blob: a8d98aeccc2e054c3e36f1cb272628e75823c77a [file] [log] [blame]
/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <unistd.h>
#include <ADCSensor.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <limits>
#include <optional>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <string>
static constexpr unsigned int sensorPollMs = 500;
static constexpr size_t warnAfterErrorCount = 10;
static constexpr unsigned int gpioBridgeEnableMs = 20;
// scaling factor from hwmon
static constexpr unsigned int sensorScaleFactor = 1000;
static constexpr double roundFactor = 10000; // 3 decimal places
static constexpr double maxReading = 20;
static constexpr double minReading = 0;
static constexpr const char* sysGpioPath = "/sys/class/gpio/gpio";
static constexpr const char* postfixValue = "/value";
void setGpio(int gpioN, int value)
{
std::string device = sysGpioPath + std::to_string(gpioN) + postfixValue;
std::fstream gpioFile;
gpioFile.open(device, std::ios::out);
if (!gpioFile.good())
{
std::cerr << "Error opening device " << device << "\n";
return;
}
gpioFile << std::to_string(value);
gpioFile.close();
}
ADCSensor::ADCSensor(const std::string& path,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& conn,
boost::asio::io_service& io, const std::string& sensorName,
std::vector<thresholds::Threshold>&& _thresholds,
const double scaleFactor, PowerState readState,
const std::string& sensorConfiguration,
std::optional<int> bridgeGpio) :
Sensor(boost::replace_all_copy(sensorName, " ", "_"), path,
std::move(_thresholds), sensorConfiguration,
"xyz.openbmc_project.Configuration.ADC", maxReading, minReading),
objServer(objectServer), scaleFactor(scaleFactor),
readState(std::move(readState)), inputDev(io, open(path.c_str(), O_RDONLY)),
waitTimer(io), errCount(0), thresholdTimer(io, this), bridgeGpio(bridgeGpio)
{
sensorInterface = objectServer.add_interface(
"/xyz/openbmc_project/sensors/voltage/" + name,
"xyz.openbmc_project.Sensor.Value");
if (thresholds::hasWarningInterface(thresholds))
{
thresholdInterfaceWarning = objectServer.add_interface(
"/xyz/openbmc_project/sensors/voltage/" + name,
"xyz.openbmc_project.Sensor.Threshold.Warning");
}
if (thresholds::hasCriticalInterface(thresholds))
{
thresholdInterfaceCritical = objectServer.add_interface(
"/xyz/openbmc_project/sensors/voltage/" + name,
"xyz.openbmc_project.Sensor.Threshold.Critical");
}
association = objectServer.add_interface(
"/xyz/openbmc_project/sensors/voltage/" + name,
"org.openbmc.Associations");
setInitialProperties(conn);
setupRead();
// setup match
setupPowerMatch(conn);
}
ADCSensor::~ADCSensor()
{
// close the input dev to cancel async operations
inputDev.close();
waitTimer.cancel();
objServer.remove_interface(thresholdInterfaceWarning);
objServer.remove_interface(thresholdInterfaceCritical);
objServer.remove_interface(sensorInterface);
objServer.remove_interface(association);
}
void ADCSensor::setupRead(void)
{
if (bridgeGpio.has_value())
{
setGpio(*bridgeGpio, 1);
// In case a channel has a bridge circuit,we have to turn the bridge on
// prior to reading a value at least for one scan cycle to get a valid
// value. Guarantee that the HW signal can be stable, the HW signal
// could be instability.
waitTimer.expires_from_now(
boost::posix_time::milliseconds(gpioBridgeEnableMs));
waitTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
boost::asio::async_read_until(
inputDev, readBuf, '\n',
[&](const boost::system::error_code& ec,
std::size_t /*bytes_transfered*/) { handleResponse(ec); });
});
}
else
{
boost::asio::async_read_until(
inputDev, readBuf, '\n',
[&](const boost::system::error_code& ec,
std::size_t /*bytes_transfered*/) { handleResponse(ec); });
}
}
void ADCSensor::handleResponse(const boost::system::error_code& err)
{
if (err == boost::system::errc::bad_file_descriptor)
{
return; // we're being destroyed
}
std::istream responseStream(&readBuf);
if (!err)
{
std::string response;
std::getline(responseStream, response);
// todo read scaling factors from configuration
try
{
double nvalue = std::stof(response);
nvalue = (nvalue / sensorScaleFactor) / scaleFactor;
nvalue = std::round(nvalue * roundFactor) / roundFactor;
if (nvalue != value)
{
updateValue(nvalue);
}
errCount = 0;
}
catch (std::invalid_argument)
{
errCount++;
}
}
else
{
errCount++;
}
// only print once
if (errCount == warnAfterErrorCount)
{
std::cerr << "Failure to read sensor " << name << " at " << path
<< " ec:" << err << "\n";
}
if (errCount >= warnAfterErrorCount)
{
updateValue(0);
}
responseStream.clear();
inputDev.close();
if (bridgeGpio.has_value())
{
setGpio(*bridgeGpio, 0);
}
int fd = open(path.c_str(), O_RDONLY);
if (fd <= 0)
{
return; // we're no longer valid
}
inputDev.assign(fd);
waitTimer.expires_from_now(boost::posix_time::milliseconds(sensorPollMs));
waitTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return; // we're being canceled
}
setupRead();
});
}
void ADCSensor::checkThresholds(void)
{
if (readState == PowerState::on && !isPowerOn())
{
return;
}
thresholds::checkThresholdsPowerDelay(this, thresholdTimer);
}