blob: c7449d5d97d86348e451a76b3285ecd4c7f7e5b4 [file] [log] [blame]
/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "HwmonTempSensor.hpp"
#include <unistd.h>
#include <boost/asio/read_until.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <charconv>
#include <iostream>
#include <istream>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
// Temperatures are read in milli degrees Celsius, we need degrees Celsius.
// Pressures are read in kilopascal, we need Pascals. On D-Bus for Open BMC
// we use the International System of Units without prefixes.
// Links to the kernel documentation:
// https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
// https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
// For IIO RAW sensors we get a raw_value, an offset, and scale to compute
// the value = (raw_value + offset) * scale
HwmonTempSensor::HwmonTempSensor(
const std::string& path, const std::string& objectType,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& conn,
boost::asio::io_context& io, const std::string& sensorName,
std::vector<thresholds::Threshold>&& thresholdsIn,
const struct SensorParams& thisSensorParameters, const float pollRate,
const std::string& sensorConfiguration, const PowerState powerState,
const std::shared_ptr<I2CDevice>& i2cDevice) :
Sensor(boost::replace_all_copy(sensorName, " ", "_"),
std::move(thresholdsIn), sensorConfiguration, objectType, false,
false, thisSensorParameters.maxValue, thisSensorParameters.minValue,
conn, powerState),
i2cDevice(i2cDevice), objServer(objectServer),
inputDev(io, path, boost::asio::random_access_file::read_only),
waitTimer(io), path(path), offsetValue(thisSensorParameters.offsetValue),
scaleValue(thisSensorParameters.scaleValue),
sensorPollMs(static_cast<unsigned int>(pollRate * 1000))
{
sensorInterface = objectServer.add_interface(
"/xyz/openbmc_project/sensors/" + thisSensorParameters.typeName + "/" +
name,
"xyz.openbmc_project.Sensor.Value");
for (const auto& threshold : thresholds)
{
std::string interface = thresholds::getInterface(threshold.level);
thresholdInterfaces[static_cast<size_t>(threshold.level)] =
objectServer.add_interface("/xyz/openbmc_project/sensors/" +
thisSensorParameters.typeName + "/" +
name,
interface);
}
association = objectServer.add_interface("/xyz/openbmc_project/sensors/" +
thisSensorParameters.typeName +
"/" + name,
association::interface);
setInitialProperties(thisSensorParameters.units);
}
bool HwmonTempSensor::isActive()
{
return inputDev.is_open();
}
void HwmonTempSensor::activate(const std::string& newPath,
const std::shared_ptr<I2CDevice>& newI2CDevice)
{
path = newPath;
i2cDevice = newI2CDevice;
inputDev.open(path, boost::asio::random_access_file::read_only);
markAvailable(true);
setupRead();
}
void HwmonTempSensor::deactivate()
{
markAvailable(false);
// close the input dev to cancel async operations
inputDev.close();
waitTimer.cancel();
i2cDevice = nullptr;
path = "";
}
HwmonTempSensor::~HwmonTempSensor()
{
deactivate();
for (const auto& iface : thresholdInterfaces)
{
objServer.remove_interface(iface);
}
objServer.remove_interface(sensorInterface);
objServer.remove_interface(association);
}
void HwmonTempSensor::setupRead(void)
{
if (!readingStateGood())
{
markAvailable(false);
updateValue(std::numeric_limits<double>::quiet_NaN());
restartRead();
return;
}
std::weak_ptr<HwmonTempSensor> weakRef = weak_from_this();
inputDev.async_read_some_at(
0, boost::asio::buffer(readBuf),
[weakRef](const boost::system::error_code& ec, std::size_t bytesRead) {
std::shared_ptr<HwmonTempSensor> self = weakRef.lock();
if (self)
{
self->handleResponse(ec, bytesRead);
}
});
}
void HwmonTempSensor::restartRead()
{
std::weak_ptr<HwmonTempSensor> weakRef = weak_from_this();
waitTimer.expires_after(std::chrono::milliseconds(sensorPollMs));
waitTimer.async_wait([weakRef](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
std::shared_ptr<HwmonTempSensor> self = weakRef.lock();
if (!self)
{
return;
}
self->setupRead();
});
}
void HwmonTempSensor::handleResponse(const boost::system::error_code& err,
size_t bytesRead)
{
if ((err == boost::system::errc::bad_file_descriptor) ||
(err == boost::asio::error::misc_errors::not_found))
{
std::cerr << "Hwmon temp sensor " << name << " removed " << path
<< "\n";
return; // we're being destroyed
}
if (!err)
{
const char* bufEnd = readBuf.data() + bytesRead;
int nvalue = 0;
std::from_chars_result ret = std::from_chars(readBuf.data(), bufEnd,
nvalue);
if (ret.ec != std::errc())
{
incrementError();
}
else
{
updateValue((nvalue + offsetValue) * scaleValue);
}
}
else
{
incrementError();
}
restartRead();
}
void HwmonTempSensor::checkThresholds(void)
{
thresholds::checkThresholds(this);
}