blob: 30663593b3544259c5261dd83484b2e570cf664a [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "ChassisIntrusionSensor.hpp"
#include <fcntl.h>
#include <sys/ioctl.h>
#include <systemd/sd-journal.h>
#include <unistd.h>
#include <Utils.hpp>
#include <boost/asio/io_context.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <cerrno>
#include <chrono>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <thread>
#include <utility>
extern "C"
{
#include <i2c/smbus.h>
#include <linux/i2c-dev.h>
}
static constexpr bool debug = false;
static constexpr unsigned int defaultPollSec = 1;
static constexpr unsigned int sensorFailedPollSec = 5;
static unsigned int intrusionSensorPollSec = defaultPollSec;
static constexpr const char* hwIntrusionValStr = "HardwareIntrusion";
static constexpr const char* normalValStr = "Normal";
// SMLink Status Register
const static constexpr size_t pchStatusRegIntrusion = 0x04;
// Status bit field masks
const static constexpr size_t pchRegMaskIntrusion = 0x01;
// Value to clear intrusion status hwmon file
const static constexpr size_t intrusionStatusHwmonClearValue = 0;
void ChassisIntrusionSensor::updateValue(const size_t& value)
{
std::string newValue = value != 0 ? hwIntrusionValStr : normalValStr;
// Take no action if value already equal
// Same semantics as Sensor::updateValue(const double&)
if (newValue == mValue)
{
return;
}
if constexpr (debug)
{
std::cout << "Update value from " << mValue << " to " << newValue
<< "\n";
}
// indicate that it is internal set call
mInternalSet = true;
mIface->set_property("Status", newValue);
mInternalSet = false;
mValue = newValue;
if (mOldValue == normalValStr && mValue != normalValStr)
{
sd_journal_send("MESSAGE=%s", "Chassis intrusion assert event",
"PRIORITY=%i", LOG_INFO, "REDFISH_MESSAGE_ID=%s",
"OpenBMC.0.1.ChassisIntrusionDetected", NULL);
mOldValue = mValue;
}
else if (mOldValue == hwIntrusionValStr && mValue == normalValStr)
{
sd_journal_send("MESSAGE=%s", "Chassis intrusion de-assert event",
"PRIORITY=%i", LOG_INFO, "REDFISH_MESSAGE_ID=%s",
"OpenBMC.0.1.ChassisIntrusionReset", NULL);
mOldValue = mValue;
}
}
int ChassisIntrusionPchSensor::readSensor()
{
int32_t statusMask = pchRegMaskIntrusion;
int32_t statusReg = pchStatusRegIntrusion;
int32_t value = i2c_smbus_read_byte_data(mBusFd, statusReg);
if constexpr (debug)
{
std::cout << "Pch type: raw value is " << value << "\n";
}
if (value < 0)
{
std::cerr << "i2c_smbus_read_byte_data failed \n";
return -1;
}
// Get status value with mask
value &= statusMask;
if constexpr (debug)
{
std::cout << "Pch type: masked raw value is " << value << "\n";
}
return value;
}
void ChassisIntrusionPchSensor::pollSensorStatus()
{
std::weak_ptr<ChassisIntrusionPchSensor> weakRef = weak_from_this();
// setting a new experation implicitly cancels any pending async wait
mPollTimer.expires_after(std::chrono::seconds(intrusionSensorPollSec));
mPollTimer.async_wait([weakRef](const boost::system::error_code& ec) {
// case of being canceled
if (ec == boost::asio::error::operation_aborted)
{
std::cerr << "Timer of intrusion sensor is cancelled\n";
return;
}
std::shared_ptr<ChassisIntrusionPchSensor> self = weakRef.lock();
if (!self)
{
std::cerr << "ChassisIntrusionSensor no self\n";
return;
}
int value = self->readSensor();
if (value < 0)
{
intrusionSensorPollSec = sensorFailedPollSec;
}
else
{
intrusionSensorPollSec = defaultPollSec;
self->updateValue(value);
}
// trigger next polling
self->pollSensorStatus();
});
}
int ChassisIntrusionGpioSensor::readSensor()
{
mGpioLine.event_read();
auto value = mGpioLine.get_value();
if constexpr (debug)
{
std::cout << "Gpio type: raw value is " << value << "\n";
}
return value;
}
void ChassisIntrusionGpioSensor::pollSensorStatus()
{
mGpioFd.async_wait(boost::asio::posix::stream_descriptor::wait_read,
[this](const boost::system::error_code& ec) {
if (ec == boost::system::errc::bad_file_descriptor)
{
return; // we're being destroyed
}
if (ec)
{
std::cerr << "Error on GPIO based intrusion sensor wait event\n";
}
else
{
int value = readSensor();
if (value >= 0)
{
updateValue(value);
}
// trigger next polling
pollSensorStatus();
}
});
}
int ChassisIntrusionHwmonSensor::readSensor()
{
int value = 0;
std::fstream stream(mHwmonPath, std::ios::in | std::ios::out);
if (!stream.good())
{
std::cerr << "Error reading status at " << mHwmonPath << "\n";
return -1;
}
std::string line;
if (!std::getline(stream, line))
{
std::cerr << "Error reading status at " << mHwmonPath << "\n";
return -1;
}
try
{
value = std::stoi(line);
if constexpr (debug)
{
std::cout << "Hwmon type: raw value is " << value << "\n";
}
}
catch (const std::invalid_argument& e)
{
std::cerr << "Error reading status at " << mHwmonPath << " : "
<< e.what() << "\n";
return -1;
}
// Reset chassis intrusion status after every reading
stream << intrusionStatusHwmonClearValue;
return value;
}
void ChassisIntrusionHwmonSensor::pollSensorStatus()
{
std::weak_ptr<ChassisIntrusionHwmonSensor> weakRef = weak_from_this();
// setting a new experation implicitly cancels any pending async wait
mPollTimer.expires_after(std::chrono::seconds(intrusionSensorPollSec));
mPollTimer.async_wait([weakRef](const boost::system::error_code& ec) {
// case of being canceled
if (ec == boost::asio::error::operation_aborted)
{
std::cerr << "Timer of intrusion sensor is cancelled\n";
return;
}
std::shared_ptr<ChassisIntrusionHwmonSensor> self = weakRef.lock();
if (!self)
{
std::cerr << "ChassisIntrusionSensor no self\n";
return;
}
int value = self->readSensor();
if (value < 0)
{
intrusionSensorPollSec = sensorFailedPollSec;
}
else
{
intrusionSensorPollSec = defaultPollSec;
self->updateValue(value);
}
// trigger next polling
self->pollSensorStatus();
});
}
int ChassisIntrusionSensor::setSensorValue(const std::string& req,
std::string& propertyValue)
{
if (!mInternalSet)
{
propertyValue = req;
mOverridenState = true;
}
else if (!mOverridenState)
{
propertyValue = req;
}
return 1;
}
void ChassisIntrusionSensor::start()
{
mIface->register_property(
"Status", mValue,
[&](const std::string& req, std::string& propertyValue) {
return setSensorValue(req, propertyValue);
});
mIface->initialize();
pollSensorStatus();
}
ChassisIntrusionSensor::ChassisIntrusionSensor(
sdbusplus::asio::object_server& objServer) :
mObjServer(objServer)
{
mIface = mObjServer.add_interface("/xyz/openbmc_project/Chassis/Intrusion",
"xyz.openbmc_project.Chassis.Intrusion");
}
ChassisIntrusionPchSensor::ChassisIntrusionPchSensor(
boost::asio::io_context& io, sdbusplus::asio::object_server& objServer,
int busId, int slaveAddr) :
ChassisIntrusionSensor(objServer),
mPollTimer(io)
{
if (busId < 0 || slaveAddr <= 0)
{
throw std::invalid_argument("Invalid i2c bus " + std::to_string(busId) +
" address " + std::to_string(slaveAddr) +
"\n");
}
mSlaveAddr = slaveAddr;
std::string devPath = "/dev/i2c-" + std::to_string(busId);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
mBusFd = open(devPath.c_str(), O_RDWR | O_CLOEXEC);
if (mBusFd < 0)
{
throw std::invalid_argument("Unable to open " + devPath + "\n");
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
if (ioctl(mBusFd, I2C_SLAVE_FORCE, mSlaveAddr) < 0)
{
throw std::runtime_error("Unable to set device address\n");
}
unsigned long funcs = 0;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
if (ioctl(mBusFd, I2C_FUNCS, &funcs) < 0)
{
throw std::runtime_error("Don't support I2C_FUNCS\n");
}
if ((funcs & I2C_FUNC_SMBUS_READ_BYTE_DATA) == 0U)
{
throw std::runtime_error(
"Do not have I2C_FUNC_SMBUS_READ_BYTE_DATA \n");
}
}
ChassisIntrusionGpioSensor::ChassisIntrusionGpioSensor(
boost::asio::io_context& io, sdbusplus::asio::object_server& objServer,
bool gpioInverted) :
ChassisIntrusionSensor(objServer),
mGpioInverted(gpioInverted), mGpioFd(io)
{
mGpioLine = gpiod::find_line(mPinName);
if (!mGpioLine)
{
throw std::invalid_argument("Error finding gpio pin name: " + mPinName +
"\n");
}
mGpioLine.request(
{"ChassisIntrusionSensor", gpiod::line_request::EVENT_BOTH_EDGES,
mGpioInverted ? gpiod::line_request::FLAG_ACTIVE_LOW : 0});
auto gpioLineFd = mGpioLine.event_get_fd();
if (gpioLineFd < 0)
{
throw std::invalid_argument("Failed to get " + mPinName + " fd\n");
}
mGpioFd.assign(gpioLineFd);
}
ChassisIntrusionHwmonSensor::ChassisIntrusionHwmonSensor(
boost::asio::io_context& io, sdbusplus::asio::object_server& objServer,
std::string hwmonName) :
ChassisIntrusionSensor(objServer),
mHwmonName(std::move(hwmonName)), mPollTimer(io)
{
std::vector<fs::path> paths;
if (!findFiles(fs::path("/sys/class/hwmon"), mHwmonName, paths))
{
throw std::invalid_argument("Failed to find hwmon path in sysfs\n");
}
if (paths.empty())
{
throw std::invalid_argument("Hwmon file " + mHwmonName +
" can't be found in sysfs\n");
}
if (paths.size() > 1)
{
std::cerr << "Found more than 1 hwmon file to read chassis intrusion"
<< " status. Taking the first one. \n";
}
// Expecting only one hwmon file for one given chassis
mHwmonPath = paths[0].string();
if constexpr (debug)
{
std::cout << "Found " << paths.size()
<< " paths for intrusion status \n"
<< " The first path is: " << mHwmonPath << "\n";
}
}
ChassisIntrusionSensor::~ChassisIntrusionSensor()
{
mObjServer.remove_interface(mIface);
}
ChassisIntrusionPchSensor::~ChassisIntrusionPchSensor()
{
mPollTimer.cancel();
if (close(mBusFd) < 0)
{
std::cerr << "Failed to close fd " << std::to_string(mBusFd);
}
}
ChassisIntrusionGpioSensor::~ChassisIntrusionGpioSensor()
{
mGpioFd.close();
if (mGpioLine)
{
mGpioLine.release();
}
}
ChassisIntrusionHwmonSensor::~ChassisIntrusionHwmonSensor()
{
mPollTimer.cancel();
}