blob: 45d0fd90532255191e39a9f065430d3818061920 [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
/// \file FruDevice.cpp
#include "Utils.hpp"
#include <errno.h>
#include <fcntl.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/asio/deadline_timer.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/container/flat_map.hpp>
#include <nlohmann/json.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <array>
#include <chrono>
#include <ctime>
#include <filesystem>
#include <fstream>
#include <functional>
#include <future>
#include <iomanip>
#include <iostream>
#include <limits>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <utility>
#include <variant>
#include <vector>
extern "C"
{
#include <i2c/smbus.h>
#include <linux/i2c-dev.h>
}
namespace fs = std::filesystem;
static constexpr bool DEBUG = false;
static size_t UNKNOWN_BUS_OBJECT_COUNT = 0;
constexpr size_t MAX_FRU_SIZE = 512;
constexpr size_t MAX_EEPROM_PAGE_INDEX = 255;
constexpr size_t busTimeoutSeconds = 5;
constexpr size_t fruBlockSize = 8; // FRU areas are measured in 8-byte blocks
constexpr const char* blacklistPath = PACKAGE_DIR "blacklist.json";
const static constexpr char* BASEBOARD_FRU_LOCATION =
"/etc/fru/baseboard.fru.bin";
const static constexpr char* I2C_DEV_LOCATION = "/dev";
enum class fruAreas
{
fruAreaInternal = 0,
fruAreaChassis,
fruAreaBoard,
fruAreaProduct,
fruAreaMultirecord
};
inline fruAreas operator++(fruAreas& x)
{
return x = static_cast<fruAreas>(std::underlying_type<fruAreas>::type(x) +
1);
}
static const std::vector<std::string> FRU_AREA_NAMES = {
"INTERNAL", "CHASSIS", "BOARD", "PRODUCT", "MULTIRECORD"};
const static std::regex NON_ASCII_REGEX("[^\x01-\x7f]");
using DeviceMap = boost::container::flat_map<int, std::vector<uint8_t>>;
using BusMap = boost::container::flat_map<int, std::shared_ptr<DeviceMap>>;
static std::set<size_t> busBlacklist;
struct FindDevicesWithCallback;
static BusMap busMap;
static bool powerIsOn = false;
static boost::container::flat_map<
std::pair<size_t, size_t>, std::shared_ptr<sdbusplus::asio::dbus_interface>>
foundDevices;
static boost::container::flat_map<size_t, std::set<size_t>> failedAddresses;
boost::asio::io_service io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
auto objServer = sdbusplus::asio::object_server(systemBus);
static const std::vector<std::string> CHASSIS_FRU_AREAS = {"PART_NUMBER",
"SERIAL_NUMBER"};
static const std::vector<std::string> BOARD_FRU_AREAS = {
"MANUFACTURER", "PRODUCT_NAME", "SERIAL_NUMBER", "PART_NUMBER",
"FRU_VERSION_ID"};
static const std::vector<std::string> PRODUCT_FRU_AREAS = {
"MANUFACTURER", "PRODUCT_NAME", "PART_NUMBER", "VERSION",
"SERIAL_NUMBER", "ASSET_TAG", "FRU_VERSION_ID"};
static const std::string FRU_CUSTOM_FIELD_NAME = "INFO_AM";
static inline unsigned int getHeaderAreaFieldOffset(fruAreas area)
{
return static_cast<unsigned int>(area) + 1;
}
static inline const std::string& getFruAreaName(fruAreas area)
{
return FRU_AREA_NAMES[static_cast<unsigned int>(area)];
}
bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData);
uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
std::vector<uint8_t>::const_iterator end);
bool updateFRUProperty(
const std::string& assetTag, uint32_t bus, uint32_t address,
std::string propertyName,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap);
using ReadBlockFunc =
std::function<int64_t(int flag, int file, uint16_t address, uint16_t offset,
uint8_t length, uint8_t* outBuf)>;
// Read and validate FRU contents, given the flag required for raw i2c, the open
// file handle, a read method, and a helper string for failures.
std::vector<uint8_t> readFRUContents(int flag, int file, uint16_t address,
ReadBlockFunc readBlock,
const std::string& errorHelp)
{
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData;
if (readBlock(flag, file, address, 0x0, 0x8, blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << "\n";
return {};
}
// check the header checksum
if (!validateHeader(blockData))
{
if (DEBUG)
{
std::cerr << "Illegal header " << errorHelp << "\n";
}
return {};
}
std::vector<uint8_t> device;
device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
bool hasMultiRecords = false;
size_t fruLength = fruBlockSize; // At least FRU header is present
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
// Offset value can be 255.
unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
if (areaOffset == 0)
{
continue;
}
// MultiRecords are different. area is not tracking section, it's
// walking the common header.
if (area == fruAreas::fruAreaMultirecord)
{
hasMultiRecords = true;
break;
}
areaOffset *= fruBlockSize;
if (readBlock(flag, file, address, static_cast<uint16_t>(areaOffset),
0x2, blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << "\n";
return {};
}
// Ignore data type (blockData is already unsigned).
size_t length = blockData[1] * fruBlockSize;
areaOffset += length;
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
}
if (hasMultiRecords)
{
// device[area count] is the index to the last area because the 0th
// entry is not an offset in the common header.
unsigned int areaOffset =
device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
areaOffset *= fruBlockSize;
// the multi-area record header is 5 bytes long.
constexpr size_t multiRecordHeaderSize = 5;
constexpr uint8_t multiRecordEndOfListMask = 0x80;
// Sanity hard-limit to 64KB.
while (areaOffset < std::numeric_limits<uint16_t>::max())
{
// In multi-area, the area offset points to the 0th record, each
// record has 3 bytes of the header we care about.
if (readBlock(flag, file, address,
static_cast<uint16_t>(areaOffset), 0x3,
blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << "\n";
return {};
}
// Ok, let's check the record length, which is in bytes (unsigned,
// up to 255, so blockData should hold uint8_t not char)
size_t recordLength = blockData[2];
areaOffset += (recordLength + multiRecordHeaderSize);
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
// If this is the end of the list bail.
if ((blockData[1] & multiRecordEndOfListMask))
{
break;
}
}
}
// You already copied these first 8 bytes (the ipmi fru header size)
fruLength -= std::min(fruBlockSize, fruLength);
int readOffset = fruBlockSize;
while (fruLength > 0)
{
size_t requestLength =
std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
if (readBlock(flag, file, address, static_cast<uint16_t>(readOffset),
static_cast<uint8_t>(requestLength),
blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << "\n";
return {};
}
device.insert(device.end(), blockData.begin(),
blockData.begin() + requestLength);
readOffset += requestLength;
fruLength -= std::min(requestLength, fruLength);
}
return device;
}
// Given a bus/address, produce the path in sysfs for an eeprom.
static std::string getEepromPath(size_t bus, size_t address)
{
std::stringstream output;
output << "/sys/bus/i2c/devices/" << bus << "-" << std::right
<< std::setfill('0') << std::setw(4) << std::hex << address
<< "/eeprom";
return output.str();
}
static bool hasEepromFile(size_t bus, size_t address)
{
auto path = getEepromPath(bus, address);
try
{
return fs::exists(path);
}
catch (...)
{
return false;
}
}
static int64_t readFromEeprom(int flag __attribute__((unused)), int fd,
uint16_t address __attribute__((unused)),
uint16_t offset, uint8_t len, uint8_t* buf)
{
auto result = lseek(fd, offset, SEEK_SET);
if (result < 0)
{
std::cerr << "failed to seek\n";
return -1;
}
return read(fd, buf, len);
}
static int busStrToInt(const std::string& busName)
{
auto findBus = busName.rfind("-");
if (findBus == std::string::npos)
{
return -1;
}
return std::stoi(busName.substr(findBus + 1));
}
static int getRootBus(size_t bus)
{
auto ec = std::error_code();
auto path = std::filesystem::read_symlink(
std::filesystem::path("/sys/bus/i2c/devices/i2c-" +
std::to_string(bus) + "/mux_device"),
ec);
if (ec)
{
return -1;
}
std::string filename = path.filename();
auto findBus = filename.find("-");
if (findBus == std::string::npos)
{
return -1;
}
return std::stoi(filename.substr(0, findBus));
}
static bool isMuxBus(size_t bus)
{
return is_symlink(std::filesystem::path(
"/sys/bus/i2c/devices/i2c-" + std::to_string(bus) + "/mux_device"));
}
static void makeProbeInterface(size_t bus, size_t address)
{
if (isMuxBus(bus))
{
return; // the mux buses are random, no need to publish
}
auto [it, success] = foundDevices.emplace(
std::make_pair(bus, address),
objServer.add_interface(
"/xyz/openbmc_project/FruDevice/" + std::to_string(bus) + "_" +
std::to_string(address),
"xyz.openbmc_project.Inventory.Item.I2CDevice"));
if (!success)
{
return; // already added
}
it->second->register_property("Bus", bus);
it->second->register_property("Address", address);
it->second->initialize();
}
static int isDevice16Bit(int file)
{
/* Get first byte */
int byte1 = i2c_smbus_read_byte_data(file, 0);
if (byte1 < 0)
{
return byte1;
}
/* Read 7 more bytes, it will read same first byte in case of
* 8 bit but it will read next byte in case of 16 bit
*/
for (int i = 0; i < 7; i++)
{
int byte2 = i2c_smbus_read_byte_data(file, 0);
if (byte2 < 0)
{
return byte2;
}
if (byte2 != byte1)
{
return 1;
}
}
return 0;
}
// Issue an I2C transaction to first write to_slave_buf_len bytes,then read
// from_slave_buf_len bytes.
static int i2c_smbus_write_then_read(int file, uint16_t address,
uint8_t* toSlaveBuf, uint8_t toSlaveBufLen,
uint8_t* fromSlaveBuf,
uint8_t fromSlaveBufLen)
{
if (toSlaveBuf == NULL || toSlaveBufLen == 0 || fromSlaveBuf == NULL ||
fromSlaveBufLen == 0)
{
return -1;
}
#define SMBUS_IOCTL_WRITE_THEN_READ_MSG_COUNT 2
struct i2c_msg msgs[SMBUS_IOCTL_WRITE_THEN_READ_MSG_COUNT];
struct i2c_rdwr_ioctl_data rdwr;
msgs[0].addr = address;
msgs[0].flags = 0;
msgs[0].len = toSlaveBufLen;
msgs[0].buf = toSlaveBuf;
msgs[1].addr = address;
msgs[1].flags = I2C_M_RD;
msgs[1].len = fromSlaveBufLen;
msgs[1].buf = fromSlaveBuf;
rdwr.msgs = msgs;
rdwr.nmsgs = SMBUS_IOCTL_WRITE_THEN_READ_MSG_COUNT;
int ret = ioctl(file, I2C_RDWR, &rdwr);
return (ret == SMBUS_IOCTL_WRITE_THEN_READ_MSG_COUNT) ? ret : -1;
}
static int64_t readBlockData(int flag, int file, uint16_t address,
uint16_t offset, uint8_t len, uint8_t* buf)
{
if (flag == 0)
{
return i2c_smbus_read_i2c_block_data(file, static_cast<uint8_t>(offset),
len, buf);
}
offset = htobe16(offset);
return i2c_smbus_write_then_read(
file, address, reinterpret_cast<uint8_t*>(&offset), 2, buf, len);
}
bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
{
// ipmi spec format version number is currently at 1, verify it
if (blockData[0] != 0x1)
{
return false;
}
// verify pad is set to 0
if (blockData[6] != 0x0)
{
return false;
}
// verify offsets are 0, or don't point to another offset
std::set<uint8_t> foundOffsets;
for (int ii = 1; ii < 6; ii++)
{
if (blockData[ii] == 0)
{
continue;
}
auto inserted = foundOffsets.insert(blockData[ii]);
if (!inserted.second)
{
return false;
}
}
// validate checksum
size_t sum = 0;
for (int jj = 0; jj < 7; jj++)
{
sum += blockData[jj];
}
sum = (256 - sum) & 0xFF;
if (sum != blockData[7])
{
return false;
}
return true;
}
// TODO: This code is very similar to the non-eeprom version and can be merged
// with some tweaks.
static std::vector<uint8_t> processEeprom(int bus, int address)
{
auto path = getEepromPath(bus, address);
int file = open(path.c_str(), O_RDONLY);
if (file < 0)
{
std::cerr << "Unable to open eeprom file: " << path << "\n";
return {};
}
std::string errorMessage = "eeprom at " + std::to_string(bus) +
" address " + std::to_string(address);
std::vector<uint8_t> device = readFRUContents(
0, file, static_cast<uint16_t>(address), readFromEeprom, errorMessage);
close(file);
return device;
}
std::set<int> findI2CEeproms(int i2cBus, std::shared_ptr<DeviceMap> devices)
{
std::set<int> foundList;
std::string path = "/sys/bus/i2c/devices/i2c-" + std::to_string(i2cBus);
// For each file listed under the i2c device
// NOTE: This should be faster than just checking for each possible address
// path.
for (const auto& p : fs::directory_iterator(path))
{
const std::string node = p.path().string();
std::smatch m;
bool found =
std::regex_match(node, m, std::regex(".+\\d+-([0-9abcdef]+$)"));
if (!found)
{
continue;
}
if (m.size() != 2)
{
std::cerr << "regex didn't capture\n";
continue;
}
std::ssub_match subMatch = m[1];
std::string addressString = subMatch.str();
std::size_t ignored;
const int hexBase = 16;
int address = std::stoi(addressString, &ignored, hexBase);
const std::string eeprom = node + "/eeprom";
try
{
if (!fs::exists(eeprom))
{
continue;
}
}
catch (...)
{
continue;
}
// There is an eeprom file at this address, it may have invalid
// contents, but we found it.
foundList.insert(address);
std::vector<uint8_t> device = processEeprom(i2cBus, address);
if (!device.empty())
{
devices->emplace(address, device);
}
}
return foundList;
}
int getBusFRUs(int file, int first, int last, int bus,
std::shared_ptr<DeviceMap> devices)
{
std::future<int> future = std::async(std::launch::async, [&]() {
// NOTE: When reading the devices raw on the bus, it can interfere with
// the driver's ability to operate, therefore read eeproms first before
// scanning for devices without drivers. Several experiments were run
// and it was determined that if there were any devices on the bus
// before the eeprom was hit and read, the eeprom driver wouldn't open
// while the bus device was open. An experiment was not performed to see
// if this issue was resolved if the i2c bus device was closed, but
// hexdumps of the eeprom later were successful.
// Scan for i2c eeproms loaded on this bus.
std::set<int> skipList = findI2CEeproms(bus, devices);
std::set<size_t>& failedItems = failedAddresses[bus];
std::set<size_t>* rootFailures = nullptr;
int rootBus = getRootBus(bus);
if (rootBus >= 0)
{
rootFailures = &(failedAddresses[rootBus]);
}
constexpr int startSkipSlaveAddr = 0;
constexpr int endSkipSlaveAddr = 12;
for (int ii = first; ii <= last; ii++)
{
if (skipList.find(ii) != skipList.end())
{
continue;
}
// skipping since no device is present in this range
if (ii >= startSkipSlaveAddr && ii <= endSkipSlaveAddr)
{
continue;
}
// Set slave address
if (ioctl(file, I2C_SLAVE, ii) < 0)
{
std::cerr << "device at bus " << bus << " register " << ii
<< " busy\n";
continue;
}
// probe
else if (i2c_smbus_read_byte(file) < 0)
{
continue;
}
if (DEBUG)
{
std::cout << "something at bus " << bus << " addr " << ii
<< "\n";
}
makeProbeInterface(bus, ii);
if (failedItems.find(ii) != failedItems.end())
{
// if we failed to read it once, unlikely we can read it later
continue;
}
if (rootFailures != nullptr)
{
if (rootFailures->find(ii) != rootFailures->end())
{
continue;
}
}
/* Check for Device type if it is 8 bit or 16 bit */
int flag = isDevice16Bit(file);
if (flag < 0)
{
std::cerr << "failed to read bus " << bus << " address " << ii
<< "\n";
if (powerIsOn)
{
failedItems.insert(ii);
}
continue;
}
std::string errorMessage =
"bus " + std::to_string(bus) + " address " + std::to_string(ii);
std::vector<uint8_t> device =
readFRUContents(flag, file, static_cast<uint16_t>(ii),
readBlockData, errorMessage);
if (device.empty())
{
continue;
}
devices->emplace(ii, device);
}
return 1;
});
std::future_status status =
future.wait_for(std::chrono::seconds(busTimeoutSeconds));
if (status == std::future_status::timeout)
{
std::cerr << "Error reading bus " << bus << "\n";
if (powerIsOn)
{
busBlacklist.insert(bus);
}
close(file);
return -1;
}
close(file);
return future.get();
}
void loadBlacklist(const char* path)
{
std::ifstream blacklistStream(path);
if (!blacklistStream.good())
{
// File is optional.
std::cerr << "Cannot open blacklist file.\n\n";
return;
}
nlohmann::json data =
nlohmann::json::parse(blacklistStream, nullptr, false);
if (data.is_discarded())
{
std::cerr << "Illegal blacklist file detected, cannot validate JSON, "
"exiting\n";
std::exit(EXIT_FAILURE);
}
// It's expected to have at least one field, "buses" that is an array of the
// buses by integer. Allow for future options to exclude further aspects,
// such as specific addresses or ranges.
if (data.type() != nlohmann::json::value_t::object)
{
std::cerr << "Illegal blacklist, expected to read dictionary\n";
std::exit(EXIT_FAILURE);
}
// If buses field is missing, that's fine.
if (data.count("buses") == 1)
{
// Parse the buses array after a little validation.
auto buses = data.at("buses");
if (buses.type() != nlohmann::json::value_t::array)
{
// Buses field present but invalid, therefore this is an error.
std::cerr << "Invalid contents for blacklist buses field\n";
std::exit(EXIT_FAILURE);
}
// Catch exception here for type mis-match.
try
{
for (const auto& bus : buses)
{
busBlacklist.insert(bus.get<size_t>());
}
}
catch (const nlohmann::detail::type_error& e)
{
// Type mis-match is a critical error.
std::cerr << "Invalid bus type: " << e.what() << "\n";
std::exit(EXIT_FAILURE);
}
}
return;
}
static void FindI2CDevices(const std::vector<fs::path>& i2cBuses,
BusMap& busmap)
{
for (auto& i2cBus : i2cBuses)
{
int bus = busStrToInt(i2cBus);
if (bus < 0)
{
std::cerr << "Cannot translate " << i2cBus << " to int\n";
continue;
}
if (busBlacklist.find(bus) != busBlacklist.end())
{
continue; // skip previously failed busses
}
int rootBus = getRootBus(bus);
if (busBlacklist.find(rootBus) != busBlacklist.end())
{
continue;
}
auto file = open(i2cBus.c_str(), O_RDWR);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus.string()
<< "\n";
continue;
}
unsigned long funcs = 0;
if (ioctl(file, I2C_FUNCS, &funcs) < 0)
{
std::cerr
<< "Error: Could not get the adapter functionality matrix bus "
<< bus << "\n";
continue;
}
if (!(funcs & I2C_FUNC_SMBUS_READ_BYTE) ||
!(I2C_FUNC_SMBUS_READ_I2C_BLOCK))
{
std::cerr << "Error: Can't use SMBus Receive Byte command bus "
<< bus << "\n";
continue;
}
auto& device = busmap[bus];
device = std::make_shared<DeviceMap>();
// i2cdetect by default uses the range 0x03 to 0x77, as
// this is what we have tested with, use this range. Could be
// changed in future.
if (DEBUG)
{
std::cerr << "Scanning bus " << bus << "\n";
}
// fd is closed in this function in case the bus locks up
getBusFRUs(file, 0x03, 0x77, bus, device);
if (DEBUG)
{
std::cerr << "Done scanning bus " << bus << "\n";
}
}
}
// this class allows an async response after all i2c devices are discovered
struct FindDevicesWithCallback :
std::enable_shared_from_this<FindDevicesWithCallback>
{
FindDevicesWithCallback(const std::vector<fs::path>& i2cBuses,
BusMap& busmap,
std::function<void(void)>&& callback) :
_i2cBuses(i2cBuses),
_busMap(busmap), _callback(std::move(callback))
{}
~FindDevicesWithCallback()
{
_callback();
}
void run()
{
FindI2CDevices(_i2cBuses, _busMap);
}
const std::vector<fs::path>& _i2cBuses;
BusMap& _busMap;
std::function<void(void)> _callback;
};
static const std::tm intelEpoch(void)
{
std::tm val = {};
val.tm_year = 1996 - 1900;
return val;
}
static char sixBitToChar(uint8_t val)
{
return static_cast<char>((val & 0x3f) + ' ');
}
/* 0xd - 0xf are reserved values, but not fatal; use a placeholder char. */
static const char bcdHighChars[] = {
' ', '-', '.', 'X', 'X', 'X',
};
static char bcdPlusToChar(uint8_t val)
{
val &= 0xf;
return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
}
enum class DecodeState
{
ok,
end,
err,
};
enum FRUDataEncoding
{
binary = 0x0,
bcdPlus = 0x1,
sixBitASCII = 0x2,
languageDependent = 0x3,
};
/* Decode FRU data into a std::string, given an input iterator and end. If the
* state returned is fruDataOk, then the resulting string is the decoded FRU
* data. The input iterator is advanced past the data consumed.
*
* On fruDataErr, we have lost synchronisation with the length bytes, so the
* iterator is no longer usable.
*/
static std::pair<DecodeState, std::string>
decodeFRUData(std::vector<uint8_t>::const_iterator& iter,
const std::vector<uint8_t>::const_iterator& end)
{
std::string value;
unsigned int i;
/* we need at least one byte to decode the type/len header */
if (iter == end)
{
std::cerr << "Truncated FRU data\n";
return make_pair(DecodeState::err, value);
}
uint8_t c = *(iter++);
/* 0xc1 is the end marker */
if (c == 0xc1)
{
return make_pair(DecodeState::end, value);
}
/* decode type/len byte */
uint8_t type = static_cast<uint8_t>(c >> 6);
uint8_t len = static_cast<uint8_t>(c & 0x3f);
/* we should have at least len bytes of data available overall */
if (iter + len > end)
{
std::cerr << "FRU data field extends past end of FRU area data\n";
return make_pair(DecodeState::err, value);
}
switch (type)
{
case FRUDataEncoding::binary:
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
for (i = 0; i < len; i++, iter++)
{
uint8_t val = static_cast<uint8_t>(*iter);
ss << std::setw(2) << static_cast<int>(val);
}
value = ss.str();
break;
}
case FRUDataEncoding::languageDependent:
/* For language-code dependent encodings, assume 8-bit ASCII */
value = std::string(iter, iter + len);
iter += len;
break;
case FRUDataEncoding::bcdPlus:
value = std::string();
for (i = 0; i < len; i++, iter++)
{
uint8_t val = *iter;
value.push_back(bcdPlusToChar(val >> 4));
value.push_back(bcdPlusToChar(val & 0xf));
}
break;
case FRUDataEncoding::sixBitASCII:
{
unsigned int accum = 0;
unsigned int accumBitLen = 0;
value = std::string();
for (i = 0; i < len; i++, iter++)
{
accum |= *iter << accumBitLen;
accumBitLen += 8;
while (accumBitLen >= 6)
{
value.push_back(sixBitToChar(accum & 0x3f));
accum >>= 6;
accumBitLen -= 6;
}
}
}
break;
}
return make_pair(DecodeState::ok, value);
}
static void checkLang(uint8_t lang)
{
// If Lang is not English then the encoding is defined as 2-byte UNICODE,
// but we don't support that.
if (lang && lang != 25)
{
std::cerr << "Warning: language other then English is not "
"supported \n";
}
}
bool formatFRU(const std::vector<uint8_t>& fruBytes,
boost::container::flat_map<std::string, std::string>& result)
{
if (fruBytes.size() <= fruBlockSize)
{
std::cerr << "Error: trying to parse empty FRU \n";
return false;
}
result["Common_Format_Version"] =
std::to_string(static_cast<int>(*fruBytes.begin()));
const std::vector<std::string>* fruAreaFieldNames;
// Don't parse Internal and Multirecord areas
for (fruAreas area = fruAreas::fruAreaChassis;
area <= fruAreas::fruAreaProduct; ++area)
{
size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
if (offset == 0)
{
continue;
}
offset *= fruBlockSize;
std::vector<uint8_t>::const_iterator fruBytesIter =
fruBytes.begin() + offset;
if (fruBytesIter + fruBlockSize >= fruBytes.end())
{
std::cerr << "Not enough data to parse \n";
return false;
}
// check for format version 1
if (*fruBytesIter != 0x01)
{
std::cerr << "Unexpected version " << *fruBytesIter << "\n";
return false;
}
++fruBytesIter;
uint8_t fruAreaSize = *fruBytesIter * fruBlockSize;
std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
fruBytes.begin() + offset + fruAreaSize - 1;
++fruBytesIter;
uint8_t fruComputedChecksum =
calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
if (fruComputedChecksum != *fruBytesIterEndArea)
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
ss << "\tComputed checksum: 0x" << std::setw(2)
<< static_cast<int>(fruComputedChecksum) << "\n";
ss << "\tThe read checksum: 0x" << std::setw(2)
<< static_cast<int>(*fruBytesIterEndArea) << "\n";
std::cerr << ss.str();
return false;
}
switch (area)
{
case fruAreas::fruAreaChassis:
{
result["CHASSIS_TYPE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
fruAreaFieldNames = &CHASSIS_FRU_AREAS;
break;
}
case fruAreas::fruAreaBoard:
{
uint8_t lang = *fruBytesIter;
result["BOARD_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
checkLang(lang);
fruBytesIter += 1;
unsigned int minutes = *fruBytesIter |
*(fruBytesIter + 1) << 8 |
*(fruBytesIter + 2) << 16;
std::tm fruTime = intelEpoch();
std::time_t timeValue = std::mktime(&fruTime);
timeValue += minutes * 60;
fruTime = *std::gmtime(&timeValue);
// Tue Nov 20 23:08:00 2018
char timeString[32] = {0};
auto bytes = std::strftime(timeString, sizeof(timeString),
"%Y-%m-%d - %H:%M:%S", &fruTime);
if (bytes == 0)
{
std::cerr << "invalid time string encountered\n";
return false;
}
result["BOARD_MANUFACTURE_DATE"] = std::string(timeString);
fruBytesIter += 3;
fruAreaFieldNames = &BOARD_FRU_AREAS;
break;
}
case fruAreas::fruAreaProduct:
{
uint8_t lang = *fruBytesIter;
result["PRODUCT_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
checkLang(lang);
fruBytesIter += 1;
fruAreaFieldNames = &PRODUCT_FRU_AREAS;
break;
}
default:
{
std::cerr << "Internal error: unexpected FRU area index: "
<< static_cast<int>(area) << " \n";
return false;
}
}
size_t fieldIndex = 0;
DecodeState state;
do
{
auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea);
state = res.first;
std::string value = res.second;
std::string name;
if (fieldIndex < fruAreaFieldNames->size())
{
name = std::string(getFruAreaName(area)) + "_" +
fruAreaFieldNames->at(fieldIndex);
}
else
{
name =
std::string(getFruAreaName(area)) + "_" +
FRU_CUSTOM_FIELD_NAME +
std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
}
if (state == DecodeState::ok)
{
// Strip non null characters from the end
value.erase(std::find_if(value.rbegin(), value.rend(),
[](char ch) { return ch != 0; })
.base(),
value.end());
result[name] = std::move(value);
++fieldIndex;
}
else if (state == DecodeState::err)
{
std::cerr << "Error while parsing " << name << "\n";
// Cancel decoding if failed to parse any of mandatory
// fields
if (fieldIndex < fruAreaFieldNames->size())
{
std::cerr << "Failed to parse mandatory field \n";
return false;
}
}
else
{
if (fieldIndex < fruAreaFieldNames->size())
{
std::cerr << "Mandatory fields absent in FRU area "
<< getFruAreaName(area) << " after " << name
<< "\n";
}
}
} while (state == DecodeState::ok);
for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
{
uint8_t c = *fruBytesIter;
if (c)
{
std::cerr << "Non-zero byte after EndOfFields in FRU area "
<< getFruAreaName(area) << "\n";
break;
}
}
}
return true;
}
std::vector<uint8_t>& getFRUInfo(const uint8_t& bus, const uint8_t& address)
{
auto deviceMap = busMap.find(bus);
if (deviceMap == busMap.end())
{
throw std::invalid_argument("Invalid Bus.");
}
auto device = deviceMap->second->find(address);
if (device == deviceMap->second->end())
{
throw std::invalid_argument("Invalid Address.");
}
std::vector<uint8_t>& ret = device->second;
return ret;
}
void AddFRUObjectToDbus(
std::vector<uint8_t>& device,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
uint32_t bus, uint32_t address)
{
boost::container::flat_map<std::string, std::string> formattedFRU;
if (!formatFRU(device, formattedFRU))
{
std::cerr << "failed to format fru for device at bus " << bus
<< " address " << address << "\n";
return;
}
auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
std::string productName;
// Not found under Board section or an empty string.
if (productNameFind == formattedFRU.end() ||
productNameFind->second.empty())
{
productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
}
// Found under Product section and not an empty string.
if (productNameFind != formattedFRU.end() &&
!productNameFind->second.empty())
{
productName = productNameFind->second;
std::regex illegalObject("[^A-Za-z0-9_]");
productName = std::regex_replace(productName, illegalObject, "_");
}
else
{
productName = "UNKNOWN" + std::to_string(UNKNOWN_BUS_OBJECT_COUNT);
UNKNOWN_BUS_OBJECT_COUNT++;
}
productName = "/xyz/openbmc_project/FruDevice/" + productName;
// avoid duplicates by checking to see if on a mux
if (bus > 0)
{
int highest = -1;
bool found = false;
for (auto const& busIface : dbusInterfaceMap)
{
std::string path = busIface.second->get_object_path();
if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
{
if (isMuxBus(bus) && address == busIface.first.second &&
(getFRUInfo(static_cast<uint8_t>(busIface.first.first),
static_cast<uint8_t>(busIface.first.second)) ==
getFRUInfo(static_cast<uint8_t>(bus),
static_cast<uint8_t>(address))))
{
// This device is already added to the lower numbered bus,
// do not replicate it.
return;
}
// Check if the match named has extra information.
found = true;
std::smatch base_match;
bool match = std::regex_match(
path, base_match, std::regex(productName + "_(\\d+)$"));
if (match)
{
if (base_match.size() == 2)
{
std::ssub_match base_sub_match = base_match[1];
std::string base = base_sub_match.str();
int value = std::stoi(base);
highest = (value > highest) ? value : highest;
}
}
}
} // end searching objects
if (found)
{
// We found something with the same name. If highest was still -1,
// it means this new entry will be _0.
productName += "_";
productName += std::to_string(++highest);
}
}
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface(productName, "xyz.openbmc_project.FruDevice");
dbusInterfaceMap[std::pair<size_t, size_t>(bus, address)] = iface;
for (auto& property : formattedFRU)
{
std::regex_replace(property.second.begin(), property.second.begin(),
property.second.end(), NON_ASCII_REGEX, "_");
if (property.second.empty() && property.first != "PRODUCT_ASSET_TAG")
{
continue;
}
std::string key =
std::regex_replace(property.first, NON_ASCII_REGEX, "_");
if (property.first == "PRODUCT_ASSET_TAG")
{
std::string propertyName = property.first;
iface->register_property(
key, property.second + '\0',
[bus, address, propertyName,
&dbusInterfaceMap](const std::string& req, std::string& resp) {
if (strcmp(req.c_str(), resp.c_str()))
{
// call the method which will update
if (updateFRUProperty(req, bus, address, propertyName,
dbusInterfaceMap))
{
resp = req;
}
else
{
throw std::invalid_argument(
"FRU property update failed.");
}
}
return 1;
});
}
else if (!iface->register_property(key, property.second + '\0'))
{
std::cerr << "illegal key: " << key << "\n";
}
if (DEBUG)
{
std::cout << property.first << ": " << property.second << "\n";
}
}
// baseboard will be 0, 0
iface->register_property("BUS", bus);
iface->register_property("ADDRESS", address);
iface->initialize();
}
static bool readBaseboardFRU(std::vector<uint8_t>& baseboardFRU)
{
// try to read baseboard fru from file
std::ifstream baseboardFRUFile(BASEBOARD_FRU_LOCATION, std::ios::binary);
if (baseboardFRUFile.good())
{
baseboardFRUFile.seekg(0, std::ios_base::end);
size_t fileSize = static_cast<size_t>(baseboardFRUFile.tellg());
baseboardFRU.resize(fileSize);
baseboardFRUFile.seekg(0, std::ios_base::beg);
baseboardFRUFile.read(reinterpret_cast<char*>(baseboardFRU.data()),
fileSize);
}
else
{
return false;
}
return true;
}
bool writeFRU(uint8_t bus, uint8_t address, const std::vector<uint8_t>& fru)
{
boost::container::flat_map<std::string, std::string> tmp;
if (fru.size() > MAX_FRU_SIZE)
{
std::cerr << "Invalid fru.size() during writeFRU\n";
return false;
}
// verify legal fru by running it through fru parsing logic
if (!formatFRU(fru, tmp))
{
std::cerr << "Invalid fru format during writeFRU\n";
return false;
}
// baseboard fru
if (bus == 0 && address == 0)
{
std::ofstream file(BASEBOARD_FRU_LOCATION, std::ios_base::binary);
if (!file.good())
{
std::cerr << "Error opening file " << BASEBOARD_FRU_LOCATION
<< "\n";
throw DBusInternalError();
return false;
}
file.write(reinterpret_cast<const char*>(fru.data()), fru.size());
return file.good();
}
else
{
if (hasEepromFile(bus, address))
{
auto path = getEepromPath(bus, address);
int eeprom = open(path.c_str(), O_RDWR | O_CLOEXEC);
if (eeprom < 0)
{
std::cerr << "unable to open i2c device " << path << "\n";
throw DBusInternalError();
return false;
}
ssize_t writtenBytes = write(eeprom, fru.data(), fru.size());
if (writtenBytes < 0)
{
std::cerr << "unable to write to i2c device " << path << "\n";
close(eeprom);
throw DBusInternalError();
return false;
}
close(eeprom);
return true;
}
std::string i2cBus = "/dev/i2c-" + std::to_string(bus);
int file = open(i2cBus.c_str(), O_RDWR | O_CLOEXEC);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus << "\n";
throw DBusInternalError();
return false;
}
if (ioctl(file, I2C_SLAVE_FORCE, address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
constexpr const size_t RETRY_MAX = 2;
uint16_t index = 0;
size_t retries = RETRY_MAX;
while (index < fru.size())
{
if ((index && ((index % (MAX_EEPROM_PAGE_INDEX + 1)) == 0)) &&
(retries == RETRY_MAX))
{
// The 4K EEPROM only uses the A2 and A1 device address bits
// with the third bit being a memory page address bit.
if (ioctl(file, I2C_SLAVE_FORCE, ++address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
}
if (i2c_smbus_write_byte_data(file, static_cast<uint8_t>(index),
fru[index]) < 0)
{
if (!retries--)
{
std::cerr << "error writing fru: " << strerror(errno)
<< "\n";
close(file);
throw DBusInternalError();
return false;
}
}
else
{
retries = RETRY_MAX;
index++;
}
// most eeproms require 5-10ms between writes
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
close(file);
return true;
}
}
void rescanOneBus(
BusMap& busmap, uint8_t busNum,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
bool dbusCall)
{
for (auto& [pair, interface] : foundDevices)
{
if (pair.first == static_cast<size_t>(busNum))
{
objServer.remove_interface(interface);
foundDevices.erase(pair);
}
}
fs::path busPath = fs::path("/dev/i2c-" + std::to_string(busNum));
if (!fs::exists(busPath))
{
if (dbusCall)
{
std::cerr << "Unable to access i2c bus " << static_cast<int>(busNum)
<< "\n";
throw std::invalid_argument("Invalid Bus.");
}
return;
}
std::vector<fs::path> i2cBuses;
i2cBuses.emplace_back(busPath);
auto scan = std::make_shared<FindDevicesWithCallback>(
i2cBuses, busmap, [busNum, &busmap, &dbusInterfaceMap]() {
for (auto& busIface : dbusInterfaceMap)
{
if (busIface.first.first == static_cast<size_t>(busNum))
{
objServer.remove_interface(busIface.second);
}
}
auto found = busmap.find(busNum);
if (found == busmap.end() || found->second == nullptr)
{
return;
}
for (auto& device : *(found->second))
{
AddFRUObjectToDbus(device.second, dbusInterfaceMap,
static_cast<uint32_t>(busNum), device.first);
}
});
scan->run();
}
void rescanBusses(
BusMap& busmap,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap)
{
static boost::asio::deadline_timer timer(io);
timer.expires_from_now(boost::posix_time::seconds(1));
// setup an async wait in case we get flooded with requests
timer.async_wait([&](const boost::system::error_code&) {
auto devDir = fs::path("/dev/");
std::vector<fs::path> i2cBuses;
boost::container::flat_map<size_t, fs::path> busPaths;
if (!getI2cDevicePaths(devDir, busPaths))
{
std::cerr << "unable to find i2c devices\n";
return;
}
for (auto busPath : busPaths)
{
i2cBuses.emplace_back(busPath.second);
}
busmap.clear();
for (auto& [pair, interface] : foundDevices)
{
objServer.remove_interface(interface);
}
foundDevices.clear();
auto scan =
std::make_shared<FindDevicesWithCallback>(i2cBuses, busmap, [&]() {
for (auto& busIface : dbusInterfaceMap)
{
objServer.remove_interface(busIface.second);
}
dbusInterfaceMap.clear();
UNKNOWN_BUS_OBJECT_COUNT = 0;
// todo, get this from a more sensable place
std::vector<uint8_t> baseboardFRU;
if (readBaseboardFRU(baseboardFRU))
{
boost::container::flat_map<int, std::vector<uint8_t>>
baseboardDev;
baseboardDev.emplace(0, baseboardFRU);
busmap[0] = std::make_shared<DeviceMap>(baseboardDev);
}
for (auto& devicemap : busmap)
{
for (auto& device : *devicemap.second)
{
AddFRUObjectToDbus(device.second, dbusInterfaceMap,
devicemap.first, device.first);
}
}
});
scan->run();
});
}
// Calculate new checksum for fru info area
uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
std::vector<uint8_t>::const_iterator end)
{
constexpr int checksumMod = 256;
constexpr uint8_t modVal = 0xFF;
int sum = std::accumulate(iter, end, 0);
int checksum = (checksumMod - sum) & modVal;
return static_cast<uint8_t>(checksum);
}
uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
{
return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
}
// Update new fru area length &
// Update checksum at new checksum location
// Return the offset of the area checksum byte
static unsigned int updateFRUAreaLenAndChecksum(std::vector<uint8_t>& fruData,
size_t fruAreaStart,
size_t fruAreaEndOfFieldsOffset,
size_t fruAreaEndOffset)
{
size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
// fill zeros for any remaining unused space
std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
fruData.begin() + fruAreaEndOffset, 0);
size_t mod = traverseFRUAreaIndex % fruBlockSize;
size_t checksumLoc;
if (!mod)
{
traverseFRUAreaIndex += (fruBlockSize);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
}
else
{
traverseFRUAreaIndex += (fruBlockSize - mod);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
}
size_t newFRUAreaLen = (traverseFRUAreaIndex / fruBlockSize) +
((traverseFRUAreaIndex % fruBlockSize) != 0);
size_t fruAreaLengthLoc = fruAreaStart + 1;
fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
// Calculate new checksum
std::vector<uint8_t> finalFRUData;
std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
std::back_inserter(finalFRUData));
fruData[checksumLoc] = calculateChecksum(finalFRUData);
return checksumLoc;
}
static ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
{
constexpr uint8_t typeLenMask = 0x3F;
constexpr uint8_t endOfFields = 0xC1;
if (fruFieldTypeLenValue == endOfFields)
{
return -1;
}
else
{
return fruFieldTypeLenValue & typeLenMask;
}
}
// Details with example of Asset Tag Update
// To find location of Product Info Area asset tag as per FRU specification
// 1. Find product Info area starting offset (*8 - as header will be in
// multiple of 8 bytes).
// 2. Skip 3 bytes of product info area (like format version, area length,
// and language code).
// 3. Traverse manufacturer name, product name, product version, & product
// serial number, by reading type/length code to reach the Asset Tag.
// 4. Update the Asset Tag, reposition the product Info area in multiple of
// 8 bytes. Update the Product area length and checksum.
bool updateFRUProperty(
const std::string& updatePropertyReq, uint32_t bus, uint32_t address,
std::string propertyName,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap)
{
size_t updatePropertyReqLen = updatePropertyReq.length();
if (updatePropertyReqLen == 1 || updatePropertyReqLen > 63)
{
std::cerr
<< "FRU field data cannot be of 1 char or more than 63 chars. "
"Invalid Length "
<< updatePropertyReqLen << "\n";
return false;
}
std::vector<uint8_t> fruData;
try
{
fruData = getFRUInfo(static_cast<uint8_t>(bus),
static_cast<uint8_t>(address));
}
catch (std::invalid_argument& e)
{
std::cerr << "Failure getting FRU Info" << e.what() << "\n";
return false;
}
if (fruData.empty())
{
return false;
}
const std::vector<std::string>* fruAreaFieldNames;
uint8_t fruAreaOffsetFieldValue = 0;
size_t offset = 0;
std::string areaName = propertyName.substr(0, propertyName.find("_"));
std::string propertyNamePrefix = areaName + "_";
auto it = std::find(FRU_AREA_NAMES.begin(), FRU_AREA_NAMES.end(), areaName);
if (it == FRU_AREA_NAMES.end())
{
std::cerr << "Can't parse area name for property " << propertyName
<< " \n";
return false;
}
fruAreas fruAreaToUpdate =
static_cast<fruAreas>(it - FRU_AREA_NAMES.begin());
fruAreaOffsetFieldValue =
fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
switch (fruAreaToUpdate)
{
case fruAreas::fruAreaChassis:
offset = 3; // chassis part number offset. Skip fixed first 3 bytes
fruAreaFieldNames = &CHASSIS_FRU_AREAS;
break;
case fruAreas::fruAreaBoard:
offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
fruAreaFieldNames = &BOARD_FRU_AREAS;
break;
case fruAreas::fruAreaProduct:
// Manufacturer name offset. Skip fixed first 3 product fru bytes
// i.e. version, area length and language code
offset = 3;
fruAreaFieldNames = &PRODUCT_FRU_AREAS;
break;
default:
std::cerr << "Don't know how to handle property " << propertyName
<< " \n";
return false;
}
if (fruAreaOffsetFieldValue == 0)
{
std::cerr << "FRU Area for " << propertyName << " not present \n";
return false;
}
size_t fruAreaStart = fruAreaOffsetFieldValue * fruBlockSize;
size_t fruAreaSize = fruData[fruAreaStart + 1] * fruBlockSize;
size_t fruAreaEnd = fruAreaStart + fruAreaSize;
size_t fruDataIter = fruAreaStart + offset;
size_t fruUpdateFieldLoc = fruDataIter;
size_t skipToFRUUpdateField = 0;
ssize_t fieldLength;
bool found = false;
for (auto& field : *fruAreaFieldNames)
{
skipToFRUUpdateField++;
if (propertyName == propertyNamePrefix + field)
{
found = true;
break;
}
}
if (!found)
{
std::size_t pos = propertyName.find(FRU_CUSTOM_FIELD_NAME);
if (pos == std::string::npos)
{
std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
<< propertyName << "\n";
return false;
}
std::string fieldNumStr =
propertyName.substr(pos + FRU_CUSTOM_FIELD_NAME.length());
size_t fieldNum = std::stoi(fieldNumStr);
if (fieldNum == 0)
{
std::cerr << "PropertyName not recognized: " << propertyName
<< "\n";
return false;
}
skipToFRUUpdateField += fieldNum;
}
for (size_t i = 1; i < skipToFRUUpdateField; i++)
{
fieldLength = getFieldLength(fruData[fruDataIter]);
if (fieldLength < 0)
{
break;
}
fruDataIter += 1 + fieldLength;
}
fruUpdateFieldLoc = fruDataIter;
// Push post update fru field bytes to a vector
fieldLength = getFieldLength(fruData[fruUpdateFieldLoc]);
if (fieldLength < 0)
{
std::cerr << "Property " << propertyName << " not present \n";
return false;
}
fruDataIter += 1 + fieldLength;
size_t restFRUFieldsLoc = fruDataIter;
size_t endOfFieldsLoc = 0;
while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
{
if (fruDataIter >= (fruAreaStart + fruAreaSize))
{
fruDataIter = fruAreaStart + fruAreaSize;
break;
}
fruDataIter += 1 + fieldLength;
}
endOfFieldsLoc = fruDataIter;
std::vector<uint8_t> restFRUAreaFieldsData;
std::copy_n(fruData.begin() + restFRUFieldsLoc,
endOfFieldsLoc - restFRUFieldsLoc + 1,
std::back_inserter(restFRUAreaFieldsData));
// Push post update fru areas if any
unsigned int nextFRUAreaLoc = 0;
for (fruAreas nextFRUArea = fruAreas::fruAreaInternal;
nextFRUArea <= fruAreas::fruAreaMultirecord; ++nextFRUArea)
{
unsigned int fruAreaLoc =
fruData[getHeaderAreaFieldOffset(nextFRUArea)] * fruBlockSize;
if ((fruAreaLoc > endOfFieldsLoc) &&
((nextFRUAreaLoc == 0) || (fruAreaLoc < nextFRUAreaLoc)))
{
nextFRUAreaLoc = fruAreaLoc;
}
}
std::vector<uint8_t> restFRUAreasData;
if (nextFRUAreaLoc)
{
std::copy_n(fruData.begin() + nextFRUAreaLoc,
fruData.size() - nextFRUAreaLoc,
std::back_inserter(restFRUAreasData));
}
// check FRU area size
size_t fruAreaDataSize =
((fruUpdateFieldLoc - fruAreaStart + 1) + restFRUAreaFieldsData.size());
size_t fruAreaAvailableSize = fruAreaSize - fruAreaDataSize;
if ((updatePropertyReqLen + 1) > fruAreaAvailableSize)
{
#ifdef ENABLE_FRU_AREA_RESIZE
size_t newFRUAreaSize = fruAreaDataSize + updatePropertyReqLen + 1;
// round size to 8-byte blocks
newFRUAreaSize =
((newFRUAreaSize - 1) / fruBlockSize + 1) * fruBlockSize;
size_t newFRUDataSize = fruData.size() + newFRUAreaSize - fruAreaSize;
fruData.resize(newFRUDataSize);
fruAreaSize = newFRUAreaSize;
fruAreaEnd = fruAreaStart + fruAreaSize;
#else
std::cerr << "FRU field length: " << updatePropertyReqLen + 1
<< " should not be greater than available FRU area size: "
<< fruAreaAvailableSize << "\n";
return false;
#endif // ENABLE_FRU_AREA_RESIZE
}
// write new requested property field length and data
constexpr uint8_t newTypeLenMask = 0xC0;
fruData[fruUpdateFieldLoc] =
static_cast<uint8_t>(updatePropertyReqLen | newTypeLenMask);
fruUpdateFieldLoc++;
std::copy(updatePropertyReq.begin(), updatePropertyReq.end(),
fruData.begin() + fruUpdateFieldLoc);
// Copy remaining data to main fru area - post updated fru field vector
restFRUFieldsLoc = fruUpdateFieldLoc + updatePropertyReqLen;
size_t fruAreaDataEnd = restFRUFieldsLoc + restFRUAreaFieldsData.size();
std::copy(restFRUAreaFieldsData.begin(), restFRUAreaFieldsData.end(),
fruData.begin() + restFRUFieldsLoc);
// Update final fru with new fru area length and checksum
unsigned int nextFRUAreaNewLoc = updateFRUAreaLenAndChecksum(
fruData, fruAreaStart, fruAreaDataEnd, fruAreaEnd);
#ifdef ENABLE_FRU_AREA_RESIZE
++nextFRUAreaNewLoc;
ssize_t nextFRUAreaOffsetDiff =
(nextFRUAreaNewLoc - nextFRUAreaLoc) / fruBlockSize;
// Append rest FRU Areas if size changed and there were other sections after
// updated one
if (nextFRUAreaOffsetDiff && nextFRUAreaLoc)
{
std::copy(restFRUAreasData.begin(), restFRUAreasData.end(),
fruData.begin() + nextFRUAreaNewLoc);
// Update Common Header
for (int fruArea = fruAreaInternal; fruArea <= fruAreaMultirecord;
fruArea++)
{
unsigned int fruAreaOffsetField = getHeaderAreaFieldOffset(fruArea);
size_t curFRUAreaOffset = fruData[fruAreaOffsetField];
if (curFRUAreaOffset > fruAreaOffsetFieldValue)
{
fruData[fruAreaOffsetField] = static_cast<int8_t>(
curFRUAreaOffset + nextFRUAreaOffsetDiff);
}
}
// Calculate new checksum
std::vector<uint8_t> headerFRUData;
std::copy_n(fruData.begin(), 7, std::back_inserter(headerFRUData));
size_t checksumVal = calculateChecksum(headerFRUData);
fruData[7] = static_cast<uint8_t>(checksumVal);
// fill zeros if FRU Area size decreased
if (nextFRUAreaOffsetDiff < 0)
{
std::fill(fruData.begin() + nextFRUAreaNewLoc +
restFRUAreasData.size(),
fruData.end(), 0);
}
}
#else
// this is to avoid "unused variable" warning
(void)nextFRUAreaNewLoc;
#endif // ENABLE_FRU_AREA_RESIZE
if (fruData.empty())
{
return false;
}
if (!writeFRU(static_cast<uint8_t>(bus), static_cast<uint8_t>(address),
fruData))
{
return false;
}
// Rescan the bus so that GetRawFru dbus-call fetches updated values
rescanBusses(busMap, dbusInterfaceMap);
return true;
}
int main()
{
auto devDir = fs::path("/dev/");
auto matchString = std::string(R"(i2c-\d+$)");
std::vector<fs::path> i2cBuses;
if (!findFiles(devDir, matchString, i2cBuses))
{
std::cerr << "unable to find i2c devices\n";
return 1;
}
// check for and load blacklist with initial buses.
loadBlacklist(blacklistPath);
systemBus->request_name("xyz.openbmc_project.FruDevice");
// this is a map with keys of pair(bus number, address) and values of
// the object on dbus
boost::container::flat_map<std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>
dbusInterfaceMap;
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface("/xyz/openbmc_project/FruDevice",
"xyz.openbmc_project.FruDeviceManager");
iface->register_method("ReScan",
[&]() { rescanBusses(busMap, dbusInterfaceMap); });
iface->register_method("ReScanBus", [&](uint8_t bus) {
rescanOneBus(busMap, bus, dbusInterfaceMap, true);
});
iface->register_method("GetRawFru", getFRUInfo);
iface->register_method("WriteFru", [&](const uint8_t bus,
const uint8_t address,
const std::vector<uint8_t>& data) {
if (!writeFRU(bus, address, data))
{
throw std::invalid_argument("Invalid Arguments.");
return;
}
// schedule rescan on success
rescanBusses(busMap, dbusInterfaceMap);
});
iface->initialize();
std::function<void(sdbusplus::message::message & message)> eventHandler =
[&](sdbusplus::message::message& message) {
std::string objectName;
boost::container::flat_map<
std::string,
std::variant<std::string, bool, int64_t, uint64_t, double>>
values;
message.read(objectName, values);
auto findState = values.find("CurrentHostState");
if (findState != values.end())
{
powerIsOn = boost::ends_with(
std::get<std::string>(findState->second), "Running");
}
if (powerIsOn)
{
rescanBusses(busMap, dbusInterfaceMap);
}
};
sdbusplus::bus::match::match powerMatch = sdbusplus::bus::match::match(
static_cast<sdbusplus::bus::bus&>(*systemBus),
"type='signal',interface='org.freedesktop.DBus.Properties',path='/xyz/"
"openbmc_project/state/"
"host0',arg0='xyz.openbmc_project.State.Host'",
eventHandler);
int fd = inotify_init();
inotify_add_watch(fd, I2C_DEV_LOCATION,
IN_CREATE | IN_MOVED_TO | IN_DELETE);
std::array<char, 4096> readBuffer;
std::string pendingBuffer;
// monitor for new i2c devices
boost::asio::posix::stream_descriptor dirWatch(io, fd);
std::function<void(const boost::system::error_code, std::size_t)>
watchI2cBusses = [&](const boost::system::error_code& ec,
std::size_t bytes_transferred) {
if (ec)
{
std::cout << "Callback Error " << ec << "\n";
return;
}
pendingBuffer += std::string(readBuffer.data(), bytes_transferred);
while (pendingBuffer.size() > sizeof(inotify_event))
{
const inotify_event* iEvent =
reinterpret_cast<const inotify_event*>(
pendingBuffer.data());
switch (iEvent->mask)
{
case IN_CREATE:
case IN_MOVED_TO:
case IN_DELETE:
std::string name(iEvent->name);
if (boost::starts_with(name, "i2c"))
{
int bus = busStrToInt(name);
if (bus < 0)
{
std::cerr << "Could not parse bus " << name
<< "\n";
continue;
}
rescanOneBus(busMap, static_cast<uint8_t>(bus),
dbusInterfaceMap, false);
}
}
pendingBuffer.erase(0, sizeof(inotify_event) + iEvent->len);
}
dirWatch.async_read_some(boost::asio::buffer(readBuffer),
watchI2cBusses);
};
dirWatch.async_read_some(boost::asio::buffer(readBuffer), watchI2cBusses);
// run the initial scan
rescanBusses(busMap, dbusInterfaceMap);
io.run();
return 0;
}