blob: c7e6e8ed73dee8b999dadf9214137fbf253180ca [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "ExitAirTempSensor.hpp"
#include "Utils.hpp"
#include "VariantVisitors.hpp"
#include <math.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <chrono>
#include <iostream>
#include <limits>
#include <numeric>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <vector>
constexpr const float altitudeFactor = 1.14;
constexpr const char* exitAirIface =
"xyz.openbmc_project.Configuration.ExitAirTempSensor";
constexpr const char* cfmIface = "xyz.openbmc_project.Configuration.CFMSensor";
// todo: this *might* need to be configurable
constexpr const char* inletTemperatureSensor = "temperature/Front_Panel_Temp";
static constexpr bool DEBUG = false;
static constexpr double cfmMaxReading = 255;
static constexpr double cfmMinReading = 0;
static void setupSensorMatch(
std::vector<sdbusplus::bus::match::match>& matches,
sdbusplus::bus::bus& connection, const std::string& type,
std::function<void(const double&, sdbusplus::message::message&)>&& callback)
{
std::function<void(sdbusplus::message::message & message)> eventHandler =
[callback{std::move(callback)}](sdbusplus::message::message& message) {
std::string objectName;
boost::container::flat_map<
std::string, sdbusplus::message::variant<double, int64_t>>
values;
message.read(objectName, values);
auto findValue = values.find("Value");
if (findValue == values.end())
{
return;
}
double value = sdbusplus::message::variant_ns::visit(
VariantToDoubleVisitor(), findValue->second);
callback(value, message);
};
matches.emplace_back(connection,
"type='signal',"
"member='PropertiesChanged',interface='org."
"freedesktop.DBus.Properties',path_"
"namespace='/xyz/openbmc_project/sensors/" +
std::string(type) +
"',arg0='xyz.openbmc_project.Sensor.Value'",
std::move(eventHandler));
}
CFMSensor::CFMSensor(std::shared_ptr<sdbusplus::asio::connection>& conn,
const std::string& sensorName,
const std::string& sensorConfiguration,
sdbusplus::asio::object_server& objectServer,
std::vector<thresholds::Threshold>&& thresholds,
std::shared_ptr<ExitAirTempSensor>& parent) :
Sensor(boost::replace_all_copy(sensorName, " ", "_"),
"" /* todo: remove arg from base*/, std::move(thresholds),
sensorConfiguration, "xyz.openbmc_project.Configuration.ExitAirTemp",
cfmMaxReading, cfmMinReading),
dbusConnection(conn), parent(parent)
{
sensorInterface =
objectServer.add_interface("/xyz/openbmc_project/sensors/cfm/" + name,
"xyz.openbmc_project.Sensor.Value");
if (thresholds::hasWarningInterface(thresholds))
{
thresholdInterfaceWarning = objectServer.add_interface(
"/xyz/openbmc_project/sensors/cfm/" + name,
"xyz.openbmc_project.Sensor.Threshold.Warning");
}
if (thresholds::hasCriticalInterface(thresholds))
{
thresholdInterfaceCritical = objectServer.add_interface(
"/xyz/openbmc_project/sensors/cfm/" + name,
"xyz.openbmc_project.Sensor.Threshold.Critical");
}
setInitialProperties(conn);
setupSensorMatch(
matches, *dbusConnection, "fan_tach",
std::move(
[this](const double& value, sdbusplus::message::message& message) {
tachReadings[message.get_path()] = value;
if (tachRanges.find(message.get_path()) == tachRanges.end())
{
// calls update reading after updating ranges
addTachRanges(message.get_sender(), message.get_path());
}
else
{
updateReading();
}
}));
}
void CFMSensor::addTachRanges(const std::string& serviceName,
const std::string& path)
{
dbusConnection->async_method_call(
[this, path](const boost::system::error_code ec,
const boost::container::flat_map<std::string,
BasicVariantType>& data) {
if (ec)
{
std::cerr << "Error getting properties from " << path << "\n";
}
double max = loadVariant<double>(data, "MaxValue");
double min = loadVariant<double>(data, "MinValue");
tachRanges[path] = std::make_pair(min, max);
updateReading();
},
serviceName, path, "org.freedesktop.DBus.Properties", "GetAll",
"xyz.openbmc_project.Sensor.Value");
}
void CFMSensor::checkThresholds(void)
{
thresholds::checkThresholds(this);
}
void CFMSensor::updateReading(void)
{
double val = 0.0;
if (calculate(val))
{
if (value != val && parent)
{
parent->updateReading();
}
updateValue(val);
}
else
{
updateValue(std::numeric_limits<double>::quiet_NaN());
}
}
bool CFMSensor::calculate(double& value)
{
double totalCFM = 0;
for (const std::string& tachName : tachs)
{
auto findReading = std::find_if(
tachReadings.begin(), tachReadings.end(), [&](const auto& item) {
return boost::ends_with(item.first, tachName);
});
auto findRange = std::find_if(
tachRanges.begin(), tachRanges.end(), [&](const auto& item) {
return boost::ends_with(item.first, tachName);
});
if (findReading == tachReadings.end())
{
std::cerr << "Can't find " << tachName << "in readings\n";
return false; // haven't gotten a reading
}
if (findRange == tachRanges.end())
{
std::cerr << "Can't find " << tachName << "in ranges\n";
return false; // haven't gotten a max / min
}
// avoid divide by 0
if (findRange->second.second == 0)
{
std::cerr << "Tach Max Set to 0 " << tachName << "\n";
return false;
}
double rpm = findReading->second;
// for now assume the min for a fan is always 0, divide by max to get
// percent and mult by 100
rpm /= findRange->second.second;
rpm *= 100;
if constexpr (DEBUG)
{
std::cout << "Tach " << tachName << "at " << rpm << "\n";
}
// Do a linear interpolation to get Ci
// Ci = C1 + (C2 - C1)/(RPM2 - RPM1) * (TACHi - TACH1)
double ci = 0;
if (rpm == 0)
{
ci = 0;
}
else if (rpm < tachMinPercent)
{
ci = c1;
}
else if (rpm > tachMaxPercent)
{
ci = c2;
}
else
{
ci = c1 + (((c2 - c1) * (rpm - tachMinPercent)) /
(tachMaxPercent - tachMinPercent));
}
// Now calculate the CFM for this tach
// CFMi = Ci * Qmaxi * TACHi
totalCFM += ci * maxCFM * rpm;
}
// divide by 100 since rpm is in percent
value = totalCFM / 100;
}
static constexpr double exitAirMaxReading = 127;
static constexpr double exitAirMinReading = -128;
ExitAirTempSensor::ExitAirTempSensor(
std::shared_ptr<sdbusplus::asio::connection>& conn,
const std::string& sensorName, const std::string& sensorConfiguration,
sdbusplus::asio::object_server& objectServer,
std::vector<thresholds::Threshold>&& thresholds) :
Sensor(boost::replace_all_copy(sensorName, " ", "_"),
"" /* todo: remove arg from base*/, std::move(thresholds),
sensorConfiguration, "xyz.openbmc_project.Configuration.ExitAirTemp",
exitAirMaxReading, exitAirMinReading),
dbusConnection(conn)
{
sensorInterface = objectServer.add_interface(
"/xyz/openbmc_project/sensors/temperature/" + name,
"xyz.openbmc_project.Sensor.Value");
if (thresholds::hasWarningInterface(thresholds))
{
thresholdInterfaceWarning = objectServer.add_interface(
"/xyz/openbmc_project/sensors/temperature/" + name,
"xyz.openbmc_project.Sensor.Threshold.Warning");
}
if (thresholds::hasCriticalInterface(thresholds))
{
thresholdInterfaceCritical = objectServer.add_interface(
"/xyz/openbmc_project/sensors/temperature/" + name,
"xyz.openbmc_project.Sensor.Threshold.Critical");
}
setInitialProperties(conn);
setupMatches();
setupPowerMatch(conn);
}
ExitAirTempSensor::~ExitAirTempSensor()
{
// this sensor currently isn't destroyed so we don't care
}
void ExitAirTempSensor::setupMatches(void)
{
constexpr const std::array<const char*, 2> matchTypes = {
"power", inletTemperatureSensor};
for (const std::string& type : matchTypes)
{
setupSensorMatch(matches, *dbusConnection, type,
[this, type](const double& value,
sdbusplus::message::message& message) {
if (type == "power")
{
powerReadings[message.get_path()] = value;
}
else if (type == inletTemperatureSensor)
{
inletTemp = value;
}
updateReading();
});
}
}
void ExitAirTempSensor::updateReading(void)
{
double val = 0.0;
if (calculate(val))
{
updateValue(val);
}
else
{
updateValue(std::numeric_limits<double>::quiet_NaN());
}
}
double ExitAirTempSensor::getTotalCFM(void)
{
double sum = 0;
for (auto& sensor : cfmSensors)
{
double reading = 0;
if (!sensor->calculate(reading))
{
return -1;
}
sum += reading;
}
return sum;
}
bool ExitAirTempSensor::calculate(double& val)
{
static bool firstRead = false;
double cfm = getTotalCFM();
if (cfm <= 0)
{
std::cerr << "Error getting cfm\n";
return false;
}
// if there is an error getting inlet temp, return error
if (std::isnan(inletTemp))
{
std::cerr << "Cannot get inlet temp\n";
val = 0;
return false;
}
// if fans are off, just make the exit temp equal to inlet
if (!isPowerOn())
{
val = inletTemp;
return true;
}
double totalPower = 0;
for (const auto& reading : powerReadings)
{
if (std::isnan(reading.second))
{
continue;
}
totalPower += reading.second;
}
// Calculate power correction factor
// Ci = CL + (CH - CL)/(QMax - QMin) * (CFM - QMin)
float powerFactor = 0.0;
if (cfm <= qMin)
{
powerFactor = powerFactorMin;
}
else if (cfm >= qMax)
{
powerFactor = powerFactorMax;
}
else
{
powerFactor = powerFactorMin + ((powerFactorMax - powerFactorMin) /
(qMax - qMin) * (cfm - qMin));
}
totalPower *= powerFactor;
totalPower += pOffset;
if (totalPower == 0)
{
std::cerr << "total power 0\n";
val = 0;
return false;
}
if constexpr (DEBUG)
{
std::cout << "Power Factor " << powerFactor << "\n";
std::cout << "Inlet Temp " << inletTemp << "\n";
std::cout << "Total Power" << totalPower << "\n";
}
// Calculate the exit air temp
// Texit = Tfp + (1.76 * TotalPower / CFM * Faltitude)
double reading = 1.76 * totalPower * altitudeFactor;
reading /= cfm;
reading += inletTemp;
if constexpr (DEBUG)
{
std::cout << "Reading 1: " << reading << "\n";
}
// Now perform the exponential average
// Calculate alpha based on SDR values and CFM
// Ai = As + (Af - As)/(QMax - QMin) * (CFM - QMin)
double alpha = 0.0;
if (cfm < qMin)
{
alpha = alphaS;
}
else if (cfm >= qMax)
{
alpha = alphaF;
}
else
{
alpha = alphaS + ((alphaF - alphaS) * (cfm - qMin) / (qMax - qMin));
}
auto time = std::chrono::system_clock::now();
if (!firstRead)
{
firstRead = true;
lastTime = time;
lastReading = reading;
}
double alphaDT =
std::chrono::duration_cast<std::chrono::seconds>(time - lastTime)
.count() *
alpha;
// cap at 1.0 or the below fails
if (alphaDT > 1.0)
{
alphaDT = 1.0;
}
if constexpr (DEBUG)
{
std::cout << "AlphaDT: " << alphaDT << "\n";
}
reading = ((reading * alphaDT) + (lastReading * (1.0 - alphaDT)));
if constexpr (DEBUG)
{
std::cout << "Reading 2: " << reading << "\n";
}
val = reading;
lastReading = reading;
lastTime = time;
return true;
}
void ExitAirTempSensor::checkThresholds(void)
{
thresholds::checkThresholds(this);
}
static void loadVariantPathArray(
const boost::container::flat_map<std::string, BasicVariantType>& data,
const std::string& key, std::vector<std::string>& resp)
{
auto it = data.find(key);
if (it == data.end())
{
std::cerr << "Configuration missing " << key << "\n";
throw std::invalid_argument("Key Missing");
}
BasicVariantType copy = it->second;
std::vector<std::string> config =
sdbusplus::message::variant_ns::get<std::vector<std::string>>(copy);
for (auto& str : config)
{
boost::replace_all(str, " ", "_");
}
resp = std::move(config);
}
void createSensor(sdbusplus::asio::object_server& objectServer,
std::shared_ptr<ExitAirTempSensor>& exitAirSensor,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection)
{
if (!dbusConnection)
{
std::cerr << "Connection not created\n";
return;
}
dbusConnection->async_method_call(
[&](boost::system::error_code ec, const ManagedObjectType& resp) {
if (ec)
{
std::cerr << "Error contacting entity manager\n";
return;
}
std::vector<std::unique_ptr<CFMSensor>> cfmSensors;
for (const auto& pathPair : resp)
{
for (const auto& entry : pathPair.second)
{
if (entry.first == exitAirIface)
{
// thresholds should be under the same path
std::vector<thresholds::Threshold> sensorThresholds;
parseThresholdsFromConfig(pathPair.second,
sensorThresholds);
if (!exitAirSensor)
{
std::string name =
loadVariant<std::string>(entry.second, "Name");
exitAirSensor = std::make_shared<ExitAirTempSensor>(
dbusConnection, name, pathPair.first.str,
objectServer, std::move(sensorThresholds));
}
else
{
exitAirSensor->thresholds = sensorThresholds;
}
exitAirSensor->powerFactorMin =
loadVariant<double>(entry.second, "PowerFactorMin");
exitAirSensor->powerFactorMax =
loadVariant<double>(entry.second, "PowerFactorMax");
exitAirSensor->qMin =
loadVariant<double>(entry.second, "QMin");
exitAirSensor->qMax =
loadVariant<double>(entry.second, "QMax");
exitAirSensor->alphaS =
loadVariant<double>(entry.second, "AlphaS");
exitAirSensor->alphaF =
loadVariant<double>(entry.second, "AlphaF");
}
else if (entry.first == cfmIface)
{
// thresholds should be under the same path
std::vector<thresholds::Threshold> sensorThresholds;
parseThresholdsFromConfig(pathPair.second,
sensorThresholds);
std::string name =
loadVariant<std::string>(entry.second, "Name");
auto sensor = std::make_unique<CFMSensor>(
dbusConnection, name, pathPair.first.str,
objectServer, std::move(sensorThresholds),
exitAirSensor);
loadVariantPathArray(entry.second, "Tachs",
sensor->tachs);
sensor->maxCFM =
loadVariant<double>(entry.second, "MaxCFM");
// change these into percent upon getting the data
sensor->c1 =
loadVariant<double>(entry.second, "C1") / 100;
sensor->c2 =
loadVariant<double>(entry.second, "C2") / 100;
sensor->tachMinPercent =
loadVariant<double>(entry.second,
"TachMinPercent") /
100;
sensor->tachMaxPercent =
loadVariant<double>(entry.second,
"TachMaxPercent") /
100;
cfmSensors.emplace_back(std::move(sensor));
}
}
}
if (exitAirSensor)
{
exitAirSensor->cfmSensors = std::move(cfmSensors);
// todo: when power sensors are done delete this fake
// reading
exitAirSensor->powerReadings["foo"] = 144.0;
exitAirSensor->updateReading();
}
},
entityManagerName, "/", "org.freedesktop.DBus.ObjectManager",
"GetManagedObjects");
}
int main(int argc, char** argv)
{
boost::asio::io_service io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
systemBus->request_name("xyz.openbmc_project.ExitAirTempSensor");
sdbusplus::asio::object_server objectServer(systemBus);
std::shared_ptr<ExitAirTempSensor> sensor =
nullptr; // wait until we find the config
std::vector<std::unique_ptr<sdbusplus::bus::match::match>> matches;
io.post([&]() { createSensor(objectServer, sensor, systemBus); });
boost::asio::deadline_timer configTimer(io);
std::function<void(sdbusplus::message::message&)> eventHandler =
[&](sdbusplus::message::message& message) {
configTimer.expires_from_now(boost::posix_time::seconds(1));
// create a timer because normally multiple properties change
configTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
createSensor(objectServer, sensor, systemBus);
if (!sensor)
{
std::cout << "Configuration not detected\n";
}
});
};
constexpr const std::array<const char*, 2> monitorIfaces = {exitAirIface,
cfmIface};
for (const char* type : monitorIfaces)
{
auto match = std::make_unique<sdbusplus::bus::match::match>(
static_cast<sdbusplus::bus::bus&>(*systemBus),
"type='signal',member='PropertiesChanged',path_namespace='" +
std::string(inventoryPath) + "',arg0namespace='" + type + "'",
eventHandler);
matches.emplace_back(std::move(match));
}
io.run();
}