blob: 9c3e4730878031ed4d77fb66d1ecdce6b6ec14cd [file] [log] [blame]
/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "DeviceMgmt.hpp"
#include "HwmonTempSensor.hpp"
#include "Utils.hpp"
#include <boost/algorithm/string/replace.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <sdbusplus/bus/match.hpp>
#include <array>
#include <charconv>
#include <filesystem>
#include <fstream>
#include <functional>
#include <memory>
#include <regex>
#include <stdexcept>
#include <string>
#include <utility>
#include <variant>
#include <vector>
static constexpr float pollRateDefault = 0.5;
static constexpr double maxValuePressure = 120000; // Pascals
static constexpr double minValuePressure = 30000; // Pascals
static constexpr double maxValueRelativeHumidity = 100; // PercentRH
static constexpr double minValueRelativeHumidity = 0; // PercentRH
static constexpr double maxValueTemperature = 127; // DegreesC
static constexpr double minValueTemperature = -128; // DegreesC
namespace fs = std::filesystem;
static const I2CDeviceTypeMap sensorTypes{
{"DPS310", I2CDeviceType{"dps310", false}},
{"EMC1412", I2CDeviceType{"emc1412", true}},
{"EMC1413", I2CDeviceType{"emc1413", true}},
{"EMC1414", I2CDeviceType{"emc1414", true}},
{"HDC1080", I2CDeviceType{"hdc1080", false}},
{"JC42", I2CDeviceType{"jc42", true}},
{"LM75A", I2CDeviceType{"lm75a", true}},
{"LM95234", I2CDeviceType{"lm95234", true}},
{"MAX31725", I2CDeviceType{"max31725", true}},
{"MAX31730", I2CDeviceType{"max31730", true}},
{"MAX6581", I2CDeviceType{"max6581", true}},
{"MAX6654", I2CDeviceType{"max6654", true}},
{"NCT6779", I2CDeviceType{"nct6779", true}},
{"NCT7802", I2CDeviceType{"nct7802", true}},
{"SBTSI", I2CDeviceType{"sbtsi", true}},
{"SI7020", I2CDeviceType{"si7020", false}},
{"TMP100", I2CDeviceType{"tmp100", true}},
{"TMP112", I2CDeviceType{"tmp112", true}},
{"TMP175", I2CDeviceType{"tmp175", true}},
{"TMP421", I2CDeviceType{"tmp421", true}},
{"TMP441", I2CDeviceType{"tmp441", true}},
{"TMP464", I2CDeviceType{"tmp464", true}},
{"TMP75", I2CDeviceType{"tmp75", true}},
{"W83773G", I2CDeviceType{"w83773g", true}},
};
static struct SensorParams
getSensorParameters(const std::filesystem::path& path)
{
// offset is to default to 0 and scale to 1, see lore
// https://lore.kernel.org/linux-iio/5c79425f-6e88-36b6-cdfe-4080738d039f@metafoo.de/
struct SensorParams tmpSensorParameters = {
.minValue = minValueTemperature,
.maxValue = maxValueTemperature,
.offsetValue = 0.0,
.scaleValue = 1.0,
.units = sensor_paths::unitDegreesC,
.typeName = "temperature"};
// For IIO RAW sensors we get a raw_value, an offset, and scale
// to compute the value = (raw_value + offset) * scale
// with a _raw IIO device we need to get the
// offsetValue and scaleValue from the driver
// these are used to compute the reading in
// units that have yet to be scaled for D-Bus.
const std::string pathStr = path.string();
if (pathStr.ends_with("_raw"))
{
std::string pathOffsetStr = pathStr.substr(0, pathStr.size() - 4) +
"_offset";
std::optional<double> tmpOffsetValue = readFile(pathOffsetStr, 1.0);
// In case there is nothing to read skip this device
// This is not an error condition see lore
// https://lore.kernel.org/linux-iio/5c79425f-6e88-36b6-cdfe-4080738d039f@metafoo.de/
if (tmpOffsetValue)
{
tmpSensorParameters.offsetValue = *tmpOffsetValue;
}
std::string pathScaleStr = pathStr.substr(0, pathStr.size() - 4) +
"_scale";
std::optional<double> tmpScaleValue = readFile(pathScaleStr, 1.0);
// In case there is nothing to read skip this device
// This is not an error condition see lore
// https://lore.kernel.org/linux-iio/5c79425f-6e88-36b6-cdfe-4080738d039f@metafoo.de/
if (tmpScaleValue)
{
tmpSensorParameters.scaleValue = *tmpScaleValue;
}
}
// Temperatures are read in milli degrees Celsius, we need
// degrees Celsius. Pressures are read in kilopascal, we need
// Pascals. On D-Bus for Open BMC we use the International
// System of Units without prefixes. Links to the kernel
// documentation:
// https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
// https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
if (path.filename() == "in_pressure_input" ||
path.filename() == "in_pressure_raw")
{
tmpSensorParameters.minValue = minValuePressure;
tmpSensorParameters.maxValue = maxValuePressure;
// Pressures are read in kilopascal, we need Pascals.
tmpSensorParameters.scaleValue *= 1000.0;
tmpSensorParameters.typeName = "pressure";
tmpSensorParameters.units = sensor_paths::unitPascals;
}
else if (path.filename() == "in_humidityrelative_input" ||
path.filename() == "in_humidityrelative_raw")
{
tmpSensorParameters.minValue = minValueRelativeHumidity;
tmpSensorParameters.maxValue = maxValueRelativeHumidity;
// Relative Humidity are read in milli-percent, we need percent.
tmpSensorParameters.scaleValue *= 0.001;
tmpSensorParameters.typeName = "humidity";
tmpSensorParameters.units = "PercentRH";
}
else
{
// Temperatures are read in milli degrees Celsius,
// we need degrees Celsius.
tmpSensorParameters.scaleValue *= 0.001;
}
return tmpSensorParameters;
}
struct SensorConfigKey
{
uint64_t bus;
uint64_t addr;
bool operator<(const SensorConfigKey& other) const
{
if (bus != other.bus)
{
return bus < other.bus;
}
return addr < other.addr;
}
};
struct SensorConfig
{
std::string sensorPath;
SensorData sensorData;
std::string interface;
SensorBaseConfigMap config;
std::vector<std::string> name;
};
using SensorConfigMap =
boost::container::flat_map<SensorConfigKey, SensorConfig>;
static SensorConfigMap
buildSensorConfigMap(const ManagedObjectType& sensorConfigs)
{
SensorConfigMap configMap;
for (const auto& [path, cfgData] : sensorConfigs)
{
for (const auto& [intf, cfg] : cfgData)
{
auto busCfg = cfg.find("Bus");
auto addrCfg = cfg.find("Address");
if ((busCfg == cfg.end()) || (addrCfg == cfg.end()))
{
continue;
}
if ((std::get_if<uint64_t>(&busCfg->second) == nullptr) ||
(std::get_if<uint64_t>(&addrCfg->second) == nullptr))
{
std::cerr << path.str << " Bus or Address invalid\n";
continue;
}
std::vector<std::string> hwmonNames;
auto nameCfg = cfg.find("Name");
if (nameCfg != cfg.end())
{
hwmonNames.push_back(std::get<std::string>(nameCfg->second));
size_t i = 1;
while (true)
{
auto sensorNameCfg = cfg.find("Name" + std::to_string(i));
if (sensorNameCfg == cfg.end())
{
break;
}
hwmonNames.push_back(
std::get<std::string>(sensorNameCfg->second));
i++;
}
}
SensorConfigKey key = {std::get<uint64_t>(busCfg->second),
std::get<uint64_t>(addrCfg->second)};
SensorConfig val = {path.str, cfgData, intf, cfg, hwmonNames};
auto [it, inserted] = configMap.emplace(key, std::move(val));
if (!inserted)
{
std::cerr << path.str << ": ignoring duplicate entry for {"
<< key.bus << ", 0x" << std::hex << key.addr
<< std::dec << "}\n";
}
}
}
return configMap;
}
// returns a {path: <I2CDevice, is_new>} map. is_new indicates if the I2CDevice
// is newly instantiated by this call (true) or was already there (false).
boost::container::flat_map<std::string,
std::pair<std::shared_ptr<I2CDevice>, bool>>
instantiateDevices(
const ManagedObjectType& sensorConfigs,
const boost::container::flat_map<
std::string, std::shared_ptr<HwmonTempSensor>>& sensors)
{
boost::container::flat_map<std::string,
std::pair<std::shared_ptr<I2CDevice>, bool>>
devices;
for (const auto& [path, sensor] : sensorConfigs)
{
for (const auto& [name, cfg] : sensor)
{
PowerState powerState = getPowerState(cfg);
if (!readingStateGood(powerState))
{
continue;
}
auto findSensorName = cfg.find("Name");
if (findSensorName == cfg.end())
{
continue;
}
std::string sensorName =
std::get<std::string>(findSensorName->second);
auto findSensor = sensors.find(sensorName);
if (findSensor != sensors.end() && findSensor->second != nullptr &&
findSensor->second->isActive())
{
devices.emplace(
path.str,
std::make_pair(findSensor->second->getI2CDevice(), false));
continue;
}
std::optional<I2CDeviceParams> params =
getI2CDeviceParams(sensorTypes, cfg);
if (params.has_value() && !params->deviceStatic())
{
// There exist error cases in which a sensor device that we
// need is already instantiated, but needs to be destroyed and
// re-created in order to be useful (for example if we crash
// after instantiating a device and the sensor device's power
// is cut before we get restarted, leaving it "present" but
// not really usable). To be on the safe side, instantiate a
// temporary device that's immediately destroyed so as to
// ensure that we end up with a fresh instance of it.
if (params->devicePresent())
{
std::cerr << "Clearing out previous instance for "
<< path.str << "\n";
I2CDevice tmp(*params);
}
try
{
devices.emplace(
path.str,
std::make_pair(std::make_shared<I2CDevice>(*params),
true));
}
catch (std::runtime_error&)
{
std::cerr << "Failed to instantiate " << params->type->name
<< " at address " << params->address << " on bus "
<< params->bus << "\n";
}
}
}
}
return devices;
}
void createSensors(
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
boost::container::flat_map<std::string, std::shared_ptr<HwmonTempSensor>>&
sensors,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
const std::shared_ptr<boost::container::flat_set<std::string>>&
sensorsChanged,
bool activateOnly)
{
auto getter = std::make_shared<GetSensorConfiguration>(
dbusConnection,
[&io, &objectServer, &sensors, &dbusConnection, sensorsChanged,
activateOnly](const ManagedObjectType& sensorConfigurations) {
bool firstScan = sensorsChanged == nullptr;
SensorConfigMap configMap = buildSensorConfigMap(sensorConfigurations);
auto devices = instantiateDevices(sensorConfigurations, sensors);
// IIO _raw devices look like this on sysfs:
// /sys/bus/iio/devices/iio:device0/in_temp_raw
// /sys/bus/iio/devices/iio:device0/in_temp_offset
// /sys/bus/iio/devices/iio:device0/in_temp_scale
//
// Other IIO devices look like this on sysfs:
// /sys/bus/iio/devices/iio:device1/in_temp_input
// /sys/bus/iio/devices/iio:device1/in_pressure_input
std::vector<fs::path> paths;
fs::path root("/sys/bus/iio/devices");
findFiles(root, R"(in_temp\d*_(input|raw))", paths);
findFiles(root, R"(in_pressure\d*_(input|raw))", paths);
findFiles(root, R"(in_humidityrelative\d*_(input|raw))", paths);
findFiles(fs::path("/sys/class/hwmon"), R"(temp\d+_input)", paths);
// iterate through all found temp and pressure sensors,
// and try to match them with configuration
for (auto& path : paths)
{
std::smatch match;
const std::string pathStr = path.string();
auto directory = path.parent_path();
fs::path device;
std::string deviceName;
if (pathStr.starts_with("/sys/bus/iio/devices"))
{
device = fs::canonical(directory);
deviceName = device.parent_path().stem();
}
else
{
device = directory / "device";
deviceName = fs::canonical(device).stem();
}
auto findHyphen = deviceName.find('-');
if (findHyphen == std::string::npos)
{
std::cerr << "found bad device " << deviceName << "\n";
continue;
}
std::string busStr = deviceName.substr(0, findHyphen);
std::string addrStr = deviceName.substr(findHyphen + 1);
uint64_t bus = 0;
uint64_t addr = 0;
std::from_chars_result res{};
res = std::from_chars(busStr.data(), busStr.data() + busStr.size(),
bus);
if (res.ec != std::errc{})
{
continue;
}
res = std::from_chars(addrStr.data(),
addrStr.data() + addrStr.size(), addr, 16);
if (res.ec != std::errc{})
{
continue;
}
auto thisSensorParameters = getSensorParameters(path);
auto findSensorCfg = configMap.find({bus, addr});
if (findSensorCfg == configMap.end())
{
continue;
}
const std::string& interfacePath = findSensorCfg->second.sensorPath;
auto findI2CDev = devices.find(interfacePath);
std::shared_ptr<I2CDevice> i2cDev;
if (findI2CDev != devices.end())
{
// If we're only looking to activate newly-instantiated i2c
// devices and this sensor's underlying device was already there
// before this call, there's nothing more to do here.
if (activateOnly && !findI2CDev->second.second)
{
continue;
}
i2cDev = findI2CDev->second.first;
}
const SensorData& sensorData = findSensorCfg->second.sensorData;
std::string sensorType = findSensorCfg->second.interface;
auto pos = sensorType.find_last_of('.');
if (pos != std::string::npos)
{
sensorType = sensorType.substr(pos + 1);
}
const SensorBaseConfigMap& baseConfigMap =
findSensorCfg->second.config;
std::vector<std::string>& hwmonName = findSensorCfg->second.name;
// Temperature has "Name", pressure has "Name1"
auto findSensorName = baseConfigMap.find("Name");
int index = 1;
if (thisSensorParameters.typeName == "pressure" ||
thisSensorParameters.typeName == "humidity")
{
findSensorName = baseConfigMap.find("Name1");
index = 2;
}
if (findSensorName == baseConfigMap.end())
{
std::cerr << "could not determine configuration name for "
<< deviceName << "\n";
continue;
}
std::string sensorName =
std::get<std::string>(findSensorName->second);
// on rescans, only update sensors we were signaled by
auto findSensor = sensors.find(sensorName);
if (!firstScan && findSensor != sensors.end())
{
bool found = false;
auto it = sensorsChanged->begin();
while (it != sensorsChanged->end())
{
if (it->ends_with(findSensor->second->name))
{
it = sensorsChanged->erase(it);
findSensor->second = nullptr;
found = true;
break;
}
++it;
}
if (!found)
{
continue;
}
}
std::vector<thresholds::Threshold> sensorThresholds;
if (!parseThresholdsFromConfig(sensorData, sensorThresholds,
nullptr, &index))
{
std::cerr << "error populating thresholds for " << sensorName
<< " index " << index << "\n";
}
float pollRate = getPollRate(baseConfigMap, pollRateDefault);
PowerState readState = getPowerState(baseConfigMap);
auto permitSet = getPermitSet(baseConfigMap);
auto& sensor = sensors[sensorName];
if (!activateOnly)
{
sensor = nullptr;
}
auto hwmonFile = getFullHwmonFilePath(directory.string(), "temp1",
permitSet);
if (pathStr.starts_with("/sys/bus/iio/devices"))
{
hwmonFile = pathStr;
}
if (hwmonFile)
{
if (sensor != nullptr)
{
sensor->activate(*hwmonFile, i2cDev);
}
else
{
sensor = std::make_shared<HwmonTempSensor>(
*hwmonFile, sensorType, objectServer, dbusConnection,
io, sensorName, std::move(sensorThresholds),
thisSensorParameters, pollRate, interfacePath,
readState, i2cDev);
sensor->setupRead();
}
}
hwmonName.erase(
remove(hwmonName.begin(), hwmonName.end(), sensorName),
hwmonName.end());
// Looking for keys like "Name1" for temp2_input,
// "Name2" for temp3_input, etc.
int i = 0;
while (true)
{
++i;
auto findKey = baseConfigMap.find("Name" + std::to_string(i));
if (findKey == baseConfigMap.end())
{
break;
}
std::string sensorName = std::get<std::string>(findKey->second);
hwmonFile = getFullHwmonFilePath(directory.string(),
"temp" + std::to_string(i + 1),
permitSet);
if (pathStr.starts_with("/sys/bus/iio/devices"))
{
continue;
}
if (hwmonFile)
{
// To look up thresholds for these additional sensors,
// match on the Index property in the threshold data
// where the index comes from the sysfs file we're on,
// i.e. index = 2 for temp2_input.
int index = i + 1;
std::vector<thresholds::Threshold> thresholds;
if (!parseThresholdsFromConfig(sensorData, thresholds,
nullptr, &index))
{
std::cerr << "error populating thresholds for "
<< sensorName << " index " << index << "\n";
}
auto& sensor = sensors[sensorName];
if (!activateOnly)
{
sensor = nullptr;
}
if (sensor != nullptr)
{
sensor->activate(*hwmonFile, i2cDev);
}
else
{
sensor = std::make_shared<HwmonTempSensor>(
*hwmonFile, sensorType, objectServer,
dbusConnection, io, sensorName,
std::move(thresholds), thisSensorParameters,
pollRate, interfacePath, readState, i2cDev);
sensor->setupRead();
}
}
hwmonName.erase(
remove(hwmonName.begin(), hwmonName.end(), sensorName),
hwmonName.end());
}
if (hwmonName.empty())
{
configMap.erase(findSensorCfg);
}
}
});
std::vector<std::string> types(sensorTypes.size());
for (const auto& [type, dt] : sensorTypes)
{
types.push_back(type);
}
getter->getConfiguration(types);
}
void interfaceRemoved(
sdbusplus::message_t& message,
boost::container::flat_map<std::string, std::shared_ptr<HwmonTempSensor>>&
sensors)
{
if (message.is_method_error())
{
std::cerr << "interfacesRemoved callback method error\n";
return;
}
sdbusplus::message::object_path path;
std::vector<std::string> interfaces;
message.read(path, interfaces);
// If the xyz.openbmc_project.Confguration.X interface was removed
// for one or more sensors, delete those sensor objects.
auto sensorIt = sensors.begin();
while (sensorIt != sensors.end())
{
if ((sensorIt->second->configurationPath == path) &&
(std::find(interfaces.begin(), interfaces.end(),
sensorIt->second->configInterface) != interfaces.end()))
{
sensorIt = sensors.erase(sensorIt);
}
else
{
sensorIt++;
}
}
}
static void powerStateChanged(
PowerState type, bool newState,
boost::container::flat_map<std::string, std::shared_ptr<HwmonTempSensor>>&
sensors,
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection)
{
if (newState)
{
createSensors(io, objectServer, sensors, dbusConnection, nullptr, true);
}
else
{
for (auto& [path, sensor] : sensors)
{
if (sensor != nullptr && sensor->readState == type)
{
sensor->deactivate();
}
}
}
}
int main()
{
boost::asio::io_context io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
sdbusplus::asio::object_server objectServer(systemBus, true);
objectServer.add_manager("/xyz/openbmc_project/sensors");
systemBus->request_name("xyz.openbmc_project.HwmonTempSensor");
boost::container::flat_map<std::string, std::shared_ptr<HwmonTempSensor>>
sensors;
auto sensorsChanged =
std::make_shared<boost::container::flat_set<std::string>>();
auto powerCallBack = [&sensors, &io, &objectServer,
&systemBus](PowerState type, bool state) {
powerStateChanged(type, state, sensors, io, objectServer, systemBus);
};
setupPowerMatchCallback(systemBus, powerCallBack);
boost::asio::post(io, [&]() {
createSensors(io, objectServer, sensors, systemBus, nullptr, false);
});
boost::asio::steady_timer filterTimer(io);
std::function<void(sdbusplus::message_t&)> eventHandler =
[&](sdbusplus::message_t& message) {
if (message.is_method_error())
{
std::cerr << "callback method error\n";
return;
}
sensorsChanged->insert(message.get_path());
// this implicitly cancels the timer
filterTimer.expires_after(std::chrono::seconds(1));
filterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
/* we were canceled*/
return;
}
if (ec)
{
std::cerr << "timer error\n";
return;
}
createSensors(io, objectServer, sensors, systemBus, sensorsChanged,
false);
});
};
std::vector<std::unique_ptr<sdbusplus::bus::match_t>> matches =
setupPropertiesChangedMatches(*systemBus, sensorTypes, eventHandler);
setupManufacturingModeMatch(*systemBus);
// Watch for entity-manager to remove configuration interfaces
// so the corresponding sensors can be removed.
auto ifaceRemovedMatch = std::make_unique<sdbusplus::bus::match_t>(
static_cast<sdbusplus::bus_t&>(*systemBus),
"type='signal',member='InterfacesRemoved',arg0path='" +
std::string(inventoryPath) + "/'",
[&sensors](sdbusplus::message_t& msg) {
interfaceRemoved(msg, sensors);
});
matches.emplace_back(std::move(ifaceRemovedMatch));
io.run();
}