blob: dfc942fcf7f379a94f7e1a89c2aba8a23968ab26 [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "CPUSensor.hpp"
#include "Utils.hpp"
#include "VariantVisitors.hpp"
#include <fcntl.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/process/child.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <sdbusplus/bus/match.hpp>
#include <array>
#include <filesystem>
#include <fstream>
#include <functional>
#include <memory>
#include <regex>
#include <sstream>
#include <stdexcept>
#include <string>
#include <utility>
#include <variant>
#include <vector>
// clang-format off
// this needs to be included last or we'll have build issues
#include <linux/peci-ioctl.h>
#if !defined(PECI_MBX_INDEX_DDR_DIMM_TEMP)
#define PECI_MBX_INDEX_DDR_DIMM_TEMP MBX_INDEX_DDR_DIMM_TEMP
#endif
// clang-format on
static constexpr bool DEBUG = false;
boost::container::flat_map<std::string, std::unique_ptr<CPUSensor>> gCpuSensors;
boost::container::flat_map<std::string,
std::shared_ptr<sdbusplus::asio::dbus_interface>>
inventoryIfaces;
enum State
{
OFF, // host powered down
ON, // host powered on
READY // host powered on and mem test passed - fully ready
};
struct CPUConfig
{
CPUConfig(const uint64_t& bus, const uint64_t& addr,
const std::string& name, const State& state) :
bus(bus),
addr(addr), name(name), state(state)
{}
int bus;
int addr;
std::string name;
State state;
bool operator<(const CPUConfig& rhs) const
{
return (name < rhs.name);
}
};
static constexpr const char* peciDev = "/dev/peci-";
static constexpr const unsigned int rankNumMax = 8;
namespace fs = std::filesystem;
static constexpr const char* configPrefix =
"xyz.openbmc_project.Configuration.";
static constexpr std::array<const char*, 1> sensorTypes = {"XeonCPU"};
static constexpr std::array<const char*, 3> hiddenProps = {
CPUSensor::labelTcontrol, "Tthrottle", "Tjmax"};
void detectCpuAsync(
boost::asio::deadline_timer& pingTimer,
boost::asio::deadline_timer& creationTimer, boost::asio::io_service& io,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
boost::container::flat_set<CPUConfig>& cpuConfigs,
ManagedObjectType& sensorConfigs);
std::string createSensorName(const std::string& label, const std::string& item,
const int& cpuId)
{
std::string sensorName = label;
if (item.compare("input") != 0)
{
sensorName += " " + item;
}
sensorName += " CPU" + std::to_string(cpuId);
// converting to Upper Camel case whole name
bool isWordEnd = true;
std::transform(sensorName.begin(), sensorName.end(), sensorName.begin(),
[&isWordEnd](int c) {
if (std::isspace(c))
{
isWordEnd = true;
}
else
{
if (isWordEnd)
{
isWordEnd = false;
return std::toupper(c);
}
}
return c;
});
return sensorName;
}
bool createSensors(boost::asio::io_service& io,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
boost::container::flat_set<CPUConfig>& cpuConfigs,
ManagedObjectType& sensorConfigs)
{
bool available = false;
for (const CPUConfig& cpu : cpuConfigs)
{
if (cpu.state != State::OFF)
{
available = true;
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
inventoryIfaces[cpu.name];
if (iface != nullptr)
{
continue;
}
iface = objectServer.add_interface(
cpuInventoryPath + std::string("/") + cpu.name,
"xyz.openbmc_project.Inventory.Item");
iface->register_property("PrettyName", cpu.name);
iface->register_property("Present", true);
iface->initialize();
}
}
if (!available)
{
return false;
}
if (sensorConfigs.empty())
{
return false;
}
std::vector<fs::path> hwmonNamePaths;
if (!findFiles(fs::path(R"(/sys/bus/peci/devices)"),
R"(peci-\d+/\d+-.+/peci-.+/hwmon/hwmon\d+/name$)",
hwmonNamePaths, 1))
{
std::cerr << "No CPU sensors in system\n";
return true;
}
boost::container::flat_set<std::string> scannedDirectories;
boost::container::flat_set<std::string> createdSensors;
for (const fs::path& hwmonNamePath : hwmonNamePaths)
{
const std::string& pathStr = hwmonNamePath.string();
auto hwmonDirectory = hwmonNamePath.parent_path();
auto ret = scannedDirectories.insert(hwmonDirectory.string());
if (!ret.second)
{
continue; // already searched this path
}
fs::path::iterator it = hwmonNamePath.begin();
std::advance(it, 6); // pick the 6th part for a PECI client device name
std::string deviceName = *it;
auto findHyphen = deviceName.find("-");
if (findHyphen == std::string::npos)
{
std::cerr << "found bad device " << deviceName << "\n";
continue;
}
std::string busStr = deviceName.substr(0, findHyphen);
std::string addrStr = deviceName.substr(findHyphen + 1);
size_t bus = 0;
size_t addr = 0;
try
{
bus = std::stoi(busStr);
addr = std::stoi(addrStr, 0, 16);
}
catch (std::invalid_argument&)
{
continue;
}
std::ifstream nameFile(hwmonNamePath);
if (!nameFile.good())
{
std::cerr << "Failure reading " << hwmonNamePath << "\n";
continue;
}
std::string hwmonName;
std::getline(nameFile, hwmonName);
nameFile.close();
if (hwmonName.empty())
{
// shouldn't have an empty name file
continue;
}
if (DEBUG)
{
std::cout << "Checking: " << hwmonNamePath << ": " << hwmonName
<< "\n";
}
std::string sensorType;
const SensorData* sensorData = nullptr;
const std::string* interfacePath = nullptr;
const SensorBaseConfiguration* baseConfiguration = nullptr;
for (const std::pair<sdbusplus::message::object_path, SensorData>&
sensor : sensorConfigs)
{
sensorData = &(sensor.second);
for (const char* type : sensorTypes)
{
sensorType = configPrefix + std::string(type);
auto sensorBase = sensorData->find(sensorType);
if (sensorBase != sensorData->end())
{
baseConfiguration = &(*sensorBase);
break;
}
}
if (baseConfiguration == nullptr)
{
std::cerr << "error finding base configuration for" << hwmonName
<< "\n";
continue;
}
auto configurationBus = baseConfiguration->second.find("Bus");
auto configurationAddress =
baseConfiguration->second.find("Address");
if (configurationBus == baseConfiguration->second.end() ||
configurationAddress == baseConfiguration->second.end())
{
std::cerr << "error finding bus or address in configuration";
continue;
}
if (std::get<uint64_t>(configurationBus->second) != bus ||
std::get<uint64_t>(configurationAddress->second) != addr)
{
continue;
}
interfacePath = &(sensor.first.str);
break;
}
if (interfacePath == nullptr)
{
std::cerr << "failed to find match for " << hwmonName << "\n";
continue;
}
auto findCpuId = baseConfiguration->second.find("CpuID");
if (findCpuId == baseConfiguration->second.end())
{
std::cerr << "could not determine CPU ID for " << hwmonName << "\n";
continue;
}
int cpuId =
std::visit(VariantToUnsignedIntVisitor(), findCpuId->second);
auto directory = hwmonNamePath.parent_path();
std::vector<fs::path> inputPaths;
if (!findFiles(directory, R"((temp|power)\d+_(input|average|cap)$)",
inputPaths, 0))
{
std::cerr << "No temperature sensors in system\n";
continue;
}
// iterate through all found temp sensors
for (const auto& inputPath : inputPaths)
{
auto fileParts = splitFileName(inputPath);
if (!fileParts)
{
continue;
}
auto& [type, nr, item] = *fileParts;
auto inputPathStr = inputPath.string();
auto labelPath =
boost::replace_all_copy(inputPathStr, item, "label");
std::ifstream labelFile(labelPath);
if (!labelFile.good())
{
std::cerr << "Failure reading " << labelPath << "\n";
continue;
}
std::string label;
std::getline(labelFile, label);
labelFile.close();
std::string sensorName = createSensorName(label, item, cpuId);
auto findSensor = gCpuSensors.find(sensorName);
if (findSensor != gCpuSensors.end())
{
if (DEBUG)
{
std::cout << "Skipped: " << inputPath << ": " << sensorName
<< " is already created\n";
}
continue;
}
// check hidden properties
bool show = true;
for (const char* prop : hiddenProps)
{
if (label == prop)
{
show = false;
break;
}
}
/*
* Find if there is DtsCritOffset is configured in config file
* set it if configured or else set it to 0
*/
double dtsOffset = 0;
if (label == "DTS")
{
auto findThrOffset =
baseConfiguration->second.find("DtsCritOffset");
if (findThrOffset != baseConfiguration->second.end())
{
dtsOffset = std::visit(VariantToDoubleVisitor(),
findThrOffset->second);
}
}
std::vector<thresholds::Threshold> sensorThresholds;
std::string labelHead = label.substr(0, label.find(" "));
parseThresholdsFromConfig(*sensorData, sensorThresholds,
&labelHead);
if (sensorThresholds.empty())
{
if (!parseThresholdsFromAttr(sensorThresholds, inputPathStr,
CPUSensor::sensorScaleFactor,
dtsOffset))
{
std::cerr << "error populating thresholds for "
<< sensorName << "\n";
}
}
auto& sensorPtr = gCpuSensors[sensorName];
// make sure destructor fires before creating a new one
sensorPtr = nullptr;
sensorPtr = std::make_unique<CPUSensor>(
inputPathStr, sensorType, objectServer, dbusConnection, io,
sensorName, std::move(sensorThresholds), *interfacePath, cpuId,
show, dtsOffset);
createdSensors.insert(sensorName);
if (DEBUG)
{
std::cout << "Mapped: " << inputPath << " to " << sensorName
<< "\n";
}
}
}
if (createdSensors.size())
{
std::cout << "Sensor" << (createdSensors.size() == 1 ? " is" : "s are")
<< " created\n";
}
return true;
}
void exportDevice(const CPUConfig& config)
{
std::ostringstream hex;
hex << std::hex << config.addr;
const std::string& addrHexStr = hex.str();
std::string busStr = std::to_string(config.bus);
std::string parameters = "peci-client 0x" + addrHexStr;
std::string device = "/sys/bus/peci/devices/peci-" + busStr + "/new_device";
std::filesystem::path devicePath(device);
const std::string& dir = devicePath.parent_path().string();
for (const auto& path : std::filesystem::directory_iterator(dir))
{
if (!std::filesystem::is_directory(path))
{
continue;
}
const std::string& directoryName = path.path().filename();
if (boost::starts_with(directoryName, busStr) &&
boost::ends_with(directoryName, addrHexStr))
{
if (DEBUG)
{
std::cout << parameters << " on bus " << busStr
<< " is already exported\n";
}
return;
}
}
std::ofstream deviceFile(device);
if (!deviceFile.good())
{
std::cerr << "Error writing " << device << "\n";
return;
}
deviceFile << parameters;
deviceFile.close();
std::cout << parameters << " on bus " << busStr << " is exported\n";
}
void detectCpu(boost::asio::deadline_timer& pingTimer,
boost::asio::deadline_timer& creationTimer,
boost::asio::io_service& io,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
boost::container::flat_set<CPUConfig>& cpuConfigs,
ManagedObjectType& sensorConfigs)
{
size_t rescanDelaySeconds = 0;
static bool keepPinging = false;
for (CPUConfig& config : cpuConfigs)
{
std::string peciDevPath = peciDev + std::to_string(config.bus);
auto file = open(peciDevPath.c_str(), O_RDWR | O_CLOEXEC);
if (file < 0)
{
std::cerr << "unable to open " << peciDevPath << "\n";
std::exit(EXIT_FAILURE);
}
State newState;
struct peci_ping_msg msg;
msg.addr = config.addr;
if (!ioctl(file, PECI_IOC_PING, &msg))
{
bool dimmReady = false;
for (unsigned int rank = 0; rank < rankNumMax; rank++)
{
struct peci_rd_pkg_cfg_msg msg;
msg.addr = config.addr;
msg.index = PECI_MBX_INDEX_DDR_DIMM_TEMP;
msg.param = rank;
msg.rx_len = 4;
if (!ioctl(file, PECI_IOC_RD_PKG_CFG, &msg))
{
if (msg.pkg_config[0] || msg.pkg_config[1] ||
msg.pkg_config[2])
{
dimmReady = true;
break;
}
}
else
{
break;
}
}
if (dimmReady)
{
newState = State::READY;
}
else
{
newState = State::ON;
}
}
else
{
newState = State::OFF;
}
close(file);
if (config.state != newState)
{
if (newState != State::OFF)
{
if (config.state == State::OFF)
{
std::cout << config.name << " is detected\n";
exportDevice(config);
}
if (newState == State::ON)
{
rescanDelaySeconds = 3;
}
else if (newState == State::READY)
{
rescanDelaySeconds = 5;
std::cout << "DIMM(s) on " << config.name
<< " is/are detected\n";
}
}
config.state = newState;
}
if (config.state != State::READY)
{
keepPinging = true;
}
if (DEBUG)
{
std::cout << config.name << ", state: " << config.state << "\n";
}
}
if (rescanDelaySeconds)
{
creationTimer.expires_from_now(
boost::posix_time::seconds(rescanDelaySeconds));
creationTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
if (!createSensors(io, objectServer, dbusConnection, cpuConfigs,
sensorConfigs) ||
keepPinging)
{
detectCpuAsync(pingTimer, creationTimer, io, objectServer,
dbusConnection, cpuConfigs, sensorConfigs);
}
});
}
else if (keepPinging)
{
detectCpuAsync(pingTimer, creationTimer, io, objectServer,
dbusConnection, cpuConfigs, sensorConfigs);
}
}
void detectCpuAsync(
boost::asio::deadline_timer& pingTimer,
boost::asio::deadline_timer& creationTimer, boost::asio::io_service& io,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
boost::container::flat_set<CPUConfig>& cpuConfigs,
ManagedObjectType& sensorConfigs)
{
pingTimer.expires_from_now(boost::posix_time::seconds(1));
pingTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
detectCpu(pingTimer, creationTimer, io, objectServer, dbusConnection,
cpuConfigs, sensorConfigs);
});
}
bool getCpuConfig(const std::shared_ptr<sdbusplus::asio::connection>& systemBus,
boost::container::flat_set<CPUConfig>& cpuConfigs,
ManagedObjectType& sensorConfigs,
sdbusplus::asio::object_server& objectServer)
{
bool useCache = false;
sensorConfigs.clear();
// use new data the first time, then refresh
for (const char* type : sensorTypes)
{
if (!getSensorConfiguration(configPrefix + std::string(type), systemBus,
sensorConfigs, useCache))
{
return false;
}
useCache = true;
}
// check PECI client addresses and names from CPU configuration
// before starting ping operation
for (const char* type : sensorTypes)
{
for (const std::pair<sdbusplus::message::object_path, SensorData>&
sensor : sensorConfigs)
{
for (const SensorBaseConfiguration& config : sensor.second)
{
if ((configPrefix + std::string(type)) != config.first)
{
continue;
}
auto findName = config.second.find("Name");
if (findName == config.second.end())
{
continue;
}
std::string nameRaw =
std::visit(VariantToStringVisitor(), findName->second);
std::string name =
std::regex_replace(nameRaw, illegalDbusRegex, "_");
auto present = std::optional<bool>();
// if we can't detect it via gpio, we set presence later
for (const SensorBaseConfiguration& suppConfig : sensor.second)
{
if (suppConfig.first.find("PresenceGpio") !=
std::string::npos)
{
present = cpuIsPresent(suppConfig.second);
break;
}
}
if (inventoryIfaces.find(name) == inventoryIfaces.end() &&
present)
{
auto iface = objectServer.add_interface(
cpuInventoryPath + std::string("/") + name,
"xyz.openbmc_project.Inventory.Item");
iface->register_property("PrettyName", name);
iface->register_property("Present", *present);
iface->initialize();
inventoryIfaces[name] = std::move(iface);
}
auto findBus = config.second.find("Bus");
if (findBus == config.second.end())
{
std::cerr << "Can't find 'Bus' setting in " << name << "\n";
continue;
}
uint64_t bus =
std::visit(VariantToUnsignedIntVisitor(), findBus->second);
auto findAddress = config.second.find("Address");
if (findAddress == config.second.end())
{
std::cerr << "Can't find 'Address' setting in " << name
<< "\n";
continue;
}
uint64_t addr = std::visit(VariantToUnsignedIntVisitor(),
findAddress->second);
if (DEBUG)
{
std::cout << "bus: " << bus << "\n";
std::cout << "addr: " << addr << "\n";
std::cout << "name: " << name << "\n";
std::cout << "type: " << type << "\n";
}
cpuConfigs.emplace(bus, addr, name, State::OFF);
}
}
}
if (cpuConfigs.size())
{
std::cout << "CPU config" << (cpuConfigs.size() == 1 ? " is" : "s are")
<< " parsed\n";
return true;
}
return false;
}
int main()
{
boost::asio::io_service io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
boost::container::flat_set<CPUConfig> cpuConfigs;
sdbusplus::asio::object_server objectServer(systemBus);
std::vector<std::unique_ptr<sdbusplus::bus::match::match>> matches;
boost::asio::deadline_timer pingTimer(io);
boost::asio::deadline_timer creationTimer(io);
boost::asio::deadline_timer filterTimer(io);
ManagedObjectType sensorConfigs;
filterTimer.expires_from_now(boost::posix_time::seconds(1));
filterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
if (getCpuConfig(systemBus, cpuConfigs, sensorConfigs, objectServer))
{
detectCpuAsync(pingTimer, creationTimer, io, objectServer,
systemBus, cpuConfigs, sensorConfigs);
}
});
std::function<void(sdbusplus::message::message&)> eventHandler =
[&](sdbusplus::message::message& message) {
if (message.is_method_error())
{
std::cerr << "callback method error\n";
return;
}
if (DEBUG)
{
std::cout << message.get_path() << " is changed\n";
}
// this implicitly cancels the timer
filterTimer.expires_from_now(boost::posix_time::seconds(1));
filterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
if (getCpuConfig(systemBus, cpuConfigs, sensorConfigs,
objectServer))
{
detectCpuAsync(pingTimer, creationTimer, io, objectServer,
systemBus, cpuConfigs, sensorConfigs);
}
});
};
for (const char* type : sensorTypes)
{
auto match = std::make_unique<sdbusplus::bus::match::match>(
static_cast<sdbusplus::bus::bus&>(*systemBus),
"type='signal',member='PropertiesChanged',path_namespace='" +
std::string(inventoryPath) + "',arg0namespace='" +
configPrefix + type + "'",
eventHandler);
matches.emplace_back(std::move(match));
}
systemBus->request_name("xyz.openbmc_project.CPUSensor");
io.run();
}