blob: 21711a9c4b663993eede52152efc93d5d55ae46d [file] [log] [blame]
/*
// Copyright (c) 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "ADCSensor.hpp"
#include "Utils.hpp"
#include "VariantVisitors.hpp"
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/container/flat_set.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <sdbusplus/bus/match.hpp>
#include <filesystem>
#include <fstream>
#include <functional>
#include <memory>
#include <optional>
#include <regex>
#include <string>
#include <variant>
#include <vector>
static constexpr bool debug = false;
static constexpr float pollRateDefault = 0.5;
static constexpr float gpioBridgeSetupTimeDefault = 0.02;
namespace fs = std::filesystem;
static constexpr auto sensorTypes{std::to_array<const char*>({"ADC"})};
static std::regex inputRegex(R"(in(\d+)_input)");
static boost::container::flat_map<size_t, bool> cpuPresence;
enum class UpdateType
{
init,
cpuPresenceChange
};
// filter out adc from any other voltage sensor
bool isAdc(const fs::path& parentPath)
{
fs::path namePath = parentPath / "name";
std::ifstream nameFile(namePath);
if (!nameFile.good())
{
std::cerr << "Failure reading " << namePath.string() << "\n";
return false;
}
std::string name;
std::getline(nameFile, name);
return name == "iio_hwmon";
}
void createSensors(
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
boost::container::flat_map<std::string, std::shared_ptr<ADCSensor>>&
sensors,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
const std::shared_ptr<boost::container::flat_set<std::string>>&
sensorsChanged,
UpdateType updateType)
{
auto getter = std::make_shared<GetSensorConfiguration>(
dbusConnection,
[&io, &objectServer, &sensors, &dbusConnection, sensorsChanged,
updateType](const ManagedObjectType& sensorConfigurations) {
bool firstScan = sensorsChanged == nullptr;
std::vector<fs::path> paths;
if (!findFiles(fs::path("/sys/class/hwmon"), R"(in\d+_input)", paths))
{
std::cerr << "No adc sensors in system\n";
return;
}
// iterate through all found adc sensors, and try to match them with
// configuration
for (auto& path : paths)
{
if (!isAdc(path.parent_path()))
{
continue;
}
std::smatch match;
std::string pathStr = path.string();
std::regex_search(pathStr, match, inputRegex);
std::string indexStr = *(match.begin() + 1);
// convert to 0 based
size_t index = std::stoul(indexStr) - 1;
const SensorData* sensorData = nullptr;
const std::string* interfacePath = nullptr;
const std::pair<std::string, SensorBaseConfigMap>*
baseConfiguration = nullptr;
for (const auto& [path, cfgData] : sensorConfigurations)
{
// clear it out each loop
baseConfiguration = nullptr;
// find base configuration
for (const char* type : sensorTypes)
{
auto sensorBase = cfgData.find(configInterfaceName(type));
if (sensorBase != cfgData.end())
{
baseConfiguration = &(*sensorBase);
break;
}
}
if (baseConfiguration == nullptr)
{
continue;
}
auto findIndex = baseConfiguration->second.find("Index");
if (findIndex == baseConfiguration->second.end())
{
std::cerr << "Base configuration missing Index"
<< baseConfiguration->first << "\n";
continue;
}
unsigned int number = std::visit(VariantToUnsignedIntVisitor(),
findIndex->second);
if (number != index)
{
continue;
}
sensorData = &cfgData;
interfacePath = &path.str;
break;
}
if (sensorData == nullptr)
{
if constexpr (debug)
{
std::cerr << "failed to find match for " << path.string()
<< "\n";
}
continue;
}
if (baseConfiguration == nullptr)
{
std::cerr << "error finding base configuration for"
<< path.string() << "\n";
continue;
}
auto findSensorName = baseConfiguration->second.find("Name");
if (findSensorName == baseConfiguration->second.end())
{
std::cerr << "could not determine configuration name for "
<< path.string() << "\n";
continue;
}
std::string sensorName =
std::get<std::string>(findSensorName->second);
// on rescans, only update sensors we were signaled by
auto findSensor = sensors.find(sensorName);
if (!firstScan && findSensor != sensors.end())
{
bool found = false;
for (auto it = sensorsChanged->begin();
it != sensorsChanged->end(); it++)
{
if (findSensor->second &&
it->ends_with(findSensor->second->name))
{
sensorsChanged->erase(it);
findSensor->second = nullptr;
found = true;
break;
}
}
if (!found)
{
continue;
}
}
auto findCPU = baseConfiguration->second.find("CPURequired");
if (findCPU != baseConfiguration->second.end())
{
size_t index = std::visit(VariantToIntVisitor(),
findCPU->second);
auto presenceFind = cpuPresence.find(index);
if (presenceFind == cpuPresence.end())
{
continue; // no such cpu
}
if (!presenceFind->second)
{
continue; // cpu not installed
}
}
else if (updateType == UpdateType::cpuPresenceChange)
{
continue;
}
std::vector<thresholds::Threshold> sensorThresholds;
if (!parseThresholdsFromConfig(*sensorData, sensorThresholds))
{
std::cerr << "error populating thresholds for " << sensorName
<< "\n";
}
auto findScaleFactor =
baseConfiguration->second.find("ScaleFactor");
float scaleFactor = 1.0;
if (findScaleFactor != baseConfiguration->second.end())
{
scaleFactor = std::visit(VariantToFloatVisitor(),
findScaleFactor->second);
// scaleFactor is used in division
if (scaleFactor == 0.0F)
{
scaleFactor = 1.0;
}
}
float pollRate = getPollRate(baseConfiguration->second,
pollRateDefault);
PowerState readState = getPowerState(baseConfiguration->second);
auto& sensor = sensors[sensorName];
sensor = nullptr;
std::optional<BridgeGpio> bridgeGpio;
for (const auto& [key, cfgMap] : *sensorData)
{
if (key.find("BridgeGpio") != std::string::npos)
{
auto findName = cfgMap.find("Name");
if (findName != cfgMap.end())
{
std::string gpioName = std::visit(
VariantToStringVisitor(), findName->second);
int polarity = gpiod::line::ACTIVE_HIGH;
auto findPolarity = cfgMap.find("Polarity");
if (findPolarity != cfgMap.end())
{
if (std::string("Low") ==
std::visit(VariantToStringVisitor(),
findPolarity->second))
{
polarity = gpiod::line::ACTIVE_LOW;
}
}
float setupTime = gpioBridgeSetupTimeDefault;
auto findSetupTime = cfgMap.find("SetupTime");
if (findSetupTime != cfgMap.end())
{
setupTime = std::visit(VariantToFloatVisitor(),
findSetupTime->second);
}
bridgeGpio = BridgeGpio(gpioName, polarity, setupTime);
}
break;
}
}
sensor = std::make_shared<ADCSensor>(
path.string(), objectServer, dbusConnection, io, sensorName,
std::move(sensorThresholds), scaleFactor, pollRate, readState,
*interfacePath, std::move(bridgeGpio));
sensor->setupRead();
}
});
getter->getConfiguration(
std::vector<std::string>{sensorTypes.begin(), sensorTypes.end()});
}
int main()
{
boost::asio::io_context io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
sdbusplus::asio::object_server objectServer(systemBus, true);
objectServer.add_manager("/xyz/openbmc_project/sensors");
systemBus->request_name("xyz.openbmc_project.ADCSensor");
boost::container::flat_map<std::string, std::shared_ptr<ADCSensor>> sensors;
auto sensorsChanged =
std::make_shared<boost::container::flat_set<std::string>>();
boost::asio::post(io, [&]() {
createSensors(io, objectServer, sensors, systemBus, nullptr,
UpdateType::init);
});
boost::asio::steady_timer filterTimer(io);
std::function<void(sdbusplus::message_t&)> eventHandler =
[&](sdbusplus::message_t& message) {
if (message.is_method_error())
{
std::cerr << "callback method error\n";
return;
}
sensorsChanged->insert(message.get_path());
// this implicitly cancels the timer
filterTimer.expires_after(std::chrono::seconds(1));
filterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
/* we were canceled*/
return;
}
if (ec)
{
std::cerr << "timer error\n";
return;
}
createSensors(io, objectServer, sensors, systemBus, sensorsChanged,
UpdateType::init);
});
};
boost::asio::steady_timer cpuFilterTimer(io);
std::function<void(sdbusplus::message_t&)> cpuPresenceHandler =
[&](sdbusplus::message_t& message) {
std::string path = message.get_path();
boost::to_lower(path);
sdbusplus::message::object_path cpuPath(path);
std::string cpuName = cpuPath.filename();
if (!cpuName.starts_with("cpu"))
{
return; // not interested
}
size_t index = 0;
try
{
index = std::stoi(path.substr(path.size() - 1));
}
catch (const std::invalid_argument&)
{
std::cerr << "Found invalid path " << path << "\n";
return;
}
std::string objectName;
boost::container::flat_map<std::string, std::variant<bool>> values;
message.read(objectName, values);
auto findPresence = values.find("Present");
if (findPresence != values.end())
{
cpuPresence[index] = std::get<bool>(findPresence->second);
}
// this implicitly cancels the timer
cpuFilterTimer.expires_after(std::chrono::seconds(1));
cpuFilterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
/* we were canceled*/
return;
}
if (ec)
{
std::cerr << "timer error\n";
return;
}
createSensors(io, objectServer, sensors, systemBus, nullptr,
UpdateType::cpuPresenceChange);
});
};
std::vector<std::unique_ptr<sdbusplus::bus::match_t>> matches =
setupPropertiesChangedMatches(*systemBus, sensorTypes, eventHandler);
matches.emplace_back(std::make_unique<sdbusplus::bus::match_t>(
static_cast<sdbusplus::bus_t&>(*systemBus),
"type='signal',member='PropertiesChanged',path_namespace='" +
std::string(cpuInventoryPath) +
"',arg0namespace='xyz.openbmc_project.Inventory.Item'",
cpuPresenceHandler));
setupManufacturingModeMatch(*systemBus);
io.run();
}