYTE)(VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate * pow (temp, |
| temp1)); |
| if (mY[i] > 255) mY[i] = 255; |
| } |
| for (i = (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate); i < |
| 256; i++) { mY[i] = |
| (BYTE)((VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) + (256 - |
| VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) * ( pow((double)((i |
| - VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate) / (256 - |
| (VideoEngineInfo->INFData.Gamma1_Gamma2_Seperate))), (1.0 / |
| VideoEngineInfo->INFData.Gamma2Parameter)) )); |
| if (mY[i] > 255) mY[i] = 255; |
| } |
| */ |
| } |
| void loadHuffmanTable(HuffmanTable *HT, const unsigned char *nrcode, |
| const unsigned char *value, |
| const unsigned short int *Huff_code) |
| { |
| unsigned char k, j, i; |
| unsigned int code, codeIndex; |
| |
| for (j = 1; j <= 16; j++) |
| { |
| HT->length[j] = nrcode[j]; |
| } |
| for (i = 0, k = 1; k <= 16; k++) |
| { |
| for (j = 0; j < HT->length[k]; j++) |
| { |
| HT->v[wordHiLo(k, j)] = value[i]; |
| i++; |
| } |
| } |
| |
| code = 0; |
| for (k = 1; k <= 16; k++) |
| { |
| HT->minorCode[k] = static_cast<unsigned short int>(code); |
| for (j = 1; j <= HT->length[k]; j++) |
| { |
| code++; |
| } |
| HT->majorCode[k] = static_cast<unsigned short int>(code - 1); |
| code *= 2; |
| if (HT->length[k] == 0) |
| { |
| HT->minorCode[k] = 0xFFFF; |
| HT->majorCode[k] = 0; |
| } |
| } |
| |
| HT->len[0] = 2; |
| i = 2; |
| |
| for (codeIndex = 1; codeIndex < 65535; codeIndex++) |
| { |
| if (codeIndex < Huff_code[i]) |
| { |
| HT->len[codeIndex] = |
| static_cast<unsigned char>(Huff_code[i + 1]); |
| } |
| else |
| { |
| i = i + 2; |
| HT->len[codeIndex] = |
| static_cast<unsigned char>(Huff_code[i + 1]); |
| } |
| } |
| } |
| void initJpgTable() |
| { |
| initColorTable(); |
| prepareRangeLimitTable(); |
| loadHuffmanTable(&htdc[0], stdDcLuminanceNrcodes, stdDcLuminanceValues, |
| dcLuminanceHuffmancode); |
| loadHuffmanTable(&htac[0], stdAcLuminanceNrcodes, stdAcLuminanceValues, |
| acLuminanceHuffmancode); |
| loadHuffmanTable(&htdc[1], stdDcChrominanceNrcodes, |
| stdDcChrominanceValues, dcChrominanceHuffmancode); |
| loadHuffmanTable(&htac[1], stdAcChrominanceNrcodes, |
| stdAcChrominanceValues, acChrominanceHuffmancode); |
| } |
| |
| void prepareRangeLimitTable() |
| /* Allocate and fill in the sample_range_limit table */ |
| { |
| int j; |
| rlimitTable = reinterpret_cast<unsigned char *>(malloc(5 * 256L + 128)); |
| /* First segment of "simple" table: limit[x] = 0 for x < 0 */ |
| memset((void *)rlimitTable, 0, 256); |
| rlimitTable += 256; /* allow negative subscripts of simple table */ |
| /* Main part of "simple" table: limit[x] = x */ |
| for (j = 0; j < 256; j++) |
| { |
| rlimitTable[j] = j; |
| } |
| /* End of simple table, rest of first half of post-IDCT table */ |
| for (j = 256; j < 640; j++) |
| { |
| rlimitTable[j] = 255; |
| } |
| |
| /* Second half of post-IDCT table */ |
| memset((void *)(rlimitTable + 640), 0, 384); |
| for (j = 0; j < 128; j++) |
| { |
| rlimitTable[j + 1024] = j; |
| } |
| } |
| |
| inline unsigned short int wordHiLo(uint8_t byte_high, uint8_t byte_low) |
| { |
| return (byte_high << 8) + byte_low; |
| } |
| |
| // river |
| void processHuffmanDataUnit(uint8_t DC_nr, uint8_t AC_nr, |
| signed short int *previous_DC, |
| unsigned short int position) |
| { |
| uint8_t nr = 0; |
| uint8_t k; |
| unsigned short int tmpHcode; |
| uint8_t sizeVal, count0; |
| unsigned short int *minCode; |
| uint8_t *huffValues; |
| uint8_t byteTemp; |
| |
| minCode = htdc[DC_nr].minorCode; |
| // maj_code=htdc[DC_nr].majorCode; |
| huffValues = htdc[DC_nr].v; |
| |
| // DC |
| k = htdc[DC_nr].len[static_cast<unsigned short int>(codebuf >> 16)]; |
| // river |
| // tmp_Hcode=lookKbits(k); |
| tmpHcode = static_cast<unsigned short int>(codebuf >> (32 - k)); |
| skipKbits(k); |
| sizeVal = huffValues[wordHiLo( |
| k, static_cast<uint8_t>(tmpHcode - minCode[k]))]; |
| if (sizeVal == 0) |
| { |
| dctCoeff[position + 0] = *previous_DC; |
| } |
| else |
| { |
| dctCoeff[position + 0] = *previous_DC + getKbits(sizeVal); |
| *previous_DC = dctCoeff[position + 0]; |
| } |
| |
| // Second, AC coefficient decoding |
| minCode = htac[AC_nr].minorCode; |
| // maj_code=htac[AC_nr].majorCode; |
| huffValues = htac[AC_nr].v; |
| |
| nr = 1; // AC coefficient |
| do |
| { |
| k = htac[AC_nr].len[static_cast<unsigned short int>(codebuf >> 16)]; |
| tmpHcode = static_cast<unsigned short int>(codebuf >> (32 - k)); |
| skipKbits(k); |
| |
| byteTemp = huffValues[wordHiLo( |
| k, static_cast<uint8_t>(tmpHcode - minCode[k]))]; |
| sizeVal = byteTemp & 0xF; |
| count0 = byteTemp >> 4; |
| if (sizeVal == 0) |
| { |
| if (count0 != 0xF) |
| { |
| break; |
| } |
| nr += 16; |
| } |
| else |
| { |
| nr += count0; // skip count_0 zeroes |
| dctCoeff[position + dezigzag[nr++]] = getKbits(sizeVal); |
| } |
| } while (nr < 64); |
| } |
| |
| unsigned short int lookKbits(uint8_t k) |
| { |
| unsigned short int revcode; |
| |
| revcode = static_cast<unsigned short int>(codebuf >> (32 - k)); |
| |
| return (revcode); |
| } |
| |
| void skipKbits(uint8_t k) |
| { |
| unsigned long readbuf; |
| |
| if ((newbits - k) <= 0) |
| { |
| readbuf = buffer[bufferIndex]; |
| bufferIndex++; |
| codebuf = (codebuf << k) | |
| ((newbuf | (readbuf >> (newbits))) >> (32 - k)); |
| newbuf = readbuf << (k - newbits); |
| newbits = 32 + newbits - k; |
| } |
| else |
| { |
| codebuf = (codebuf << k) | (newbuf >> (32 - k)); |
| newbuf = newbuf << k; |
| newbits -= k; |
| } |
| } |
| |
| signed short int getKbits(uint8_t k) |
| { |
| signed short int signedWordvalue; |
| |
| // river |
| // signed_wordvalue=lookKbits(k); |
| signedWordvalue = static_cast<unsigned short int>(codebuf >> (32 - k)); |
| if (((1L << (k - 1)) & signedWordvalue) == 0) |
| { |
| // neg_pow2 was previously defined as the below. It seemed silly to |
| // keep a table of values around for something THat's relatively |
| // easy to compute, so it was replaced with the appropriate math |
| // signed_wordvalue = signed_wordvalue - (0xFFFF >> (16 - k)); |
| std::array<signed short int, 17> negPow2 = { |
| 0, -1, -3, -7, -15, -31, -63, -127, |
| -255, -511, -1023, -2047, -4095, -8191, -16383, -32767}; |
| |
| signedWordvalue = signedWordvalue + negPow2[k]; |
| } |
| skipKbits(k); |
| return signedWordvalue; |
| } |
| int initJpgDecoding() |
| { |
| bytePos = 0; |
| loadQuantTable(qt[0]); |
| loadQuantTableCb(qt[1]); |
| // Note: Added for Dual-JPEG |
| loadAdvanceQuantTable(qt[2]); |
| loadAdvanceQuantTableCb(qt[3]); |
| return 1; |
| } |
| |
| void setQuantTable(const uint8_t *basic_table, uint8_t scale_factor, |
| std::array<uint8_t, 64> &newtable) |
| // Set quantization table and zigzag reorder it |
| { |
| uint8_t i; |
| long temp; |
| for (i = 0; i < 64; i++) |
| { |
| temp = (static_cast<long>(basic_table[i] * 16) / scale_factor); |
| /* limit the values to the valid range */ |
| if (temp <= 0L) |
| { |
| temp = 1L; |
| } |
| if (temp > 255L) |
| { |
| temp = 255L; /* limit to baseline range if requested */ |
| } |
| newtable[zigzag[i]] = static_cast<uint8_t>(temp); |
| } |
| } |
| |
| void updatereadbuf(uint32_t *codebuf, uint32_t *newbuf, int walks, |
| int *newbits, std::vector<uint32_t> &buffer) |
| { |
| unsigned long readbuf; |
| |
| if ((*newbits - walks) <= 0) |
| { |
| readbuf = buffer[bufferIndex]; |
| bufferIndex++; |
| *codebuf = (*codebuf << walks) | |
| ((*newbuf | (readbuf >> (*newbits))) >> (32 - walks)); |
| *newbuf = readbuf << (walks - *newbits); |
| *newbits = 32 + *newbits - walks; |
| } |
| else |
| { |
| *codebuf = (*codebuf << walks) | (*newbuf >> (32 - walks)); |
| *newbuf = *newbuf << walks; |
| *newbits -= walks; |
| } |
| } |
| |
| uint32_t decode(std::vector<uint32_t> &bufferVector, unsigned long width, |
| unsigned long height, YuvMode yuvmode_in, int ySelector, |
| int uvSelector) |
| { |
| ColorCache decodeColor; |
| if (width != userWidth || height != userHeight || |
| yuvmode_in != yuvmode || ySelector != ySelector || |
| uvSelector != uvSelector) |
| { |
| yuvmode = yuvmode_in; |
| ySelector = ySelector; // 0-7 |
| uvSelector = uvSelector; // 0-7 |
| userHeight = height; |
| userWidth = width; |
| width = width; |
| height = height; |
| |
| // TODO(ed) Magic number section. Document appropriately |
| advanceSelector = 0; // 0-7 |
| mapping = 0; // 0 or 1 |
| |
| if (yuvmode == YuvMode::YUV420) |
| { |
| if ((width % 16) != 0u) |
| { |
| width = width + 16 - (width % 16); |
| } |
| if ((height % 16) != 0u) |
| { |
| height = height + 16 - (height % 16); |
| } |
| } |
| else |
| { |
| if ((width % 8) != 0u) |
| { |
| width = width + 8 - (width % 8); |
| } |
| if ((height % 8) != 0u) |
| { |
| height = height + 8 - (height % 8); |
| } |
| } |
| |
| initJpgDecoding(); |
| } |
| // TODO(ed) cleanup cruft |
| buffer = bufferVector.data(); |
| |
| codebuf = bufferVector[0]; |
| newbuf = bufferVector[1]; |
| bufferIndex = 2; |
| |
| txb = tyb = 0; |
| newbits = 32; |
| dcy = dcCb = dcCr = 0; |
| |
| static const uint32_t vqHeaderMask = 0x01; |
| static const uint32_t vqNoUpdateHeader = 0x00; |
| static const uint32_t vqUpdateHeader = 0x01; |
| static const int vqNoUpdateLength = 0x03; |
| static const int vqUpdateLength = 0x1B; |
| static const uint32_t vqIndexMask = 0x03; |
| static const uint32_t vqColorMask = 0xFFFFFF; |
| |
| static const int blockAsT2100StartLength = 0x04; |
| static const int blockAsT2100SkipLength = 20; // S:1 H:3 X:8 Y:8 |
| |
| do |
| { |
| auto blockHeader = static_cast<JpgBlock>((codebuf >> 28) & 0xFF); |
| switch (blockHeader) |
| { |
| case JpgBlock::JPEG_NO_SKIP_CODE: |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100StartLength, |
| &newbits, bufferVector); |
| decompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0); |
| break; |
| case JpgBlock::FRAME_END_CODE: |
| return 0; |
| break; |
| case JpgBlock::JPEG_SKIP_CODE: |
| |
| txb = (codebuf & 0x0FF00000) >> 20; |
| tyb = (codebuf & 0x0FF000) >> 12; |
| |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100SkipLength, |
| &newbits, bufferVector); |
| decompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0); |
| break; |
| case JpgBlock::VQ_NO_SKIP_1_COLOR_CODE: |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100StartLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 0; |
| |
| for (int i = 0; i < 1; i++) |
| { |
| decodeColor.index[i] = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[decodeColor.index[i]] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| break; |
| case JpgBlock::VQ_SKIP_1_COLOR_CODE: |
| txb = (codebuf & 0x0FF00000) >> 20; |
| tyb = (codebuf & 0x0FF000) >> 12; |
| |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100SkipLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 0; |
| |
| for (int i = 0; i < 1; i++) |
| { |
| decodeColor.index[i] = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[decodeColor.index[i]] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| break; |
| |
| case JpgBlock::VQ_NO_SKIP_2_COLOR_CODE: |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100StartLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 1; |
| |
| for (int i = 0; i < 2; i++) |
| { |
| decodeColor.index[i] = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[decodeColor.index[i]] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| break; |
| case JpgBlock::VQ_SKIP_2_COLOR_CODE: |
| txb = (codebuf & 0x0FF00000) >> 20; |
| tyb = (codebuf & 0x0FF000) >> 12; |
| |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100SkipLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 1; |
| |
| for (int i = 0; i < 2; i++) |
| { |
| decodeColor.index[i] = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[decodeColor.index[i]] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| |
| break; |
| case JpgBlock::VQ_NO_SKIP_4_COLOR_CODE: |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100StartLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 2; |
| |
| for (unsigned char &i : decodeColor.index) |
| { |
| i = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[i] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| |
| break; |
| |
| case JpgBlock::VQ_SKIP_4_COLOR_CODE: |
| txb = (codebuf & 0x0FF00000) >> 20; |
| tyb = (codebuf & 0x0FF000) >> 12; |
| |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100SkipLength, |
| &newbits, bufferVector); |
| decodeColor.bitMapBits = 2; |
| |
| for (unsigned char &i : decodeColor.index) |
| { |
| i = ((codebuf >> 29) & vqIndexMask); |
| if (((codebuf >> 31) & vqHeaderMask) == |
| vqNoUpdateHeader) |
| { |
| updatereadbuf(&codebuf, &newbuf, vqNoUpdateLength, |
| &newbits, bufferVector); |
| } |
| else |
| { |
| decodeColor.color[i] = |
| ((codebuf >> 5) & vqColorMask); |
| updatereadbuf(&codebuf, &newbuf, vqUpdateLength, |
| &newbits, bufferVector); |
| } |
| } |
| vqDecompress(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), 0, |
| &decodeColor); |
| |
| break; |
| case JpgBlock::JPEG_SKIP_PASS2_CODE: |
| txb = (codebuf & 0x0FF00000) >> 20; |
| tyb = (codebuf & 0x0FF000) >> 12; |
| |
| updatereadbuf(&codebuf, &newbuf, blockAsT2100SkipLength, |
| &newbits, bufferVector); |
| decompress2Pass(txb, tyb, |
| reinterpret_cast<char *>(outBuffer.data()), |
| 2); |
| |
| break; |
| default: |
| // TODO(ed) propogate errors upstream |
| return -1; |
| break; |
| } |
| moveBlockIndex(); |
| |
| } while (bufferIndex <= bufferVector.size()); |
| |
| return -1; |
| } |
| |
| #ifdef cimg_version |
| void dump_to_bitmap_file() |
| { |
| cimg_library::CImg<unsigned char> image(width, height, 1, 3); |
| for (int y = 0; y < width; y++) |
| { |
| for (int x = 0; x < height; x++) |
| { |
| auto pixel = outBuffer[x + (y * width)]; |
| image(x, y, 0) = pixel.r; |
| image(x, y, 1) = pixel.g; |
| image(x, y, 2) = pixel.b; |
| } |
| } |
| image.save("/tmp/file2.bmp"); |
| } |
| #endif |
| |
| private: |
| YuvMode yuvmode{}; |
| // width and height are the modes your display used |
| unsigned long width{}; |
| unsigned long height{}; |
| unsigned long userWidth{}; |
| unsigned long userHeight{}; |
| unsigned char ySelector{}; |
| int scalefactor; |
| int scalefactoruv; |
| int advancescalefactor; |
| int advancescalefactoruv; |
| int mapping{}; |
| unsigned char uvSelector{}; |
| unsigned char advanceSelector{}; |
| int bytePos{}; // current byte position |
| |
| // quantization tables, no more than 4 quantization tables |
| std::array<std::array<long, 64>, 4> qt{}; |
| |
| // DC huffman tables , no more than 4 (0..3) |
| std::array<HuffmanTable, 4> htdc{}; |
| // AC huffman tables (0..3) |
| std::array<HuffmanTable, 4> htac{}; |
| std::array<int, 256> mCrToR{}; |
| std::array<int, 256> mCbToB{}; |
| std::array<int, 256> mCrToG{}; |
| std::array<int, 256> mCbToG{}; |
| std::array<int, 256> mY{}; |
| unsigned long bufferIndex{}; |
| uint32_t codebuf{}, newbuf{}, readbuf{}; |
| const unsigned char *stdLuminanceQt{}; |
| const uint8_t *stdChrominanceQt{}; |
| |
| signed short int dcy{}, dcCb{}, dcCr{}; // Coeficientii DC pentru Y,Cb,Cr |
| signed short int dctCoeff[384]{}; |
| // std::vector<signed short int> dctCoeff; // Current DCT_coefficients |
| // quantization table number for Y, Cb, Cr |
| uint8_t yqNr = 0, cbQNr = 1, crQNr = 1; |
| // DC Huffman table number for Y,Cb, Cr |
| uint8_t ydcNr = 0, cbDcNr = 1, crDcNr = 1; |
| // AC Huffman table number for Y,Cb, Cr |
| uint8_t yacNr = 0, cbAcNr = 1, crAcNr = 1; |
| int txb = 0; |
| int tyb = 0; |
| int newbits{}; |
| uint8_t *rlimitTable{}; |
| std::vector<RGB> yuvBuffer; |
| // TODO(ed) this shouldn't exist. It is cruft that needs cleaning up |
| uint32_t *buffer{}; |
| |
| public: |
| std::vector<RGB> outBuffer; |
| }; |
| } // namespace ast_video |