blob: 663567dc9310bacd4ff80ecdab053c21760beaa2 [file] [log] [blame]
/*
// Copyright (c) 2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "DeviceMgmt.hpp"
#include "PSUEvent.hpp"
#include "PSUSensor.hpp"
#include "Utils.hpp"
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <sdbusplus/bus/match.hpp>
#include <array>
#include <cmath>
#include <filesystem>
#include <fstream>
#include <functional>
#include <iostream>
#include <regex>
#include <string>
#include <string_view>
#include <utility>
#include <variant>
#include <vector>
static constexpr bool debug = false;
static const I2CDeviceTypeMap sensorTypes{
{"ADM1266", I2CDeviceType{"adm1266", true}},
{"ADM1272", I2CDeviceType{"adm1272", true}},
{"ADM1275", I2CDeviceType{"adm1275", true}},
{"ADM1278", I2CDeviceType{"adm1278", true}},
{"ADM1293", I2CDeviceType{"adm1293", true}},
{"ADS1015", I2CDeviceType{"ads1015", true}},
{"ADS7830", I2CDeviceType{"ads7830", true}},
{"AHE50DC_FAN", I2CDeviceType{"ahe50dc_fan", true}},
{"BMR490", I2CDeviceType{"bmr490", true}},
{"cffps", I2CDeviceType{"cffps", true}},
{"cffps1", I2CDeviceType{"cffps", true}},
{"cffps2", I2CDeviceType{"cffps", true}},
{"cffps3", I2CDeviceType{"cffps", true}},
{"DPS800", I2CDeviceType{"dps800", true}},
{"INA219", I2CDeviceType{"ina219", true}},
{"INA230", I2CDeviceType{"ina230", true}},
{"IPSPS1", I2CDeviceType{"ipsps1", true}},
{"IR38060", I2CDeviceType{"ir38060", true}},
{"IR38164", I2CDeviceType{"ir38164", true}},
{"IR38263", I2CDeviceType{"ir38263", true}},
{"ISL68137", I2CDeviceType{"isl68137", true}},
{"ISL68220", I2CDeviceType{"isl68220", true}},
{"ISL68223", I2CDeviceType{"isl68223", true}},
{"ISL69225", I2CDeviceType{"isl69225", true}},
{"ISL69243", I2CDeviceType{"isl69243", true}},
{"ISL69260", I2CDeviceType{"isl69260", true}},
{"LM25066", I2CDeviceType{"lm25066", true}},
{"MAX16601", I2CDeviceType{"max16601", true}},
{"MAX20710", I2CDeviceType{"max20710", true}},
{"MAX20730", I2CDeviceType{"max20730", true}},
{"MAX20734", I2CDeviceType{"max20734", true}},
{"MAX20796", I2CDeviceType{"max20796", true}},
{"MAX34451", I2CDeviceType{"max34451", true}},
{"MP2971", I2CDeviceType{"mp2971", true}},
{"MP2973", I2CDeviceType{"mp2973", true}},
{"MP2975", I2CDeviceType{"mp2975", true}},
{"MP5023", I2CDeviceType{"mp5023", true}},
{"NCP4200", I2CDeviceType{"ncp4200", true}},
{"PLI1209BC", I2CDeviceType{"pli1209bc", true}},
{"pmbus", I2CDeviceType{"pmbus", true}},
{"PXE1610", I2CDeviceType{"pxe1610", true}},
{"RAA228000", I2CDeviceType{"raa228000", true}},
{"RAA228228", I2CDeviceType{"raa228228", true}},
{"RAA228620", I2CDeviceType{"raa228620", true}},
{"RAA229001", I2CDeviceType{"raa229001", true}},
{"RAA229004", I2CDeviceType{"raa229004", true}},
{"RAA229126", I2CDeviceType{"raa229126", true}},
{"TDA38640", I2CDeviceType{"tda38640", true}},
{"TPS53679", I2CDeviceType{"tps53679", true}},
{"TPS546D24", I2CDeviceType{"tps546d24", true}},
{"XDPE11280", I2CDeviceType{"xdpe11280", true}},
{"XDPE12284", I2CDeviceType{"xdpe12284", true}},
{"XDPE152C4", I2CDeviceType{"xdpe152c4", true}},
};
enum class DevTypes
{
Unknown = 0,
HWMON,
IIO
};
struct DevParams
{
unsigned int matchIndex = 0;
std::string matchRegEx;
std::string nameRegEx;
};
namespace fs = std::filesystem;
static boost::container::flat_map<std::string, std::shared_ptr<PSUSensor>>
sensors;
static boost::container::flat_map<std::string, std::unique_ptr<PSUCombineEvent>>
combineEvents;
static boost::container::flat_map<std::string, std::unique_ptr<PwmSensor>>
pwmSensors;
static boost::container::flat_map<std::string, std::string> sensorTable;
static boost::container::flat_map<std::string, PSUProperty> labelMatch;
static boost::container::flat_map<std::string, std::string> pwmTable;
static boost::container::flat_map<std::string, std::vector<std::string>>
eventMatch;
static boost::container::flat_map<
std::string,
boost::container::flat_map<std::string, std::vector<std::string>>>
groupEventMatch;
static boost::container::flat_map<std::string, std::vector<std::string>>
limitEventMatch;
static std::vector<PSUProperty> psuProperties;
static boost::container::flat_map<size_t, bool> cpuPresence;
static boost::container::flat_map<DevTypes, DevParams> devParamMap;
// Function CheckEvent will check each attribute from eventMatch table in the
// sysfs. If the attributes exists in sysfs, then store the complete path
// of the attribute into eventPathList.
void checkEvent(
const std::string& directory,
const boost::container::flat_map<std::string, std::vector<std::string>>&
eventMatch,
boost::container::flat_map<std::string, std::vector<std::string>>&
eventPathList)
{
for (const auto& match : eventMatch)
{
const std::vector<std::string>& eventAttrs = match.second;
const std::string& eventName = match.first;
for (const auto& eventAttr : eventAttrs)
{
std::string eventPath = directory;
eventPath += "/";
eventPath += eventAttr;
std::ifstream eventFile(eventPath);
if (!eventFile.good())
{
continue;
}
eventPathList[eventName].push_back(eventPath);
}
}
}
// Check Group Events which contains more than one targets in each combine
// events.
void checkGroupEvent(
const std::string& directory,
const boost::container::flat_map<
std::string,
boost::container::flat_map<std::string, std::vector<std::string>>>&
groupEventMatch,
boost::container::flat_map<
std::string,
boost::container::flat_map<std::string, std::vector<std::string>>>&
groupEventPathList)
{
for (const auto& match : groupEventMatch)
{
const std::string& groupEventName = match.first;
const boost::container::flat_map<std::string, std::vector<std::string>>
events = match.second;
boost::container::flat_map<std::string, std::vector<std::string>>
pathList;
for (const auto& match : events)
{
const std::string& eventName = match.first;
const std::vector<std::string>& eventAttrs = match.second;
for (const auto& eventAttr : eventAttrs)
{
std::string eventPath = directory;
eventPath += "/";
eventPath += eventAttr;
std::ifstream eventFile(eventPath);
if (!eventFile.good())
{
continue;
}
pathList[eventName].push_back(eventPath);
}
}
groupEventPathList[groupEventName] = pathList;
}
}
// Function checkEventLimits will check all the psu related xxx_input attributes
// in sysfs to see if xxx_crit_alarm xxx_lcrit_alarm xxx_max_alarm
// xxx_min_alarm exist, then store the existing paths of the alarm attributes
// to eventPathList.
void checkEventLimits(
const std::string& sensorPathStr,
const boost::container::flat_map<std::string, std::vector<std::string>>&
limitEventMatch,
boost::container::flat_map<std::string, std::vector<std::string>>&
eventPathList)
{
auto attributePartPos = sensorPathStr.find_last_of('_');
if (attributePartPos == std::string::npos)
{
// There is no '_' in the string, skip it
return;
}
auto attributePart =
std::string_view(sensorPathStr).substr(attributePartPos + 1);
if (attributePart != "input")
{
// If the sensor is not xxx_input, skip it
return;
}
auto prefixPart = sensorPathStr.substr(0, attributePartPos + 1);
for (const auto& limitMatch : limitEventMatch)
{
const std::vector<std::string>& limitEventAttrs = limitMatch.second;
const std::string& eventName = limitMatch.first;
for (const auto& limitEventAttr : limitEventAttrs)
{
auto limitEventPath = prefixPart + limitEventAttr;
std::ifstream eventFile(limitEventPath);
if (!eventFile.good())
{
continue;
}
eventPathList[eventName].push_back(limitEventPath);
}
}
}
static void
checkPWMSensor(const fs::path& sensorPath, std::string& labelHead,
const std::string& interfacePath,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
sdbusplus::asio::object_server& objectServer,
const std::string& psuName)
{
for (const auto& [pwmLabel, pwmName] : pwmTable)
{
if (pwmLabel != labelHead)
{
continue;
}
const std::string& sensorPathStr = sensorPath.string();
const std::string& pwmPathStr =
boost::replace_all_copy(sensorPathStr, "input", "target");
std::ifstream pwmFile(pwmPathStr);
if (!pwmFile.good())
{
continue;
}
auto findPWMSensor = pwmSensors.find(psuName + labelHead);
if (findPWMSensor != pwmSensors.end())
{
continue;
}
std::string name = "Pwm_";
name += psuName;
name += "_";
name += pwmName;
std::string objPath = interfacePath;
objPath += "_";
objPath += pwmName;
pwmSensors[psuName + labelHead] = std::make_unique<PwmSensor>(
name, pwmPathStr, dbusConnection, objectServer, objPath, "PSU");
}
}
static void createSensorsCallback(
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
const ManagedObjectType& sensorConfigs,
const std::shared_ptr<boost::container::flat_set<std::string>>&
sensorsChanged,
bool activateOnly)
{
int numCreated = 0;
bool firstScan = sensorsChanged == nullptr;
auto devices = instantiateDevices(sensorConfigs, sensors, sensorTypes);
std::vector<fs::path> pmbusPaths;
findFiles(fs::path("/sys/bus/iio/devices"), "name", pmbusPaths);
findFiles(fs::path("/sys/class/hwmon"), "name", pmbusPaths);
if (pmbusPaths.empty())
{
std::cerr << "No PSU sensors in system\n";
return;
}
boost::container::flat_set<std::string> directories;
for (const auto& pmbusPath : pmbusPaths)
{
boost::container::flat_map<std::string, std::vector<std::string>>
eventPathList;
boost::container::flat_map<
std::string,
boost::container::flat_map<std::string, std::vector<std::string>>>
groupEventPathList;
std::ifstream nameFile(pmbusPath);
if (!nameFile.good())
{
std::cerr << "Failure finding pmbus path " << pmbusPath << "\n";
continue;
}
std::string pmbusName;
std::getline(nameFile, pmbusName);
nameFile.close();
if (sensorTypes.find(pmbusName) == sensorTypes.end())
{
// To avoid this error message, add your driver name to
// the pmbusNames vector at the top of this file.
std::cerr << "Driver name " << pmbusName
<< " not found in sensor whitelist\n";
continue;
}
auto directory = pmbusPath.parent_path();
auto ret = directories.insert(directory.string());
if (!ret.second)
{
std::cerr << "Duplicate path " << directory.string() << "\n";
continue; // check if path has already been searched
}
DevTypes devType = DevTypes::HWMON;
std::string deviceName;
if (directory.parent_path() == "/sys/class/hwmon")
{
deviceName = fs::canonical(directory / "device").stem();
}
else
{
deviceName = fs::canonical(directory).parent_path().stem();
devType = DevTypes::IIO;
}
auto findHyphen = deviceName.find('-');
if (findHyphen == std::string::npos)
{
std::cerr << "found bad device" << deviceName << "\n";
continue;
}
std::string busStr = deviceName.substr(0, findHyphen);
std::string addrStr = deviceName.substr(findHyphen + 1);
size_t bus = 0;
size_t addr = 0;
try
{
bus = std::stoi(busStr);
addr = std::stoi(addrStr, nullptr, 16);
}
catch (const std::invalid_argument&)
{
std::cerr << "Error parsing bus " << busStr << " addr " << addrStr
<< "\n";
continue;
}
const SensorBaseConfigMap* baseConfig = nullptr;
const SensorData* sensorData = nullptr;
const std::string* interfacePath = nullptr;
std::string sensorType;
size_t thresholdConfSize = 0;
for (const auto& [path, cfgData] : sensorConfigs)
{
sensorData = &cfgData;
for (const auto& [type, dt] : sensorTypes)
{
auto sensorBase = sensorData->find(configInterfaceName(type));
if (sensorBase != sensorData->end())
{
baseConfig = &sensorBase->second;
sensorType = type;
break;
}
}
if (baseConfig == nullptr)
{
std::cerr << "error finding base configuration for "
<< deviceName << "\n";
continue;
}
auto configBus = baseConfig->find("Bus");
auto configAddress = baseConfig->find("Address");
if (configBus == baseConfig->end() ||
configAddress == baseConfig->end())
{
std::cerr << "error finding necessary entry in configuration\n";
continue;
}
const uint64_t* confBus =
std::get_if<uint64_t>(&(configBus->second));
const uint64_t* confAddr =
std::get_if<uint64_t>(&(configAddress->second));
if (confBus == nullptr || confAddr == nullptr)
{
std::cerr
<< "Cannot get bus or address, invalid configuration\n";
continue;
}
if ((*confBus != bus) || (*confAddr != addr))
{
std::cerr << "Configuration skipping " << *confBus << "-"
<< *confAddr << " because not " << bus << "-" << addr
<< "\n";
continue;
}
std::vector<thresholds::Threshold> confThresholds;
if (!parseThresholdsFromConfig(*sensorData, confThresholds))
{
std::cerr << "error populating total thresholds\n";
}
thresholdConfSize = confThresholds.size();
interfacePath = &path.str;
break;
}
if (interfacePath == nullptr)
{
// To avoid this error message, add your export map entry,
// from Entity Manager, to sensorTypes at the top of this file.
std::cerr << "failed to find match for " << deviceName << "\n";
continue;
}
auto findI2CDev = devices.find(*interfacePath);
std::shared_ptr<I2CDevice> i2cDev;
if (findI2CDev != devices.end())
{
if (activateOnly && !findI2CDev->second.second)
{
continue;
}
i2cDev = findI2CDev->second.first;
}
auto findPSUName = baseConfig->find("Name");
if (findPSUName == baseConfig->end())
{
std::cerr << "could not determine configuration name for "
<< deviceName << "\n";
continue;
}
const std::string* psuName =
std::get_if<std::string>(&(findPSUName->second));
if (psuName == nullptr)
{
std::cerr << "Cannot find psu name, invalid configuration\n";
continue;
}
auto findCPU = baseConfig->find("CPURequired");
if (findCPU != baseConfig->end())
{
size_t index = std::visit(VariantToIntVisitor(), findCPU->second);
auto presenceFind = cpuPresence.find(index);
if (presenceFind == cpuPresence.end() || !presenceFind->second)
{
continue;
}
}
// on rescans, only update sensors we were signaled by
if (!firstScan)
{
std::string psuNameStr = "/" + escapeName(*psuName);
auto it = std::find_if(sensorsChanged->begin(),
sensorsChanged->end(),
[psuNameStr](std::string& s) {
return s.ends_with(psuNameStr);
});
if (it == sensorsChanged->end())
{
continue;
}
sensorsChanged->erase(it);
}
checkEvent(directory.string(), eventMatch, eventPathList);
checkGroupEvent(directory.string(), groupEventMatch,
groupEventPathList);
PowerState readState = getPowerState(*baseConfig);
/* Check if there are more sensors in the same interface */
int i = 1;
std::vector<std::string> psuNames;
do
{
// Individual string fields: Name, Name1, Name2, Name3, ...
psuNames.push_back(
escapeName(std::get<std::string>(findPSUName->second)));
findPSUName = baseConfig->find("Name" + std::to_string(i++));
} while (findPSUName != baseConfig->end());
std::vector<fs::path> sensorPaths;
if (!findFiles(directory, devParamMap[devType].matchRegEx, sensorPaths,
0))
{
std::cerr << "No PSU non-label sensor in PSU\n";
continue;
}
/* read max value in sysfs for in, curr, power, temp, ... */
if (!findFiles(directory, R"(\w\d+_max$)", sensorPaths, 0))
{
if constexpr (debug)
{
std::cerr << "No max name in PSU \n";
}
}
float pollRate = getPollRate(*baseConfig, PSUSensor::defaultSensorPoll);
/* Find array of labels to be exposed if it is defined in config */
std::vector<std::string> findLabels;
auto findLabelObj = baseConfig->find("Labels");
if (findLabelObj != baseConfig->end())
{
findLabels =
std::get<std::vector<std::string>>(findLabelObj->second);
}
std::regex sensorNameRegEx(devParamMap[devType].nameRegEx);
std::smatch matches;
for (const auto& sensorPath : sensorPaths)
{
bool maxLabel = false;
std::string labelHead;
std::string sensorPathStr = sensorPath.string();
std::string sensorNameStr = sensorPath.filename();
std::string sensorNameSubStr;
if (std::regex_search(sensorNameStr, matches, sensorNameRegEx))
{
// hwmon *_input filename without number:
// in, curr, power, temp, ...
// iio in_*_raw filename without number:
// voltage, temp, pressure, ...
sensorNameSubStr = matches[devParamMap[devType].matchIndex];
}
else
{
std::cerr << "Could not extract the alpha prefix from "
<< sensorNameStr;
continue;
}
std::string labelPath;
if (devType == DevTypes::HWMON)
{
/* find and differentiate _max and _input to replace "label" */
size_t pos = sensorPathStr.find('_');
if (pos != std::string::npos)
{
std::string sensorPathStrMax = sensorPathStr.substr(pos);
if (sensorPathStrMax == "_max")
{
labelPath = boost::replace_all_copy(sensorPathStr,
"max", "label");
maxLabel = true;
}
else
{
labelPath = boost::replace_all_copy(sensorPathStr,
"input", "label");
maxLabel = false;
}
}
else
{
continue;
}
std::ifstream labelFile(labelPath);
if (!labelFile.good())
{
if constexpr (debug)
{
std::cerr << "Input file " << sensorPath
<< " has no corresponding label file\n";
}
// hwmon *_input filename with number:
// temp1, temp2, temp3, ...
labelHead = sensorNameStr.substr(0,
sensorNameStr.find('_'));
}
else
{
std::string label;
std::getline(labelFile, label);
labelFile.close();
auto findSensor = sensors.find(label);
if (findSensor != sensors.end())
{
continue;
}
// hwmon corresponding *_label file contents:
// vin1, vout1, ...
labelHead = label.substr(0, label.find(' '));
}
/* append "max" for labelMatch */
if (maxLabel)
{
labelHead.insert(0, "max");
}
checkPWMSensor(sensorPath, labelHead, *interfacePath,
dbusConnection, objectServer, psuNames[0]);
}
else if (devType == DevTypes::IIO)
{
auto findIIOHyphen = sensorNameStr.find_last_of('_');
labelHead = sensorNameStr.substr(0, findIIOHyphen);
}
if constexpr (debug)
{
std::cerr << "Sensor type=\"" << sensorNameSubStr
<< "\" label=\"" << labelHead << "\"\n";
}
if (!findLabels.empty())
{
/* Check if this labelHead is enabled in config file */
if (std::find(findLabels.begin(), findLabels.end(),
labelHead) == findLabels.end())
{
if constexpr (debug)
{
std::cerr << "could not find " << labelHead
<< " in the Labels list\n";
}
continue;
}
}
auto findProperty = labelMatch.find(labelHead);
if (findProperty == labelMatch.end())
{
if constexpr (debug)
{
std::cerr << "Could not find matching default property for "
<< labelHead << "\n";
}
continue;
}
// Protect the hardcoded labelMatch list from changes,
// by making a copy and modifying that instead.
// Avoid bleedthrough of one device's customizations to
// the next device, as each should be independently customizable.
psuProperties.push_back(findProperty->second);
auto psuProperty = psuProperties.rbegin();
// Use label head as prefix for reading from config file,
// example if temp1: temp1_Name, temp1_Scale, temp1_Min, ...
std::string keyName = labelHead + "_Name";
std::string keyScale = labelHead + "_Scale";
std::string keyMin = labelHead + "_Min";
std::string keyMax = labelHead + "_Max";
std::string keyOffset = labelHead + "_Offset";
std::string keyPowerState = labelHead + "_PowerState";
bool customizedName = false;
auto findCustomName = baseConfig->find(keyName);
if (findCustomName != baseConfig->end())
{
try
{
psuProperty->labelTypeName = std::visit(
VariantToStringVisitor(), findCustomName->second);
}
catch (const std::invalid_argument&)
{
std::cerr << "Unable to parse " << keyName << "\n";
continue;
}
// All strings are valid, including empty string
customizedName = true;
}
bool customizedScale = false;
auto findCustomScale = baseConfig->find(keyScale);
if (findCustomScale != baseConfig->end())
{
try
{
psuProperty->sensorScaleFactor = std::visit(
VariantToUnsignedIntVisitor(), findCustomScale->second);
}
catch (const std::invalid_argument&)
{
std::cerr << "Unable to parse " << keyScale << "\n";
continue;
}
// Avoid later division by zero
if (psuProperty->sensorScaleFactor > 0)
{
customizedScale = true;
}
else
{
std::cerr << "Unable to accept " << keyScale << "\n";
continue;
}
}
auto findCustomMin = baseConfig->find(keyMin);
if (findCustomMin != baseConfig->end())
{
try
{
psuProperty->minReading = std::visit(
VariantToDoubleVisitor(), findCustomMin->second);
}
catch (const std::invalid_argument&)
{
std::cerr << "Unable to parse " << keyMin << "\n";
continue;
}
}
auto findCustomMax = baseConfig->find(keyMax);
if (findCustomMax != baseConfig->end())
{
try
{
psuProperty->maxReading = std::visit(
VariantToDoubleVisitor(), findCustomMax->second);
}
catch (const std::invalid_argument&)
{
std::cerr << "Unable to parse " << keyMax << "\n";
continue;
}
}
auto findCustomOffset = baseConfig->find(keyOffset);
if (findCustomOffset != baseConfig->end())
{
try
{
psuProperty->sensorOffset = std::visit(
VariantToDoubleVisitor(), findCustomOffset->second);
}
catch (const std::invalid_argument&)
{
std::cerr << "Unable to parse " << keyOffset << "\n";
continue;
}
}
// if we find label head power state set ,override the powerstate.
auto findPowerState = baseConfig->find(keyPowerState);
if (findPowerState != baseConfig->end())
{
std::string powerState = std::visit(VariantToStringVisitor(),
findPowerState->second);
setReadState(powerState, readState);
}
if (!(psuProperty->minReading < psuProperty->maxReading))
{
std::cerr << "Min must be less than Max\n";
continue;
}
// If the sensor name is being customized by config file,
// then prefix/suffix composition becomes not necessary,
// and in fact not wanted, because it gets in the way.
std::string psuNameFromIndex;
if (!customizedName)
{
/* Find out sensor name index for this label */
std::regex rgx("[A-Za-z]+([0-9]+)");
size_t nameIndex{0};
if (std::regex_search(labelHead, matches, rgx))
{
nameIndex = std::stoi(matches[1]);
// Decrement to preserve alignment, because hwmon
// human-readable filenames and labels use 1-based
// numbering, but the "Name", "Name1", "Name2", etc. naming
// convention (the psuNames vector) uses 0-based numbering.
if (nameIndex > 0)
{
--nameIndex;
}
}
else
{
nameIndex = 0;
}
if (psuNames.size() <= nameIndex)
{
std::cerr << "Could not pair " << labelHead
<< " with a Name field\n";
continue;
}
psuNameFromIndex = psuNames[nameIndex];
if constexpr (debug)
{
std::cerr << "Sensor label head " << labelHead
<< " paired with " << psuNameFromIndex
<< " at index " << nameIndex << "\n";
}
}
if (devType == DevTypes::HWMON)
{
checkEventLimits(sensorPathStr, limitEventMatch, eventPathList);
}
// Similarly, if sensor scaling factor is being customized,
// then the below power-of-10 constraint becomes unnecessary,
// as config should be able to specify an arbitrary divisor.
unsigned int factor = psuProperty->sensorScaleFactor;
if (!customizedScale)
{
// Preserve existing usage of hardcoded labelMatch table below
factor = std::pow(10.0, factor);
/* Change first char of substring to uppercase */
char firstChar =
static_cast<char>(std::toupper(sensorNameSubStr[0]));
std::string strScaleFactor =
firstChar + sensorNameSubStr.substr(1) + "ScaleFactor";
// Preserve existing configs by accepting earlier syntax,
// example CurrScaleFactor, PowerScaleFactor, ...
auto findScaleFactor = baseConfig->find(strScaleFactor);
if (findScaleFactor != baseConfig->end())
{
factor = std::visit(VariantToIntVisitor(),
findScaleFactor->second);
}
if constexpr (debug)
{
std::cerr << "Sensor scaling factor " << factor
<< " string " << strScaleFactor << "\n";
}
}
std::vector<thresholds::Threshold> sensorThresholds;
if (!parseThresholdsFromConfig(*sensorData, sensorThresholds,
&labelHead))
{
std::cerr << "error populating thresholds for "
<< sensorNameSubStr << "\n";
}
auto findSensorUnit = sensorTable.find(sensorNameSubStr);
if (findSensorUnit == sensorTable.end())
{
std::cerr << sensorNameSubStr
<< " is not a recognized sensor type\n";
continue;
}
if constexpr (debug)
{
std::cerr << "Sensor properties: Name \""
<< psuProperty->labelTypeName << "\" Scale "
<< psuProperty->sensorScaleFactor << " Min "
<< psuProperty->minReading << " Max "
<< psuProperty->maxReading << " Offset "
<< psuProperty->sensorOffset << "\n";
}
std::string sensorName = psuProperty->labelTypeName;
if (customizedName)
{
if (sensorName.empty())
{
// Allow selective disabling of an individual sensor,
// by customizing its name to an empty string.
std::cerr << "Sensor disabled, empty string\n";
continue;
}
}
else
{
// Sensor name not customized, do prefix/suffix composition,
// preserving default behavior by using psuNameFromIndex.
sensorName = psuNameFromIndex + " " +
psuProperty->labelTypeName;
}
if constexpr (debug)
{
std::cerr << "Sensor name \"" << sensorName << "\" path \""
<< sensorPathStr << "\" type \"" << sensorType
<< "\"\n";
}
// destruct existing one first if already created
auto& sensor = sensors[sensorName];
if (!activateOnly)
{
sensor = nullptr;
}
if (sensor != nullptr)
{
sensor->activate(sensorPathStr, i2cDev);
}
else
{
sensors[sensorName] = std::make_shared<PSUSensor>(
sensorPathStr, sensorType, objectServer, dbusConnection, io,
sensorName, std::move(sensorThresholds), *interfacePath,
readState, findSensorUnit->second, factor,
psuProperty->maxReading, psuProperty->minReading,
psuProperty->sensorOffset, labelHead, thresholdConfSize,
pollRate, i2cDev);
sensors[sensorName]->setupRead();
++numCreated;
if constexpr (debug)
{
std::cerr << "Created " << numCreated
<< " sensors so far\n";
}
}
}
if (devType == DevTypes::HWMON)
{
// OperationalStatus event
combineEvents[*psuName + "OperationalStatus"] = nullptr;
combineEvents[*psuName + "OperationalStatus"] =
std::make_unique<PSUCombineEvent>(
objectServer, dbusConnection, io, *psuName, readState,
eventPathList, groupEventPathList, "OperationalStatus",
pollRate);
}
}
if constexpr (debug)
{
std::cerr << "Created total of " << numCreated << " sensors\n";
}
}
void createSensors(
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection,
const std::shared_ptr<boost::container::flat_set<std::string>>&
sensorsChanged,
bool activateOnly)
{
auto getter = std::make_shared<GetSensorConfiguration>(
dbusConnection, [&io, &objectServer, &dbusConnection, sensorsChanged,
activateOnly](const ManagedObjectType& sensorConfigs) {
createSensorsCallback(io, objectServer, dbusConnection,
sensorConfigs, sensorsChanged, activateOnly);
});
std::vector<std::string> types(sensorTypes.size());
for (const auto& [type, dt] : sensorTypes)
{
types.push_back(type);
}
getter->getConfiguration(types);
}
void propertyInitialize(void)
{
sensorTable = {{"power", sensor_paths::unitWatts},
{"curr", sensor_paths::unitAmperes},
{"temp", sensor_paths::unitDegreesC},
{"in", sensor_paths::unitVolts},
{"voltage", sensor_paths::unitVolts},
{"fan", sensor_paths::unitRPMs}};
labelMatch = {
{"pin", PSUProperty("Input Power", 3000, 0, 6, 0)},
{"pin1", PSUProperty("Input Power", 3000, 0, 6, 0)},
{"pin2", PSUProperty("Input Power", 3000, 0, 6, 0)},
{"pout1", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"pout2", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"pout3", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"power1", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"power2", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"power3", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"power4", PSUProperty("Output Power", 3000, 0, 6, 0)},
{"maxpin", PSUProperty("Max Input Power", 3000, 0, 6, 0)},
{"vin", PSUProperty("Input Voltage", 300, 0, 3, 0)},
{"vin1", PSUProperty("Input Voltage", 300, 0, 3, 0)},
{"vin2", PSUProperty("Input Voltage", 300, 0, 3, 0)},
{"maxvin", PSUProperty("Max Input Voltage", 300, 0, 3, 0)},
{"in_voltage0", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in_voltage1", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in_voltage2", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in_voltage3", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout1", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout2", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout3", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout4", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout5", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout6", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout7", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout8", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout9", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout10", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout11", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout12", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout13", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout14", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout15", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout16", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout17", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout18", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout19", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout20", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout21", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout22", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout23", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout24", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout25", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout26", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout27", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout28", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout29", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout30", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout31", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vout32", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"vmon", PSUProperty("Auxiliary Input Voltage", 255, 0, 3, 0)},
{"in0", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in1", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in2", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in3", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in4", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in5", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in6", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"in7", PSUProperty("Output Voltage", 255, 0, 3, 0)},
{"iin", PSUProperty("Input Current", 20, 0, 3, 0)},
{"iin1", PSUProperty("Input Current", 20, 0, 3, 0)},
{"iin2", PSUProperty("Input Current", 20, 0, 3, 0)},
{"iout1", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout2", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout3", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout4", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout5", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout6", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout7", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout8", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout9", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout10", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout11", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout12", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout13", PSUProperty("Output Current", 255, 0, 3, 0)},
{"iout14", PSUProperty("Output Current", 255, 0, 3, 0)},
{"curr1", PSUProperty("Output Current", 255, 0, 3, 0)},
{"curr2", PSUProperty("Output Current", 255, 0, 3, 0)},
{"curr3", PSUProperty("Output Current", 255, 0, 3, 0)},
{"curr4", PSUProperty("Output Current", 255, 0, 3, 0)},
{"maxiout1", PSUProperty("Max Output Current", 255, 0, 3, 0)},
{"temp1", PSUProperty("Temperature", 127, -128, 3, 0)},
{"temp2", PSUProperty("Temperature", 127, -128, 3, 0)},
{"temp3", PSUProperty("Temperature", 127, -128, 3, 0)},
{"temp4", PSUProperty("Temperature", 127, -128, 3, 0)},
{"temp5", PSUProperty("Temperature", 127, -128, 3, 0)},
{"temp6", PSUProperty("Temperature", 127, -128, 3, 0)},
{"maxtemp1", PSUProperty("Max Temperature", 127, -128, 3, 0)},
{"fan1", PSUProperty("Fan Speed 1", 30000, 0, 0, 0)},
{"fan2", PSUProperty("Fan Speed 2", 30000, 0, 0, 0)},
{"fan3", PSUProperty("Fan Speed 3", 30000, 0, 0, 0)},
{"fan4", PSUProperty("Fan Speed 4", 30000, 0, 0, 0)}};
pwmTable = {{"fan1", "Fan_1"},
{"fan2", "Fan_2"},
{"fan3", "Fan_3"},
{"fan4", "Fan_4"}};
limitEventMatch = {{"PredictiveFailure", {"max_alarm", "min_alarm"}},
{"Failure", {"crit_alarm", "lcrit_alarm"}}};
eventMatch = {{"PredictiveFailure", {"power1_alarm"}},
{"Failure", {"in2_alarm"}},
{"ACLost", {"in1_beep"}},
{"ConfigureError", {"in1_fault"}}};
groupEventMatch = {{"FanFault",
{{"fan1", {"fan1_alarm", "fan1_fault"}},
{"fan2", {"fan2_alarm", "fan2_fault"}},
{"fan3", {"fan3_alarm", "fan3_fault"}},
{"fan4", {"fan4_alarm", "fan4_fault"}}}}};
devParamMap = {
{DevTypes::HWMON, {1, R"(\w\d+_input$)", "([A-Za-z]+)[0-9]*_"}},
{DevTypes::IIO,
{2, R"(\w+_(raw|input)$)", "^(in|out)_([A-Za-z]+)[0-9]*_"}}};
}
static void powerStateChanged(
PowerState type, bool newState,
boost::container::flat_map<std::string, std::shared_ptr<PSUSensor>>&
sensors,
boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& dbusConnection)
{
if (newState)
{
createSensors(io, objectServer, dbusConnection, nullptr, true);
}
else
{
for (auto& [path, sensor] : sensors)
{
if (sensor != nullptr && sensor->readState == type)
{
sensor->deactivate();
}
}
}
}
int main()
{
boost::asio::io_context io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
sdbusplus::asio::object_server objectServer(systemBus, true);
objectServer.add_manager("/xyz/openbmc_project/sensors");
objectServer.add_manager("/xyz/openbmc_project/control");
systemBus->request_name("xyz.openbmc_project.PSUSensor");
auto sensorsChanged =
std::make_shared<boost::container::flat_set<std::string>>();
propertyInitialize();
auto powerCallBack =
[&io, &objectServer, &systemBus](PowerState type, bool state) {
powerStateChanged(type, state, sensors, io, objectServer, systemBus);
};
setupPowerMatchCallback(systemBus, powerCallBack);
boost::asio::post(io, [&]() {
createSensors(io, objectServer, systemBus, nullptr, false);
});
boost::asio::steady_timer filterTimer(io);
std::function<void(sdbusplus::message_t&)> eventHandler =
[&](sdbusplus::message_t& message) {
if (message.is_method_error())
{
std::cerr << "callback method error\n";
return;
}
sensorsChanged->insert(message.get_path());
filterTimer.expires_after(std::chrono::seconds(3));
filterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return;
}
if (ec)
{
std::cerr << "timer error\n";
}
createSensors(io, objectServer, systemBus, sensorsChanged, false);
});
};
boost::asio::steady_timer cpuFilterTimer(io);
std::function<void(sdbusplus::message_t&)> cpuPresenceHandler =
[&](sdbusplus::message_t& message) {
std::string path = message.get_path();
boost::to_lower(path);
sdbusplus::message::object_path cpuPath(path);
std::string cpuName = cpuPath.filename();
if (!cpuName.starts_with("cpu"))
{
return;
}
size_t index = 0;
try
{
index = std::stoi(path.substr(path.size() - 1));
}
catch (const std::invalid_argument&)
{
std::cerr << "Found invalid path " << path << "\n";
return;
}
std::string objectName;
boost::container::flat_map<std::string, std::variant<bool>> values;
message.read(objectName, values);
auto findPresence = values.find("Present");
try
{
cpuPresence[index] = std::get<bool>(findPresence->second);
}
catch (const std::bad_variant_access& err)
{
return;
}
if (!cpuPresence[index])
{
return;
}
cpuFilterTimer.expires_after(std::chrono::seconds(1));
cpuFilterTimer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return;
}
if (ec)
{
std::cerr << "timer error\n";
return;
}
createSensors(io, objectServer, systemBus, nullptr, false);
});
};
std::vector<std::unique_ptr<sdbusplus::bus::match_t>> matches =
setupPropertiesChangedMatches(*systemBus, sensorTypes, eventHandler);
matches.emplace_back(std::make_unique<sdbusplus::bus::match_t>(
static_cast<sdbusplus::bus_t&>(*systemBus),
"type='signal',member='PropertiesChanged',path_namespace='" +
std::string(cpuInventoryPath) +
"',arg0namespace='xyz.openbmc_project.Inventory.Item'",
cpuPresenceHandler));
setupManufacturingModeMatch(*systemBus);
io.run();
}