blob: dfe09fd1ad233715fdc9f59eb0357606d0258c01 [file] [log] [blame] [edit]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include "IntelCPUSensor.hpp"
#include "SensorPaths.hpp"
#include "Thresholds.hpp"
#include "Utils.hpp"
#include "sensor.hpp"
#include <fcntl.h>
#include <unistd.h>
#include <boost/algorithm/string/replace.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/posix/descriptor_base.hpp>
#include <boost/container/flat_map.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <memory>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
IntelCPUSensor::IntelCPUSensor(
const std::string& path, const std::string& objectType,
sdbusplus::asio::object_server& objectServer,
std::shared_ptr<sdbusplus::asio::connection>& conn,
boost::asio::io_context& io, const std::string& sensorName,
std::vector<thresholds::Threshold>&& thresholdsIn,
const std::string& sensorConfiguration, int cpuId, bool show,
double dtsOffset) :
Sensor(escapeName(sensorName), std::move(thresholdsIn), sensorConfiguration,
objectType, false, false, 0, 0, conn, PowerState::on),
objServer(objectServer), inputDev(io), waitTimer(io),
nameTcontrol("Tcontrol CPU" + std::to_string(cpuId)), path(path),
privTcontrol(std::numeric_limits<double>::quiet_NaN()),
dtsOffset(dtsOffset), show(show), pollTime(IntelCPUSensor::sensorPollMs)
{
if (show)
{
if (auto fileParts = splitFileName(path))
{
auto& [type, nr, item] = *fileParts;
std::string interfacePath;
const char* units = nullptr;
if (type == "power")
{
interfacePath = "/xyz/openbmc_project/sensors/power/" + name;
units = sensor_paths::unitWatts;
minValue = 0;
maxValue = 511;
}
else
{
interfacePath = "/xyz/openbmc_project/sensors/temperature/" +
name;
units = sensor_paths::unitDegreesC;
minValue = -128;
maxValue = 127;
}
sensorInterface = objectServer.add_interface(
interfacePath, "xyz.openbmc_project.Sensor.Value");
for (const auto& threshold : thresholds)
{
std::string interface =
thresholds::getInterface(threshold.level);
thresholdInterfaces[static_cast<size_t>(threshold.level)] =
objectServer.add_interface(interfacePath, interface);
}
association = objectServer.add_interface(interfacePath,
association::interface);
setInitialProperties(units);
}
}
// call setup always as not all sensors call setInitialProperties
setupPowerMatch(conn);
}
IntelCPUSensor::~IntelCPUSensor()
{
// close the input dev to cancel async operations
inputDev.close();
waitTimer.cancel();
if (show)
{
for (const auto& iface : thresholdInterfaces)
{
objServer.remove_interface(iface);
}
objServer.remove_interface(sensorInterface);
objServer.remove_interface(association);
objServer.remove_interface(availableInterface);
objServer.remove_interface(operationalInterface);
}
}
void IntelCPUSensor::restartRead()
{
std::weak_ptr<IntelCPUSensor> weakRef = weak_from_this();
waitTimer.expires_after(std::chrono::milliseconds(pollTime));
waitTimer.async_wait([weakRef](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
std::cerr << "Failed to reschedule\n";
return;
}
std::shared_ptr<IntelCPUSensor> self = weakRef.lock();
if (self)
{
self->setupRead();
}
});
}
void IntelCPUSensor::setupRead()
{
if (readingStateGood())
{
inputDev.close();
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
fd = open(path.c_str(), O_RDONLY | O_NONBLOCK);
if (fd < 0)
{
std::cerr << name << " unable to open fd!\n";
return;
}
inputDev.assign(fd);
}
else
{
markAvailable(false);
updateValue(std::numeric_limits<double>::quiet_NaN());
restartRead();
return;
}
std::weak_ptr<IntelCPUSensor> weakRef = weak_from_this();
inputDev.async_wait(boost::asio::posix::descriptor_base::wait_read,
[weakRef](const boost::system::error_code& ec) {
std::shared_ptr<IntelCPUSensor> self =
weakRef.lock();
if (self)
{
self->handleResponse(ec);
}
});
}
void IntelCPUSensor::updateMinMaxValues()
{
const boost::container::flat_map<
std::string,
std::vector<std::tuple<const char*, std::reference_wrapper<double>,
const char*>>>
map = {
{
"cap",
{
std::make_tuple("cap_max", std::ref(maxValue), "MaxValue"),
std::make_tuple("cap_min", std::ref(minValue), "MinValue"),
},
},
};
if (auto fileParts = splitFileName(path))
{
auto& [fileType, fileNr, fileItem] = *fileParts;
const auto mapIt = map.find(fileItem);
if (mapIt != map.cend())
{
for (const auto& vectorItem : mapIt->second)
{
const auto& [suffix, oldValue, dbusName] = vectorItem;
auto attrPath = boost::replace_all_copy(path, fileItem, suffix);
if (auto newVal =
readFile(attrPath, IntelCPUSensor::sensorScaleFactor))
{
updateProperty(sensorInterface, oldValue, *newVal,
dbusName);
}
else
{
if (isPowerOn())
{
updateProperty(sensorInterface, oldValue, 0, dbusName);
}
else
{
updateProperty(sensorInterface, oldValue,
std::numeric_limits<double>::quiet_NaN(),
dbusName);
}
}
}
}
}
}
void IntelCPUSensor::handleResponse(const boost::system::error_code& err)
{
if ((err == boost::system::errc::bad_file_descriptor) ||
(err == boost::asio::error::misc_errors::not_found))
{
return; // we're being destroyed
}
if (err == boost::system::errc::operation_canceled)
{
if (readingStateGood())
{
if (!loggedInterfaceDown)
{
std::cerr << name << " interface down!\n";
loggedInterfaceDown = true;
}
pollTime = static_cast<size_t>(IntelCPUSensor::sensorPollMs) * 10U;
markFunctional(false);
}
return;
}
loggedInterfaceDown = false;
if (err)
{
pollTime = sensorFailedPollTimeMs;
incrementError();
return;
}
static constexpr uint32_t bufLen = 128;
std::string response;
response.resize(bufLen);
int rdLen = 0;
if (fd >= 0)
{
rdLen = pread(fd, response.data(), bufLen, 0);
}
if (rdLen > 0)
{
try
{
rawValue = std::stod(response);
double nvalue = rawValue / IntelCPUSensor::sensorScaleFactor;
if (show)
{
updateValue(nvalue);
}
else
{
value = nvalue;
}
if (minMaxReadCounter++ % 8 == 0)
{
updateMinMaxValues();
}
double gTcontrol = gCpuSensors[nameTcontrol]
? gCpuSensors[nameTcontrol]->value
: std::numeric_limits<double>::quiet_NaN();
if (gTcontrol != privTcontrol)
{
privTcontrol = gTcontrol;
if (!thresholds.empty())
{
std::vector<thresholds::Threshold> newThresholds;
if (parseThresholdsFromAttr(
newThresholds, path,
IntelCPUSensor::sensorScaleFactor, dtsOffset, 0))
{
if (!std::equal(thresholds.begin(), thresholds.end(),
newThresholds.begin(),
newThresholds.end()))
{
thresholds = newThresholds;
if (show)
{
thresholds::updateThresholds(this);
}
}
}
else
{
std::cerr << "Failure to update thresholds for " << name
<< "\n";
}
}
}
}
catch (const std::invalid_argument&)
{
incrementError();
}
}
else
{
pollTime = sensorFailedPollTimeMs;
incrementError();
}
restartRead();
}
void IntelCPUSensor::checkThresholds()
{
if (show)
{
thresholds::checkThresholds(this);
}
}