blob: ab3283b1e084f808c9b47117084bd781dae6bada [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
/// \file fru_utils.cpp
#include "fru_utils.hpp"
#include <array>
#include <cstddef>
#include <cstdint>
#include <filesystem>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <set>
#include <sstream>
#include <string>
#include <vector>
extern "C"
{
// Include for I2C_SMBUS_BLOCK_MAX
#include <linux/i2c.h>
}
static constexpr bool debug = false;
constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
std::tm intelEpoch(void)
{
std::tm val = {};
val.tm_year = 1996 - 1900;
val.tm_mday = 1;
return val;
}
char sixBitToChar(uint8_t val)
{
return static_cast<char>((val & 0x3f) + ' ');
}
char bcdPlusToChar(uint8_t val)
{
val &= 0xf;
return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
}
enum FRUDataEncoding
{
binary = 0x0,
bcdPlus = 0x1,
sixBitASCII = 0x2,
languageDependent = 0x3,
};
enum MultiRecordType : uint8_t
{
powerSupplyInfo = 0x00,
dcOutput = 0x01,
dcLoad = 0x02,
managementAccessRecord = 0x03,
baseCompatibilityRecord = 0x04,
extendedCompatibilityRecord = 0x05,
resvASFSMBusDeviceRecord = 0x06,
resvASFLegacyDeviceAlerts = 0x07,
resvASFRemoteControl = 0x08,
extendedDCOutput = 0x09,
extendedDCLoad = 0x0A
};
enum SubManagementAccessRecord : uint8_t
{
systemManagementURL = 0x01,
systemName = 0x02,
systemPingAddress = 0x03,
componentManagementURL = 0x04,
componentName = 0x05,
componentPingAddress = 0x06,
systemUniqueID = 0x07
};
/* Decode FRU data into a std::string, given an input iterator and end. If the
* state returned is fruDataOk, then the resulting string is the decoded FRU
* data. The input iterator is advanced past the data consumed.
*
* On fruDataErr, we have lost synchronisation with the length bytes, so the
* iterator is no longer usable.
*/
std::pair<DecodeState, std::string>
decodeFRUData(std::vector<uint8_t>::const_iterator& iter,
const std::vector<uint8_t>::const_iterator& end,
bool isLangEng)
{
std::string value;
unsigned int i = 0;
/* we need at least one byte to decode the type/len header */
if (iter == end)
{
std::cerr << "Truncated FRU data\n";
return make_pair(DecodeState::err, value);
}
uint8_t c = *(iter++);
/* 0xc1 is the end marker */
if (c == 0xc1)
{
return make_pair(DecodeState::end, value);
}
/* decode type/len byte */
uint8_t type = static_cast<uint8_t>(c >> 6);
uint8_t len = static_cast<uint8_t>(c & 0x3f);
/* we should have at least len bytes of data available overall */
if (iter + len > end)
{
std::cerr << "FRU data field extends past end of FRU area data\n";
return make_pair(DecodeState::err, value);
}
switch (type)
{
case FRUDataEncoding::binary:
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
for (i = 0; i < len; i++, iter++)
{
uint8_t val = static_cast<uint8_t>(*iter);
ss << std::setw(2) << static_cast<int>(val);
}
value = ss.str();
break;
}
case FRUDataEncoding::languageDependent:
/* For language-code dependent encodings, assume 8-bit ASCII */
value = std::string(iter, iter + len);
iter += len;
/* English text is encoded in 8-bit ASCII + Latin 1. All other
* languages are required to use 2-byte unicode. FruDevice does not
* handle unicode.
*/
if (!isLangEng)
{
std::cerr << "Error: Non english string is not supported \n";
return make_pair(DecodeState::err, value);
}
break;
case FRUDataEncoding::bcdPlus:
value = std::string();
for (i = 0; i < len; i++, iter++)
{
uint8_t val = *iter;
value.push_back(bcdPlusToChar(val >> 4));
value.push_back(bcdPlusToChar(val & 0xf));
}
break;
case FRUDataEncoding::sixBitASCII:
{
unsigned int accum = 0;
unsigned int accumBitLen = 0;
value = std::string();
for (i = 0; i < len; i++, iter++)
{
accum |= *iter << accumBitLen;
accumBitLen += 8;
while (accumBitLen >= 6)
{
value.push_back(sixBitToChar(accum & 0x3f));
accum >>= 6;
accumBitLen -= 6;
}
}
}
break;
}
return make_pair(DecodeState::ok, value);
}
bool checkLangEng(uint8_t lang)
{
// If Lang is not English then the encoding is defined as 2-byte UNICODE,
// but we don't support that.
if ((lang != 0U) && lang != 25)
{
std::cerr << "Warning: languages other than English is not "
"supported\n";
// Return language flag as non english
return false;
}
return true;
}
/* This function verifies for other offsets to check if they are not
* falling under other field area
*
* fruBytes: Start of Fru data
* currentArea: Index of current area offset to be compared against all area
* offset and it is a multiple of 8 bytes as per specification
* len: Length of current area space and it is a multiple of 8 bytes
* as per specification
*/
bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
uint8_t len)
{
unsigned int fruBytesSize = fruBytes.size();
// check if Fru data has at least 8 byte header
if (fruBytesSize <= fruBlockSize)
{
std::cerr << "Error: trying to parse empty FRU\n";
return false;
}
// Check range of passed currentArea value
if (currentArea > fruAreas::fruAreaMultirecord)
{
std::cerr << "Error: Fru area is out of range\n";
return false;
}
unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
if (currentAreaIndex > fruBytesSize)
{
std::cerr << "Error: Fru area index is out of range\n";
return false;
}
unsigned int start = fruBytes[currentAreaIndex];
unsigned int end = start + len;
/* Verify each offset within the range of start and end */
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
// skip the current offset
if (area == currentArea)
{
continue;
}
unsigned int areaIndex = getHeaderAreaFieldOffset(area);
if (areaIndex > fruBytesSize)
{
std::cerr << "Error: Fru area index is out of range\n";
return false;
}
unsigned int areaOffset = fruBytes[areaIndex];
// if areaOffset is 0 means this area is not available so skip
if (areaOffset == 0)
{
continue;
}
// check for overlapping of current offset with given areaoffset
if (areaOffset == start || (areaOffset > start && areaOffset < end))
{
std::cerr << getFruAreaName(currentArea)
<< " offset is overlapping with " << getFruAreaName(area)
<< " offset\n";
return false;
}
}
return true;
}
static void parseMultirecordUUID(
const std::vector<uint8_t>& device,
boost::container::flat_map<std::string, std::string>& result)
{
constexpr size_t uuidDataLen = 16;
constexpr size_t multiRecordHeaderLen = 5;
/* UUID record data, plus one to skip past the sub-record type byte */
constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
constexpr size_t multiRecordEndOfListMask = 0x80;
/* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
* as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
* 0xEE 0xFF
*/
const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
uint32_t areaOffset =
device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
if (areaOffset == 0)
{
return;
}
areaOffset *= fruBlockSize;
std::vector<uint8_t>::const_iterator fruBytesIter = device.begin() +
areaOffset;
/* Verify area offset */
if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
{
return;
}
while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
{
if ((areaOffset < device.size()) &&
(device[areaOffset] ==
(uint8_t)MultiRecordType::managementAccessRecord))
{
if ((areaOffset + multiRecordHeaderLen < device.size()) &&
(device[areaOffset + multiRecordHeaderLen] ==
(uint8_t)SubManagementAccessRecord::systemUniqueID))
{
/* Layout of UUID:
* source: https://www.ietf.org/rfc/rfc4122.txt
*
* UUID binary format (16 bytes):
* 4B-2B-2B-2B-6B (big endian)
*
* UUID string is 36 length of characters (36 bytes):
* 0 9 14 19 24
* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
* be be be be be
* be means it should be converted to big endian.
*/
/* Get UUID bytes to UUID string */
std::stringstream tmp;
tmp << std::hex << std::setfill('0');
for (size_t i = 0; i < uuidDataLen; i++)
{
tmp << std::setw(2)
<< static_cast<uint16_t>(
device[areaOffset + uuidRecordData +
uuidCharOrder[i]]);
}
std::string uuidStr = tmp.str();
result["MULTIRECORD_UUID"] =
uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
uuidStr.substr(20, 12);
break;
}
}
if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
{
break;
}
areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
}
}
resCodes
formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
boost::container::flat_map<std::string, std::string>& result)
{
resCodes ret = resCodes::resOK;
if (fruBytes.size() <= fruBlockSize)
{
std::cerr << "Error: trying to parse empty FRU \n";
return resCodes::resErr;
}
result["Common_Format_Version"] =
std::to_string(static_cast<int>(*fruBytes.begin()));
const std::vector<std::string>* fruAreaFieldNames = nullptr;
// Don't parse Internal and Multirecord areas
for (fruAreas area = fruAreas::fruAreaChassis;
area <= fruAreas::fruAreaProduct; ++area)
{
size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
if (offset == 0)
{
continue;
}
offset *= fruBlockSize;
std::vector<uint8_t>::const_iterator fruBytesIter = fruBytes.begin() +
offset;
if (fruBytesIter + fruBlockSize >= fruBytes.end())
{
std::cerr << "Not enough data to parse \n";
return resCodes::resErr;
}
// check for format version 1
if (*fruBytesIter != 0x01)
{
std::cerr << "Unexpected version " << *fruBytesIter << "\n";
return resCodes::resErr;
}
++fruBytesIter;
/* Verify other area offset for overlap with current area by passing
* length of current area offset pointed by *fruBytesIter
*/
if (!verifyOffset(fruBytes, area, *fruBytesIter))
{
return resCodes::resErr;
}
size_t fruAreaSize = *fruBytesIter * fruBlockSize;
std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
fruBytes.begin() + offset + fruAreaSize - 1;
++fruBytesIter;
uint8_t fruComputedChecksum =
calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
if (fruComputedChecksum != *fruBytesIterEndArea)
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
ss << "\tComputed checksum: 0x" << std::setw(2)
<< static_cast<int>(fruComputedChecksum) << "\n";
ss << "\tThe read checksum: 0x" << std::setw(2)
<< static_cast<int>(*fruBytesIterEndArea) << "\n";
std::cerr << ss.str();
ret = resCodes::resWarn;
}
/* Set default language flag to true as Chassis Fru area are always
* encoded in English defined in Section 10 of Fru specification
*/
bool isLangEng = true;
switch (area)
{
case fruAreas::fruAreaChassis:
{
result["CHASSIS_TYPE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
fruAreaFieldNames = &chassisFruAreas;
break;
}
case fruAreas::fruAreaBoard:
{
uint8_t lang = *fruBytesIter;
result["BOARD_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
isLangEng = checkLangEng(lang);
fruBytesIter += 1;
unsigned int minutes = *fruBytesIter |
*(fruBytesIter + 1) << 8 |
*(fruBytesIter + 2) << 16;
std::tm fruTime = intelEpoch();
std::time_t timeValue = std::mktime(&fruTime);
timeValue += static_cast<long>(minutes) * 60;
fruTime = *std::gmtime(&timeValue);
// Tue Nov 20 23:08:00 2018
std::array<char, 32> timeString = {};
auto bytes = std::strftime(timeString.data(), timeString.size(),
"%Y-%m-%d - %H:%M:%S", &fruTime);
if (bytes == 0)
{
std::cerr << "invalid time string encountered\n";
return resCodes::resErr;
}
result["BOARD_MANUFACTURE_DATE"] =
std::string_view(timeString.data(), bytes);
fruBytesIter += 3;
fruAreaFieldNames = &boardFruAreas;
break;
}
case fruAreas::fruAreaProduct:
{
uint8_t lang = *fruBytesIter;
result["PRODUCT_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
isLangEng = checkLangEng(lang);
fruBytesIter += 1;
fruAreaFieldNames = &productFruAreas;
break;
}
default:
{
std::cerr << "Internal error: unexpected FRU area index: "
<< static_cast<int>(area) << " \n";
return resCodes::resErr;
}
}
size_t fieldIndex = 0;
DecodeState state = DecodeState::ok;
do
{
auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea,
isLangEng);
state = res.first;
std::string value = res.second;
std::string name;
if (fieldIndex < fruAreaFieldNames->size())
{
name = std::string(getFruAreaName(area)) + "_" +
fruAreaFieldNames->at(fieldIndex);
}
else
{
name =
std::string(getFruAreaName(area)) + "_" +
fruCustomFieldName +
std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
}
if (state == DecodeState::ok)
{
// Strip non null characters from the end
value.erase(std::find_if(value.rbegin(), value.rend(),
[](char ch) { return ch != 0; })
.base(),
value.end());
result[name] = std::move(value);
++fieldIndex;
}
else if (state == DecodeState::err)
{
std::cerr << "Error while parsing " << name << "\n";
ret = resCodes::resWarn;
// Cancel decoding if failed to parse any of mandatory
// fields
if (fieldIndex < fruAreaFieldNames->size())
{
std::cerr << "Failed to parse mandatory field \n";
return resCodes::resErr;
}
}
else
{
if (fieldIndex < fruAreaFieldNames->size())
{
std::cerr << "Mandatory fields absent in FRU area "
<< getFruAreaName(area) << " after " << name
<< "\n";
ret = resCodes::resWarn;
}
}
} while (state == DecodeState::ok);
for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
{
uint8_t c = *fruBytesIter;
if (c != 0U)
{
std::cerr << "Non-zero byte after EndOfFields in FRU area "
<< getFruAreaName(area) << "\n";
ret = resCodes::resWarn;
break;
}
}
}
/* Parsing the Multirecord UUID */
parseMultirecordUUID(fruBytes, result);
return ret;
}
// Calculate new checksum for fru info area
uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
std::vector<uint8_t>::const_iterator end)
{
constexpr int checksumMod = 256;
uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
return (checksumMod - sum) % checksumMod;
}
uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
{
return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
}
// Update new fru area length &
// Update checksum at new checksum location
// Return the offset of the area checksum byte
unsigned int updateFRUAreaLenAndChecksum(std::vector<uint8_t>& fruData,
size_t fruAreaStart,
size_t fruAreaEndOfFieldsOffset,
size_t fruAreaEndOffset)
{
size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
// fill zeros for any remaining unused space
std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
fruData.begin() + fruAreaEndOffset, 0);
size_t mod = traverseFRUAreaIndex % fruBlockSize;
size_t checksumLoc = 0;
if (mod == 0U)
{
traverseFRUAreaIndex += (fruBlockSize);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
}
else
{
traverseFRUAreaIndex += (fruBlockSize - mod);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
}
size_t newFRUAreaLen =
(traverseFRUAreaIndex / fruBlockSize) +
static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
size_t fruAreaLengthLoc = fruAreaStart + 1;
fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
// Calculate new checksum
std::vector<uint8_t> finalFRUData;
std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
std::back_inserter(finalFRUData));
fruData[checksumLoc] = calculateChecksum(finalFRUData);
return checksumLoc;
}
ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
{
constexpr uint8_t typeLenMask = 0x3F;
constexpr uint8_t endOfFields = 0xC1;
if (fruFieldTypeLenValue == endOfFields)
{
return -1;
}
return fruFieldTypeLenValue & typeLenMask;
}
bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
{
// ipmi spec format version number is currently at 1, verify it
if (blockData[0] != fruVersion)
{
if (debug)
{
std::cerr << "FRU spec version " << (int)(blockData[0])
<< " not supported. Supported version is "
<< (int)(fruVersion) << "\n";
}
return false;
}
// verify pad is set to 0
if (blockData[6] != 0x0)
{
if (debug)
{
std::cerr << "PAD value in header is non zero, value is "
<< (int)(blockData[6]) << "\n";
}
return false;
}
// verify offsets are 0, or don't point to another offset
std::set<uint8_t> foundOffsets;
for (int ii = 1; ii < 6; ii++)
{
if (blockData[ii] == 0)
{
continue;
}
auto inserted = foundOffsets.insert(blockData[ii]);
if (!inserted.second)
{
return false;
}
}
// validate checksum
size_t sum = 0;
for (int jj = 0; jj < 7; jj++)
{
sum += blockData[jj];
}
sum = (256 - sum) & 0xFF;
if (sum != blockData[7])
{
if (debug)
{
std::cerr << "Checksum " << (int)(blockData[7])
<< " is invalid. calculated checksum is " << (int)(sum)
<< "\n";
}
return false;
}
return true;
}
bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
off_t& baseOffset)
{
if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << " base offset "
<< baseOffset << "\n";
return false;
}
// check the header checksum
if (validateHeader(blockData))
{
return true;
}
// only continue the search if we just looked at 0x0.
if (baseOffset != 0)
{
return false;
}
// now check for special cases where the IPMI data is at an offset
// check if blockData starts with tyanHeader
const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
if (blockData.size() >= tyanHeader.size() &&
std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
{
// look for the FRU header at offset 0x6000
baseOffset = 0x6000;
return findFRUHeader(reader, errorHelp, blockData, baseOffset);
}
if (debug)
{
std::cerr << "Illegal header " << errorHelp << " base offset "
<< baseOffset << "\n";
}
return false;
}
std::vector<uint8_t> readFRUContents(FRUReader& reader,
const std::string& errorHelp)
{
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
off_t baseOffset = 0x0;
if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
{
return {};
}
std::vector<uint8_t> device;
device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
bool hasMultiRecords = false;
size_t fruLength = fruBlockSize; // At least FRU header is present
unsigned int prevOffset = 0;
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
// Offset value can be 255.
unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
if (areaOffset == 0)
{
continue;
}
/* Check for offset order, as per Section 17 of FRU specification, FRU
* information areas are required to be in order in FRU data layout
* which means all offset value should be in increasing order or can be
* 0 if that area is not present
*/
if (areaOffset <= prevOffset)
{
std::cerr << "Fru area offsets are not in required order as per "
"Section 17 of Fru specification\n";
return {};
}
prevOffset = areaOffset;
// MultiRecords are different. area is not tracking section, it's
// walking the common header.
if (area == fruAreas::fruAreaMultirecord)
{
hasMultiRecords = true;
break;
}
areaOffset *= fruBlockSize;
if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << " base offset "
<< baseOffset << "\n";
return {};
}
// Ignore data type (blockData is already unsigned).
size_t length = blockData[1] * fruBlockSize;
areaOffset += length;
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
}
if (hasMultiRecords)
{
// device[area count] is the index to the last area because the 0th
// entry is not an offset in the common header.
unsigned int areaOffset =
device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
areaOffset *= fruBlockSize;
// the multi-area record header is 5 bytes long.
constexpr size_t multiRecordHeaderSize = 5;
constexpr uint8_t multiRecordEndOfListMask = 0x80;
// Sanity hard-limit to 64KB.
while (areaOffset < std::numeric_limits<uint16_t>::max())
{
// In multi-area, the area offset points to the 0th record, each
// record has 3 bytes of the header we care about.
if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << " base offset "
<< baseOffset << "\n";
return {};
}
// Ok, let's check the record length, which is in bytes (unsigned,
// up to 255, so blockData should hold uint8_t not char)
size_t recordLength = blockData[2];
areaOffset += (recordLength + multiRecordHeaderSize);
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
// If this is the end of the list bail.
if ((blockData[1] & multiRecordEndOfListMask) != 0)
{
break;
}
}
}
// You already copied these first 8 bytes (the ipmi fru header size)
fruLength -= std::min(fruBlockSize, fruLength);
int readOffset = fruBlockSize;
while (fruLength > 0)
{
size_t requestLength =
std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
if (reader.read(baseOffset + readOffset, requestLength,
blockData.data()) < 0)
{
std::cerr << "failed to read " << errorHelp << " base offset "
<< baseOffset << "\n";
return {};
}
device.insert(device.end(), blockData.begin(),
blockData.begin() + requestLength);
readOffset += requestLength;
fruLength -= std::min(requestLength, fruLength);
}
return device;
}
unsigned int getHeaderAreaFieldOffset(fruAreas area)
{
return static_cast<unsigned int>(area) + 1;
}
std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
{
auto deviceMap = busMap.find(bus);
if (deviceMap == busMap.end())
{
throw std::invalid_argument("Invalid Bus.");
}
auto device = deviceMap->second->find(address);
if (device == deviceMap->second->end())
{
throw std::invalid_argument("Invalid Address.");
}
std::vector<uint8_t>& ret = device->second;
return ret;
}
// Iterate FruArea Names and find start and size of the fru area that contains
// the propertyName and the field start location for the property. fruAreaParams
// struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
// updated/returned if successful.
bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
const std::string& propertyName,
struct FruArea& fruAreaParams)
{
const std::vector<std::string>* fruAreaFieldNames = nullptr;
uint8_t fruAreaOffsetFieldValue = 0;
size_t offset = 0;
std::string areaName = propertyName.substr(0, propertyName.find('_'));
std::string propertyNamePrefix = areaName + "_";
auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
if (it == fruAreaNames.end())
{
std::cerr << "Can't parse area name for property " << propertyName
<< " \n";
return false;
}
fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
fruAreaOffsetFieldValue =
fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
switch (fruAreaToUpdate)
{
case fruAreas::fruAreaChassis:
offset = 3; // chassis part number offset. Skip fixed first 3 bytes
fruAreaFieldNames = &chassisFruAreas;
break;
case fruAreas::fruAreaBoard:
offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
fruAreaFieldNames = &boardFruAreas;
break;
case fruAreas::fruAreaProduct:
// Manufacturer name offset. Skip fixed first 3 product fru bytes
// i.e. version, area length and language code
offset = 3;
fruAreaFieldNames = &productFruAreas;
break;
default:
std::cerr << "Invalid PropertyName " << propertyName << " \n";
return false;
}
if (fruAreaOffsetFieldValue == 0)
{
std::cerr << "FRU Area for " << propertyName << " not present \n";
return false;
}
fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
size_t fruDataIter = fruAreaParams.start + offset;
size_t skipToFRUUpdateField = 0;
ssize_t fieldLength = 0;
bool found = false;
for (const auto& field : *fruAreaFieldNames)
{
skipToFRUUpdateField++;
if (propertyName == propertyNamePrefix + field)
{
found = true;
break;
}
}
if (!found)
{
std::size_t pos = propertyName.find(fruCustomFieldName);
if (pos == std::string::npos)
{
std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
<< propertyName << "\n";
return false;
}
std::string fieldNumStr =
propertyName.substr(pos + fruCustomFieldName.length());
size_t fieldNum = std::stoi(fieldNumStr);
if (fieldNum == 0)
{
std::cerr << "PropertyName not recognized: " << propertyName
<< "\n";
return false;
}
skipToFRUUpdateField += fieldNum;
}
for (size_t i = 1; i < skipToFRUUpdateField; i++)
{
if (fruDataIter < fruData.size())
{
fieldLength = getFieldLength(fruData[fruDataIter]);
if (fieldLength < 0)
{
break;
}
fruDataIter += 1 + fieldLength;
}
}
fruAreaParams.updateFieldLoc = fruDataIter;
return true;
}
// Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
// Return true for success and false for failure.
bool copyRestFRUArea(std::vector<uint8_t>& fruData,
const std::string& propertyName,
struct FruArea& fruAreaParams,
std::vector<uint8_t>& restFRUAreaFieldsData)
{
size_t fieldLoc = fruAreaParams.updateFieldLoc;
size_t start = fruAreaParams.start;
size_t fruAreaSize = fruAreaParams.size;
// Push post update fru field bytes to a vector
ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
if (fieldLength < 0)
{
std::cerr << "Property " << propertyName << " not present \n";
return false;
}
size_t fruDataIter = 0;
fruDataIter = fieldLoc;
fruDataIter += 1 + fieldLength;
size_t restFRUFieldsLoc = fruDataIter;
size_t endOfFieldsLoc = 0;
if (fruDataIter < fruData.size())
{
while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
{
if (fruDataIter >= (start + fruAreaSize))
{
fruDataIter = start + fruAreaSize;
break;
}
fruDataIter += 1 + fieldLength;
}
endOfFieldsLoc = fruDataIter;
}
std::copy_n(fruData.begin() + restFRUFieldsLoc,
endOfFieldsLoc - restFRUFieldsLoc + 1,
std::back_inserter(restFRUAreaFieldsData));
fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
fruAreaParams.restFieldsEnd = endOfFieldsLoc;
return true;
}
// Get all device dbus path and match path with product name using
// regular expression and find the device index for all devices.
std::optional<int> findIndexForFRU(
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
std::string& productName)
{
int highest = -1;
bool found = false;
for (const auto& busIface : dbusInterfaceMap)
{
std::string path = busIface.second->get_object_path();
if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
{
// Check if the match named has extra information.
found = true;
std::smatch baseMatch;
bool match = std::regex_match(path, baseMatch,
std::regex(productName + "_(\\d+)$"));
if (match)
{
if (baseMatch.size() == 2)
{
std::ssub_match baseSubMatch = baseMatch[1];
std::string base = baseSubMatch.str();
int value = std::stoi(base);
highest = (value > highest) ? value : highest;
}
}
}
} // end searching objects
if (!found)
{
return std::nullopt;
}
return highest;
}
// This function does format fru data as per IPMI format and find the
// productName in the formatted fru data, get that productName and return
// productName if found or return NULL.
std::optional<std::string> getProductName(
std::vector<uint8_t>& device,
boost::container::flat_map<std::string, std::string>& formattedFRU,
uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
{
std::string productName;
resCodes res = formatIPMIFRU(device, formattedFRU);
if (res == resCodes::resErr)
{
std::cerr << "failed to parse FRU for device at bus " << bus
<< " address " << address << "\n";
return std::nullopt;
}
if (res == resCodes::resWarn)
{
std::cerr << "Warnings while parsing FRU for device at bus " << bus
<< " address " << address << "\n";
}
auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
// Not found under Board section or an empty string.
if (productNameFind == formattedFRU.end() ||
productNameFind->second.empty())
{
productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
}
// Found under Product section and not an empty string.
if (productNameFind != formattedFRU.end() &&
!productNameFind->second.empty())
{
productName = productNameFind->second;
std::regex illegalObject("[^A-Za-z0-9_]");
productName = std::regex_replace(productName, illegalObject, "_");
}
else
{
productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
unknownBusObjectCount++;
}
return productName;
}
bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
{
try
{
fruData = getFRUInfo(static_cast<uint16_t>(bus),
static_cast<uint8_t>(address));
}
catch (const std::invalid_argument& e)
{
std::cerr << "Failure getting FRU Info" << e.what() << "\n";
return false;
}
return !fruData.empty();
}