blob: efb4ec13de0e67258a102b73a9e919252a532f92 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright 2018 Intel Corporation
#include "fru_utils.hpp"
#include "gzip_utils.hpp"
#include <phosphor-logging/lg2.hpp>
#include <array>
#include <cstddef>
#include <cstdint>
#include <filesystem>
#include <iomanip>
#include <numeric>
#include <set>
#include <sstream>
#include <string>
#include <vector>
extern "C"
{
// Include for I2C_SMBUS_BLOCK_MAX
#include <linux/i2c.h>
}
constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
std::tm intelEpoch()
{
std::tm val = {};
val.tm_year = 1996 - 1900;
val.tm_mday = 1;
return val;
}
char sixBitToChar(uint8_t val)
{
return static_cast<char>((val & 0x3f) + ' ');
}
char bcdPlusToChar(uint8_t val)
{
val &= 0xf;
return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
}
enum FRUDataEncoding
{
binary = 0x0,
bcdPlus = 0x1,
sixBitASCII = 0x2,
languageDependent = 0x3,
};
enum MultiRecordType : uint8_t
{
powerSupplyInfo = 0x00,
dcOutput = 0x01,
dcLoad = 0x02,
managementAccessRecord = 0x03,
baseCompatibilityRecord = 0x04,
extendedCompatibilityRecord = 0x05,
resvASFSMBusDeviceRecord = 0x06,
resvASFLegacyDeviceAlerts = 0x07,
resvASFRemoteControl = 0x08,
extendedDCOutput = 0x09,
extendedDCLoad = 0x0A
};
enum SubManagementAccessRecord : uint8_t
{
systemManagementURL = 0x01,
systemName = 0x02,
systemPingAddress = 0x03,
componentManagementURL = 0x04,
componentName = 0x05,
componentPingAddress = 0x06,
systemUniqueID = 0x07
};
/* Decode FRU data into a std::string, given an input iterator and end. If the
* state returned is fruDataOk, then the resulting string is the decoded FRU
* data. The input iterator is advanced past the data consumed.
*
* On fruDataErr, we have lost synchronisation with the length bytes, so the
* iterator is no longer usable.
*/
std::pair<DecodeState, std::string> decodeFRUData(
std::span<const uint8_t>::const_iterator& iter,
std::span<const uint8_t>::const_iterator& end, bool isLangEng)
{
std::string value;
unsigned int i = 0;
/* we need at least one byte to decode the type/len header */
if (iter == end)
{
lg2::error("Truncated FRU data");
return make_pair(DecodeState::err, value);
}
uint8_t c = *(iter++);
/* 0xc1 is the end marker */
if (c == 0xc1)
{
return make_pair(DecodeState::end, value);
}
/* decode type/len byte */
uint8_t type = static_cast<uint8_t>(c >> 6);
uint8_t len = static_cast<uint8_t>(c & 0x3f);
/* we should have at least len bytes of data available overall */
if (iter + len > end)
{
lg2::error("FRU data field extends past end of FRU area data");
return make_pair(DecodeState::err, value);
}
switch (type)
{
case FRUDataEncoding::binary:
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
for (i = 0; i < len; i++, iter++)
{
uint8_t val = static_cast<uint8_t>(*iter);
ss << std::setw(2) << static_cast<int>(val);
}
value = ss.str();
break;
}
case FRUDataEncoding::languageDependent:
/* For language-code dependent encodings, assume 8-bit ASCII */
value = std::string(iter, iter + len);
iter += len;
/* English text is encoded in 8-bit ASCII + Latin 1. All other
* languages are required to use 2-byte unicode. FruDevice does not
* handle unicode.
*/
if (!isLangEng)
{
lg2::error("Error: Non english string is not supported ");
return make_pair(DecodeState::err, value);
}
break;
case FRUDataEncoding::bcdPlus:
value = std::string();
for (i = 0; i < len; i++, iter++)
{
uint8_t val = *iter;
value.push_back(bcdPlusToChar(val >> 4));
value.push_back(bcdPlusToChar(val & 0xf));
}
break;
case FRUDataEncoding::sixBitASCII:
{
unsigned int accum = 0;
unsigned int accumBitLen = 0;
value = std::string();
for (i = 0; i < len; i++, iter++)
{
accum |= *iter << accumBitLen;
accumBitLen += 8;
while (accumBitLen >= 6)
{
value.push_back(sixBitToChar(accum & 0x3f));
accum >>= 6;
accumBitLen -= 6;
}
}
}
break;
default:
{
return make_pair(DecodeState::err, value);
}
}
return make_pair(DecodeState::ok, value);
}
bool checkLangEng(uint8_t lang)
{
// If Lang is not English then the encoding is defined as 2-byte UNICODE,
// but we don't support that.
if ((lang != 0U) && lang != 25)
{
lg2::error("Warning: languages other than English is not supported");
// Return language flag as non english
return false;
}
return true;
}
/* This function verifies for other offsets to check if they are not
* falling under other field area
*
* fruBytes: Start of Fru data
* currentArea: Index of current area offset to be compared against all area
* offset and it is a multiple of 8 bytes as per specification
* len: Length of current area space and it is a multiple of 8 bytes
* as per specification
*/
bool verifyOffset(std::span<const uint8_t> fruBytes, fruAreas currentArea,
uint8_t len)
{
unsigned int fruBytesSize = fruBytes.size();
// check if Fru data has at least 8 byte header
if (fruBytesSize <= fruBlockSize)
{
lg2::error("Error: trying to parse empty FRU");
return false;
}
// Check range of passed currentArea value
if (currentArea > fruAreas::fruAreaMultirecord)
{
lg2::error("Error: Fru area is out of range");
return false;
}
unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
if (currentAreaIndex > fruBytesSize)
{
lg2::error("Error: Fru area index is out of range");
return false;
}
unsigned int start = fruBytes[currentAreaIndex];
unsigned int end = start + len;
/* Verify each offset within the range of start and end */
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
// skip the current offset
if (area == currentArea)
{
continue;
}
unsigned int areaIndex = getHeaderAreaFieldOffset(area);
if (areaIndex > fruBytesSize)
{
lg2::error("Error: Fru area index is out of range");
return false;
}
unsigned int areaOffset = fruBytes[areaIndex];
// if areaOffset is 0 means this area is not available so skip
if (areaOffset == 0)
{
continue;
}
// check for overlapping of current offset with given areaoffset
if (areaOffset == start || (areaOffset > start && areaOffset < end))
{
lg2::error("{AREA1} offset is overlapping with {AREA2} offset",
"AREA1", getFruAreaName(currentArea), "AREA2",
getFruAreaName(area));
return false;
}
}
return true;
}
static void parseMultirecordUUID(
std::span<const uint8_t> device,
boost::container::flat_map<std::string, std::string>& result)
{
constexpr size_t uuidDataLen = 16;
constexpr size_t multiRecordHeaderLen = 5;
/* UUID record data, plus one to skip past the sub-record type byte */
constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
constexpr size_t multiRecordEndOfListMask = 0x80;
/* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
* as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
* 0xEE 0xFF
*/
const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
size_t offset = getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord);
if (offset >= device.size())
{
throw std::runtime_error("Multirecord UUID offset is out of range");
}
uint32_t areaOffset = device[offset];
if (areaOffset == 0)
{
return;
}
areaOffset *= fruBlockSize;
std::span<const uint8_t>::const_iterator fruBytesIter =
device.begin() + areaOffset;
/* Verify area offset */
if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
{
return;
}
while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
{
if ((areaOffset < device.size()) &&
(device[areaOffset] ==
(uint8_t)MultiRecordType::managementAccessRecord))
{
if ((areaOffset + multiRecordHeaderLen < device.size()) &&
(device[areaOffset + multiRecordHeaderLen] ==
(uint8_t)SubManagementAccessRecord::systemUniqueID))
{
/* Layout of UUID:
* source: https://www.ietf.org/rfc/rfc4122.txt
*
* UUID binary format (16 bytes):
* 4B-2B-2B-2B-6B (big endian)
*
* UUID string is 36 length of characters (36 bytes):
* 0 9 14 19 24
* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
* be be be be be
* be means it should be converted to big endian.
*/
/* Get UUID bytes to UUID string */
std::stringstream tmp;
tmp << std::hex << std::setfill('0');
for (size_t i = 0; i < uuidDataLen; i++)
{
tmp << std::setw(2)
<< static_cast<uint16_t>(
device[areaOffset + uuidRecordData +
uuidCharOrder[i]]);
}
std::string uuidStr = tmp.str();
result["MULTIRECORD_UUID"] =
uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
uuidStr.substr(20, 12);
break;
}
}
if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
{
break;
}
areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
}
}
resCodes decodeField(
std::span<const uint8_t>::const_iterator& fruBytesIter,
std::span<const uint8_t>::const_iterator& fruBytesIterEndArea,
const std::vector<std::string>& fruAreaFieldNames, size_t& fieldIndex,
DecodeState& state, bool isLangEng, const fruAreas& area,
boost::container::flat_map<std::string, std::string>& result)
{
auto res = decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng);
state = res.first;
std::string value = res.second;
std::string name;
bool isCustomField = false;
if (fieldIndex < fruAreaFieldNames.size())
{
name = std::string(getFruAreaName(area)) + "_" +
fruAreaFieldNames.at(fieldIndex);
}
else
{
isCustomField = true;
name = std::string(getFruAreaName(area)) + "_" + fruCustomFieldName +
std::to_string(fieldIndex - fruAreaFieldNames.size() + 1);
}
if (state == DecodeState::ok)
{
// Strip non null characters and trailing spaces from the end
value.erase(
std::find_if(value.rbegin(), value.rend(),
[](char ch) { return ((ch != 0) && (ch != ' ')); })
.base(),
value.end());
if (isCustomField)
{
// Some MAC addresses are stored in a custom field, with
// "MAC:" prefixed on the value. If we see that, create a
// new field with the decoded data
if (value.starts_with("MAC: "))
{
result["MAC_" + name] = value.substr(5);
}
}
result[name] = std::move(value);
++fieldIndex;
}
else if (state == DecodeState::err)
{
lg2::error("Error while parsing {NAME}", "NAME", name);
// Cancel decoding if failed to parse any of mandatory
// fields
if (fieldIndex < fruAreaFieldNames.size())
{
lg2::error("Failed to parse mandatory field ");
return resCodes::resErr;
}
return resCodes::resWarn;
}
else
{
if (fieldIndex < fruAreaFieldNames.size())
{
lg2::error(
"Mandatory fields absent in FRU area {AREA} after {NAME}",
"AREA", getFruAreaName(area), "NAME", name);
return resCodes::resWarn;
}
}
return resCodes::resOK;
}
resCodes formatIPMIFRU(
std::span<const uint8_t> fruBytes,
boost::container::flat_map<std::string, std::string>& result)
{
resCodes ret = resCodes::resOK;
if (fruBytes.size() <= fruBlockSize)
{
lg2::error("Error: trying to parse empty FRU ");
return resCodes::resErr;
}
result["Common_Format_Version"] =
std::to_string(static_cast<int>(*fruBytes.begin()));
const std::vector<std::string>* fruAreaFieldNames = nullptr;
// Don't parse Internal and Multirecord areas
for (fruAreas area = fruAreas::fruAreaChassis;
area <= fruAreas::fruAreaProduct; ++area)
{
size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
if (offset == 0)
{
continue;
}
offset *= fruBlockSize;
std::span<const uint8_t>::const_iterator fruBytesIter =
fruBytes.begin() + offset;
if (fruBytesIter + fruBlockSize >= fruBytes.end())
{
lg2::error("Not enough data to parse ");
return resCodes::resErr;
}
// check for format version 1
if (*fruBytesIter != 0x01)
{
lg2::error("Unexpected version {VERSION}", "VERSION",
*fruBytesIter);
return resCodes::resErr;
}
++fruBytesIter;
/* Verify other area offset for overlap with current area by passing
* length of current area offset pointed by *fruBytesIter
*/
if (!verifyOffset(fruBytes, area, *fruBytesIter))
{
return resCodes::resErr;
}
size_t fruAreaSize = *fruBytesIter * fruBlockSize;
std::span<const uint8_t>::const_iterator fruBytesIterEndArea =
fruBytes.begin() + offset + fruAreaSize - 1;
++fruBytesIter;
uint8_t fruComputedChecksum =
calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
if (fruComputedChecksum != *fruBytesIterEndArea)
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
ss << "\tComputed checksum: 0x" << std::setw(2)
<< static_cast<int>(fruComputedChecksum) << "\n";
ss << "\tThe read checksum: 0x" << std::setw(2)
<< static_cast<int>(*fruBytesIterEndArea) << "\n";
lg2::error("{ERR}", "ERR", ss.str());
ret = resCodes::resWarn;
}
/* Set default language flag to true as Chassis Fru area are always
* encoded in English defined in Section 10 of Fru specification
*/
bool isLangEng = true;
switch (area)
{
case fruAreas::fruAreaChassis:
{
result["CHASSIS_TYPE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
fruAreaFieldNames = &chassisFruAreas;
break;
}
case fruAreas::fruAreaBoard:
{
uint8_t lang = *fruBytesIter;
result["BOARD_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
isLangEng = checkLangEng(lang);
fruBytesIter += 1;
unsigned int minutes =
*fruBytesIter | *(fruBytesIter + 1) << 8 |
*(fruBytesIter + 2) << 16;
std::tm fruTime = intelEpoch();
std::time_t timeValue = timegm(&fruTime);
timeValue += static_cast<long>(minutes) * 60;
fruTime = *std::gmtime(&timeValue);
// Tue Nov 20 23:08:00 2018
std::array<char, 32> timeString = {};
auto bytes = std::strftime(timeString.data(), timeString.size(),
"%Y%m%dT%H%M%SZ", &fruTime);
if (bytes == 0)
{
lg2::error("invalid time string encountered");
return resCodes::resErr;
}
result["BOARD_MANUFACTURE_DATE"] =
std::string_view(timeString.data(), bytes);
fruBytesIter += 3;
fruAreaFieldNames = &boardFruAreas;
break;
}
case fruAreas::fruAreaProduct:
{
uint8_t lang = *fruBytesIter;
result["PRODUCT_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(lang));
isLangEng = checkLangEng(lang);
fruBytesIter += 1;
fruAreaFieldNames = &productFruAreas;
break;
}
default:
{
lg2::error(
"Internal error: unexpected FRU area index: {INDEX} ",
"INDEX", static_cast<int>(area));
return resCodes::resErr;
}
}
size_t fieldIndex = 0;
DecodeState state = DecodeState::ok;
do
{
resCodes decodeRet = decodeField(fruBytesIter, fruBytesIterEndArea,
*fruAreaFieldNames, fieldIndex,
state, isLangEng, area, result);
if (decodeRet == resCodes::resErr)
{
return resCodes::resErr;
}
if (decodeRet == resCodes::resWarn)
{
ret = decodeRet;
}
} while (state == DecodeState::ok);
for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
{
uint8_t c = *fruBytesIter;
if (c != 0U)
{
lg2::error("Non-zero byte after EndOfFields in FRU area {AREA}",
"AREA", getFruAreaName(area));
ret = resCodes::resWarn;
break;
}
}
}
/* Parsing the Multirecord UUID */
parseMultirecordUUID(fruBytes, result);
return ret;
}
// Calculate new checksum for fru info area
uint8_t calculateChecksum(std::span<const uint8_t>::const_iterator iter,
std::span<const uint8_t>::const_iterator end)
{
constexpr int checksumMod = 256;
uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
return (checksumMod - sum) % checksumMod;
}
uint8_t calculateChecksum(std::span<const uint8_t> fruAreaData)
{
return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
}
// Update new fru area length &
// Update checksum at new checksum location
// Return the offset of the area checksum byte
unsigned int updateFRUAreaLenAndChecksum(
std::vector<uint8_t>& fruData, size_t fruAreaStart,
size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset)
{
size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
// fill zeros for any remaining unused space
std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
fruData.begin() + fruAreaEndOffset, 0);
size_t mod = traverseFRUAreaIndex % fruBlockSize;
size_t checksumLoc = 0;
if (mod == 0U)
{
traverseFRUAreaIndex += (fruBlockSize);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
}
else
{
traverseFRUAreaIndex += (fruBlockSize - mod);
checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
}
size_t newFRUAreaLen =
(traverseFRUAreaIndex / fruBlockSize) +
static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
size_t fruAreaLengthLoc = fruAreaStart + 1;
fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
// Calculate new checksum
std::vector<uint8_t> finalFRUData;
std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
std::back_inserter(finalFRUData));
fruData[checksumLoc] = calculateChecksum(finalFRUData);
return checksumLoc;
}
ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
{
constexpr uint8_t typeLenMask = 0x3F;
constexpr uint8_t endOfFields = 0xC1;
if (fruFieldTypeLenValue == endOfFields)
{
return -1;
}
return fruFieldTypeLenValue & typeLenMask;
}
bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
{
// ipmi spec format version number is currently at 1, verify it
if (blockData[0] != fruVersion)
{
lg2::debug(
"FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}",
"VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex,
fruVersion);
return false;
}
// verify pad is set to 0
if (blockData[6] != 0x0)
{
lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE",
lg2::hex, blockData[6]);
return false;
}
// verify offsets are 0, or don't point to another offset
std::set<uint8_t> foundOffsets;
for (int ii = 1; ii < 6; ii++)
{
if (blockData[ii] == 0)
{
continue;
}
auto inserted = foundOffsets.insert(blockData[ii]);
if (!inserted.second)
{
return false;
}
}
// validate checksum
size_t sum = 0;
for (int jj = 0; jj < 7; jj++)
{
sum += blockData[jj];
}
sum = (256 - sum) & 0xFF;
if (sum != blockData[7])
{
lg2::debug(
"Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}",
"CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex,
sum);
return false;
}
return true;
}
std::string parseMacFromGzipXmlHeader(FRUReader& reader, off_t offset)
{
// gzip starts at offset 512. Read that from the FRU
// in this case, 32k bytes is enough to hold the whole manifest
constexpr size_t totalReadSize = 32UL * 1024UL;
std::vector<uint8_t> headerData(totalReadSize, 0U);
int rc = reader.read(offset, totalReadSize, headerData.data());
if (rc <= 0)
{
return {};
}
std::optional<std::string> xml = gzipInflate(headerData);
if (!xml)
{
return {};
}
std::vector<std::string> node = getNodeFromXml(
*xml, "/GSSKU/BoardInfo/Main/NIC/*[Mode = 'Dedicated']/MacAddr0");
if (node.empty())
{
lg2::debug("No mac address found in gzip xml header");
return {};
}
if (node.size() > 1)
{
lg2::warning("Multiple mac addresses found in gzip xml header");
}
return node[0];
}
std::optional<FruSections> findFRUHeader(
FRUReader& reader, const std::string& errorHelp, off_t startingOffset)
{
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData = {};
if (reader.read(startingOffset, 0x8, blockData.data()) < 0)
{
lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR",
errorHelp, "OFFSET", startingOffset);
return std::nullopt;
}
// check the header checksum
if (validateHeader(blockData))
{
FruSections fru = {};
static_assert(fru.ipmiFruBlock.size() == blockData.size(),
"size mismatch in block data");
std::memcpy(fru.ipmiFruBlock.data(), blockData.data(),
I2C_SMBUS_BLOCK_MAX);
fru.IpmiFruOffset = startingOffset;
return fru;
}
// only continue the search if we just looked at 0x0.
if (startingOffset != 0)
{
return std::nullopt;
}
// now check for special cases where the IPMI data is at an offset
// check if blockData starts with tyanHeader
const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
if (blockData.size() >= tyanHeader.size() &&
std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
{
// look for the FRU header at offset 0x6000
off_t tyanOffset = 0x6000;
return findFRUHeader(reader, errorHelp, tyanOffset);
}
// check if blockData starts with gigabyteHeader
const std::vector<uint8_t> gigabyteHeader = {'G', 'I', 'G', 'A',
'B', 'Y', 'T', 'E'};
if (blockData.size() >= gigabyteHeader.size() &&
std::equal(gigabyteHeader.begin(), gigabyteHeader.end(),
blockData.begin()))
{
// look for the FRU header at offset 0x4000
off_t gbOffset = 0x4000;
auto sections = findFRUHeader(reader, errorHelp, gbOffset);
if (sections)
{
lg2::debug("succeeded on GB parse");
// GB xml header is at 512 bytes
sections->GigabyteXmlOffset = 512;
}
else
{
lg2::error("Failed on GB parse");
}
return sections;
}
lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER",
errorHelp, "OFFSET", startingOffset);
return std::nullopt;
}
std::pair<std::vector<uint8_t>, bool> readFRUContents(
FRUReader& reader, const std::string& errorHelp)
{
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
std::optional<FruSections> sections = findFRUHeader(reader, errorHelp, 0);
if (!sections)
{
return {{}, false};
}
const off_t baseOffset = sections->IpmiFruOffset;
std::memcpy(blockData.data(), sections->ipmiFruBlock.data(),
blockData.size());
std::vector<uint8_t> device;
device.insert(device.end(), blockData.begin(),
std::next(blockData.begin(), 8));
bool hasMultiRecords = false;
size_t fruLength = fruBlockSize; // At least FRU header is present
unsigned int prevOffset = 0;
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
// Offset value can be 255.
unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
if (areaOffset == 0)
{
continue;
}
/* Check for offset order, as per Section 17 of FRU specification, FRU
* information areas are required to be in order in FRU data layout
* which means all offset value should be in increasing order or can be
* 0 if that area is not present
*/
if (areaOffset <= prevOffset)
{
lg2::error(
"Fru area offsets are not in required order as per Section 17 of Fru specification");
return {{}, true};
}
prevOffset = areaOffset;
// MultiRecords are different. area is not tracking section, it's
// walking the common header.
if (area == fruAreas::fruAreaMultirecord)
{
hasMultiRecords = true;
break;
}
areaOffset *= fruBlockSize;
if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
{
lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR",
errorHelp, "OFFSET", baseOffset);
return {{}, true};
}
// Ignore data type (blockData is already unsigned).
size_t length = blockData[1] * fruBlockSize;
areaOffset += length;
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
}
if (hasMultiRecords)
{
// device[area count] is the index to the last area because the 0th
// entry is not an offset in the common header.
unsigned int areaOffset =
device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
areaOffset *= fruBlockSize;
// the multi-area record header is 5 bytes long.
constexpr size_t multiRecordHeaderSize = 5;
constexpr uint8_t multiRecordEndOfListMask = 0x80;
// Sanity hard-limit to 64KB.
while (areaOffset < std::numeric_limits<uint16_t>::max())
{
// In multi-area, the area offset points to the 0th record, each
// record has 3 bytes of the header we care about.
if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
{
lg2::error("failed to read {STR} base offset {OFFSET}", "STR",
errorHelp, "OFFSET", baseOffset);
return {{}, true};
}
// Ok, let's check the record length, which is in bytes (unsigned,
// up to 255, so blockData should hold uint8_t not char)
size_t recordLength = blockData[2];
areaOffset += (recordLength + multiRecordHeaderSize);
fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
// If this is the end of the list bail.
if ((blockData[1] & multiRecordEndOfListMask) != 0)
{
break;
}
}
}
// You already copied these first 8 bytes (the ipmi fru header size)
fruLength -= std::min(fruBlockSize, fruLength);
int readOffset = fruBlockSize;
while (fruLength > 0)
{
size_t requestLength =
std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
if (reader.read(baseOffset + readOffset, requestLength,
blockData.data()) < 0)
{
lg2::error("failed to read {ERR} base offset {OFFSET}", "ERR",
errorHelp, "OFFSET", baseOffset);
return {{}, true};
}
device.insert(device.end(), blockData.begin(),
std::next(blockData.begin(), requestLength));
readOffset += requestLength;
fruLength -= std::min(requestLength, fruLength);
}
if (sections->GigabyteXmlOffset != 0)
{
std::string macAddress =
parseMacFromGzipXmlHeader(reader, sections->GigabyteXmlOffset);
if (!macAddress.empty())
{
// launder the mac address as we expect into
// BOARD_INFO_AM2 to allow the rest of the
// system to use it
std::string mac = std::format("MAC: {}", macAddress);
updateAddProperty(mac, "BOARD_INFO_AM2", device);
}
}
return {device, true};
}
unsigned int getHeaderAreaFieldOffset(fruAreas area)
{
return static_cast<unsigned int>(area) + 1;
}
std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
{
auto deviceMap = busMap.find(bus);
if (deviceMap == busMap.end())
{
throw std::invalid_argument("Invalid Bus.");
}
auto device = deviceMap->second->find(address);
if (device == deviceMap->second->end())
{
throw std::invalid_argument("Invalid Address.");
}
std::vector<uint8_t>& ret = device->second;
return ret;
}
static bool updateHeaderChecksum(std::vector<uint8_t>& fruData)
{
if (fruData.size() < fruBlockSize)
{
lg2::debug("FRU data is too small to contain a valid header.");
return false;
}
uint8_t& checksumInBytes = fruData[7];
uint8_t checksum =
calculateChecksum({fruData.begin(), fruData.begin() + 7});
std::swap(checksumInBytes, checksum);
if (checksumInBytes != checksum)
{
lg2::debug(
"FRU header checksum updated from {OLD_CHECKSUM} to {NEW_CHECKSUM}",
"OLD_CHECKSUM", static_cast<int>(checksum), "NEW_CHECKSUM",
static_cast<int>(checksumInBytes));
}
return true;
}
bool updateAreaChecksum(std::vector<uint8_t>& fruArea)
{
if (fruArea.size() < fruBlockSize)
{
lg2::debug("FRU area is too small to contain a valid header.");
return false;
}
if (fruArea.size() % fruBlockSize != 0)
{
lg2::debug("FRU area size is not a multiple of {SIZE} bytes.", "SIZE",
fruBlockSize);
return false;
}
uint8_t oldcksum = fruArea[fruArea.size() - 1];
fruArea[fruArea.size() - 1] =
0; // Reset checksum byte to 0 before recalculating
fruArea[fruArea.size() - 1] = calculateChecksum(fruArea);
if (oldcksum != fruArea[fruArea.size() - 1])
{
lg2::debug(
"FRU area checksum updated from {OLD_CHECKSUM} to {NEW_CHECKSUM}",
"OLD_CHECKSUM", static_cast<int>(oldcksum), "NEW_CHECKSUM",
static_cast<int>(fruArea[fruArea.size() - 1]));
}
return true;
}
static std::optional<size_t> calculateAreaSize(
fruAreas area, std::span<const uint8_t> fruData, size_t areaOffset)
{
switch (area)
{
case fruAreas::fruAreaChassis:
case fruAreas::fruAreaBoard:
case fruAreas::fruAreaProduct:
if (areaOffset + 1 >= fruData.size())
{
return std::nullopt;
}
return fruData[areaOffset + 1] * fruBlockSize; // Area size in bytes
case fruAreas::fruAreaInternal:
{
// Internal area size: It is difference between the next area
// offset and current area offset
for (fruAreas areaIt = fruAreas::fruAreaChassis;
areaIt <= fruAreas::fruAreaMultirecord; ++areaIt)
{
size_t headerOffset = getHeaderAreaFieldOffset(areaIt);
if (headerOffset >= fruData.size())
{
return std::nullopt;
}
size_t nextAreaOffset = fruData[headerOffset];
if (nextAreaOffset != 0)
{
return nextAreaOffset * fruBlockSize - areaOffset;
}
}
return std::nullopt;
}
break;
case fruAreas::fruAreaMultirecord:
// Multirecord area size.
return fruData.size() - areaOffset; // Area size in bytes
default:
lg2::error("Invalid FRU area: {AREA}", "AREA",
static_cast<int>(area));
}
return std::nullopt;
}
static size_t getBlockCount(size_t byteCount)
{
size_t blocks = (byteCount + fruBlockSize - 1) / fruBlockSize;
// if we're perfectly aligned, we need another block for the checksum
if ((byteCount % fruBlockSize) == 0)
{
blocks++;
}
return blocks;
}
bool disassembleFruData(std::vector<uint8_t>& fruData,
std::vector<std::vector<uint8_t>>& areasData)
{
if (fruData.size() < 8)
{
lg2::debug("FRU data is too small to contain a valid header.");
return false;
}
// Clear areasData before disassembling
areasData.clear();
// Iterate through all areas & store each area data in a vector.
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
size_t areaOffset = fruData[getHeaderAreaFieldOffset(area)];
if (areaOffset == 0)
{
// Store empty area data for areas that are not present
areasData.emplace_back();
continue; // Skip areas that are not present
}
areaOffset *= fruBlockSize; // Convert to byte offset
std::optional<size_t> areaSize =
calculateAreaSize(area, fruData, areaOffset);
if (!areaSize)
{
return false;
}
if ((areaOffset + *areaSize) > fruData.size())
{
lg2::error("Area offset + size exceeds FRU data size.");
return false;
}
areasData.emplace_back(fruData.begin() + areaOffset,
fruData.begin() + areaOffset + *areaSize);
}
return true;
}
struct FieldInfo
{
size_t length;
size_t index;
};
static std::optional<FieldInfo> findOrCreateField(
std::vector<uint8_t>& areaData, const std::string& propertyName,
const fruAreas& fruAreaToUpdate)
{
int fieldIndex = 0;
int fieldLength = 0;
std::string areaName = propertyName.substr(0, propertyName.find('_'));
std::string propertyNamePrefix = areaName + "_";
const std::vector<std::string>* fruAreaFieldNames = nullptr;
switch (fruAreaToUpdate)
{
case fruAreas::fruAreaChassis:
fruAreaFieldNames = &chassisFruAreas;
fieldIndex = 3;
break;
case fruAreas::fruAreaBoard:
fruAreaFieldNames = &boardFruAreas;
fieldIndex = 6;
break;
case fruAreas::fruAreaProduct:
fruAreaFieldNames = &productFruAreas;
fieldIndex = 3;
break;
default:
lg2::info("Invalid FRU area: {AREA}", "AREA",
static_cast<int>(fruAreaToUpdate));
return std::nullopt;
}
for (const auto& field : *fruAreaFieldNames)
{
fieldLength = getFieldLength(areaData[fieldIndex]);
if (fieldLength < 0)
{
areaData.insert(areaData.begin() + fieldIndex, 0xc0);
fieldLength = 0;
}
if (propertyNamePrefix + field == propertyName)
{
return FieldInfo{static_cast<size_t>(fieldLength),
static_cast<size_t>(fieldIndex)};
}
fieldIndex += 1 + fieldLength;
}
size_t pos = propertyName.find(fruCustomFieldName);
if (pos == std::string::npos)
{
return std::nullopt;
}
// Get field after pos
std::string customFieldIdx =
propertyName.substr(pos + fruCustomFieldName.size());
// Check if customFieldIdx is a number
if (!std::all_of(customFieldIdx.begin(), customFieldIdx.end(), ::isdigit))
{
return std::nullopt;
}
size_t customFieldIndex = std::stoi(customFieldIdx);
// insert custom fields up to the index we want
for (size_t i = 0; i < customFieldIndex; i++)
{
fieldLength = getFieldLength(areaData[fieldIndex]);
if (fieldLength < 0)
{
areaData.insert(areaData.begin() + fieldIndex, 0xc0);
fieldLength = 0;
}
fieldIndex += 1 + fieldLength;
}
fieldIndex -= (fieldLength + 1);
fieldLength = getFieldLength(areaData[fieldIndex]);
return FieldInfo{static_cast<size_t>(fieldLength),
static_cast<size_t>(fieldIndex)};
}
static std::optional<size_t> findEndOfFieldMarker(std::span<uint8_t> bytes)
{
// we're skipping the checksum
// this function assumes a properly sized and formatted area
static uint8_t constexpr endOfFieldsByte = 0xc1;
for (int index = bytes.size() - 2; index >= 0; --index)
{
if (bytes[index] == endOfFieldsByte)
{
return index;
}
}
return std::nullopt;
}
static std::optional<size_t> getNonPaddedSizeOfArea(std::span<uint8_t> bytes)
{
if (auto endOfFields = findEndOfFieldMarker(bytes))
{
return *endOfFields + 1;
}
return std::nullopt;
}
bool setField(const fruAreas& fruAreaToUpdate, std::vector<uint8_t>& areaData,
const std::string& propertyName, const std::string& value)
{
if (value.size() == 1 || value.size() > 63)
{
lg2::error("Invalid value {VALUE} for field {PROP}", "VALUE", value,
"PROP", propertyName);
return false;
}
// This is inneficient, but the alternative requires
// a bunch of complicated indexing and search to
// figure out if we cross a block boundary
// if we feel that this is too inneficient in the future,
// we can implement that.
std::vector<uint8_t> tmpBuffer = areaData;
auto fieldInfo =
findOrCreateField(tmpBuffer, propertyName, fruAreaToUpdate);
if (!fieldInfo)
{
lg2::error("Field {FIELD} not found in area {AREA}", "FIELD",
propertyName, "AREA", getFruAreaName(fruAreaToUpdate));
return false;
}
auto fieldIt = tmpBuffer.begin() + fieldInfo->index;
// Erase the existing field content.
tmpBuffer.erase(fieldIt, fieldIt + fieldInfo->length + 1);
// Insert the new field value
tmpBuffer.insert(fieldIt, 0xc0 | value.size());
tmpBuffer.insert_range(fieldIt + 1, value);
auto newSize = getNonPaddedSizeOfArea(tmpBuffer);
auto oldSize = getNonPaddedSizeOfArea(areaData);
if (!oldSize || !newSize)
{
lg2::error("Failed to find the size of the area");
return false;
}
size_t newSizePadded = getBlockCount(*newSize);
#ifndef ENABLE_FRU_AREA_RESIZE
size_t oldSizePadded = getBlockCount(*oldSize);
if (newSizePadded != oldSizePadded)
{
lg2::error(
"FRU area {AREA} resize is disabled, cannot increase size from {OLD_SIZE} to {NEW_SIZE}",
"AREA", getFruAreaName(fruAreaToUpdate), "OLD_SIZE",
static_cast<int>(oldSizePadded), "NEW_SIZE",
static_cast<int>(newSizePadded));
return false;
}
#endif
// Resize the buffer as per numOfBlocks & pad with zeros
tmpBuffer.resize(newSizePadded * fruBlockSize, 0);
// Update the length field
tmpBuffer[1] = newSizePadded;
updateAreaChecksum(tmpBuffer);
areaData = std::move(tmpBuffer);
return true;
}
bool assembleFruData(std::vector<uint8_t>& fruData,
const std::vector<std::vector<uint8_t>>& areasData)
{
for (const auto& area : areasData)
{
if ((area.size() % fruBlockSize) != 0U)
{
lg2::error("unaligned area sent to assembleFruData");
return false;
}
}
// Clear the existing FRU data
fruData.clear();
fruData.resize(8); // Start with the header size
// Write the header
fruData[0] = fruVersion; // Version
fruData[1] = 0; // Internal area offset
fruData[2] = 0; // Chassis area offset
fruData[3] = 0; // Board area offset
fruData[4] = 0; // Product area offset
fruData[5] = 0; // Multirecord area offset
fruData[6] = 0; // Pad
fruData[7] = 0; // Checksum (to be updated later)
size_t writeOffset = 8; // Start writing after the header
for (fruAreas area = fruAreas::fruAreaInternal;
area <= fruAreas::fruAreaMultirecord; ++area)
{
const auto& areaBytes = areasData[static_cast<size_t>(area)];
if (areaBytes.empty())
{
lg2::debug("Skipping empty area: {AREA}", "AREA",
getFruAreaName(area));
continue; // Skip areas that are not present
}
// Set the area offset in the header
fruData[getHeaderAreaFieldOffset(area)] = writeOffset / fruBlockSize;
fruData.append_range(areaBytes);
writeOffset += areaBytes.size();
}
// Update the header checksum
if (!updateHeaderChecksum(fruData))
{
lg2::error("failed to update header checksum");
return false;
}
return true;
}
// Create a dummy area in areData variable based on specified fruArea
bool createDummyArea(fruAreas fruArea, std::vector<uint8_t>& areaData)
{
uint8_t numOfFields = 0;
uint8_t numOfBlocks = 0;
// Clear the areaData vector
areaData.clear();
// Set the version, length, and other fields
areaData.push_back(fruVersion); // Version 1
areaData.push_back(0); // Length (to be updated later)
switch (fruArea)
{
case fruAreas::fruAreaChassis:
areaData.push_back(0x00); // Chassis type
numOfFields = chassisFruAreas.size();
break;
case fruAreas::fruAreaBoard:
areaData.push_back(0x00); // Board language code (default)
areaData.insert(areaData.end(),
{0x00, 0x00,
0x00}); // Board manufacturer date (default)
numOfFields = boardFruAreas.size();
break;
case fruAreas::fruAreaProduct:
areaData.push_back(0x00); // Product language code (default)
numOfFields = productFruAreas.size();
break;
default:
lg2::debug("Invalid FRU area to create: {AREA}", "AREA",
static_cast<int>(fruArea));
return false;
}
for (size_t i = 0; i < numOfFields; ++i)
{
areaData.push_back(0xc0); // Empty field type
}
// Add EndOfFields marker
areaData.push_back(0xC1);
numOfBlocks = (areaData.size() + fruBlockSize - 1) /
fruBlockSize; // Calculate number of blocks needed
areaData.resize(numOfBlocks * fruBlockSize, 0); // Fill with zeros
areaData[1] = numOfBlocks; // Update length field
updateAreaChecksum(areaData);
return true;
}
// Iterate FruArea Names and find start and size of the fru area that contains
// the propertyName and the field start location for the property. fruAreaParams
// struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
// updated/returned if successful.
bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
const std::string& propertyName,
struct FruArea& fruAreaParams)
{
const std::vector<std::string>* fruAreaFieldNames = nullptr;
uint8_t fruAreaOffsetFieldValue = 0;
size_t offset = 0;
std::string areaName = propertyName.substr(0, propertyName.find('_'));
std::string propertyNamePrefix = areaName + "_";
auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
if (it == fruAreaNames.end())
{
lg2::error("Can't parse area name for property {PROP} ", "PROP",
propertyName);
return false;
}
fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
fruAreaOffsetFieldValue =
fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
switch (fruAreaToUpdate)
{
case fruAreas::fruAreaChassis:
offset = 3; // chassis part number offset. Skip fixed first 3 bytes
fruAreaFieldNames = &chassisFruAreas;
break;
case fruAreas::fruAreaBoard:
offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
fruAreaFieldNames = &boardFruAreas;
break;
case fruAreas::fruAreaProduct:
// Manufacturer name offset. Skip fixed first 3 product fru bytes
// i.e. version, area length and language code
offset = 3;
fruAreaFieldNames = &productFruAreas;
break;
default:
lg2::error("Invalid PropertyName {PROP}", "PROP", propertyName);
return false;
}
if (fruAreaOffsetFieldValue == 0)
{
lg2::error("FRU Area for {PROP} not present ", "PROP", propertyName);
return false;
}
fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
size_t fruDataIter = fruAreaParams.start + offset;
size_t skipToFRUUpdateField = 0;
ssize_t fieldLength = 0;
bool found = false;
for (const auto& field : *fruAreaFieldNames)
{
skipToFRUUpdateField++;
if (propertyName == propertyNamePrefix + field)
{
found = true;
break;
}
}
if (!found)
{
std::size_t pos = propertyName.find(fruCustomFieldName);
if (pos == std::string::npos)
{
lg2::error("PropertyName doesn't exist in FRU Area Vectors: {PROP}",
"PROP", propertyName);
return false;
}
std::string fieldNumStr =
propertyName.substr(pos + fruCustomFieldName.length());
size_t fieldNum = std::stoi(fieldNumStr);
if (fieldNum == 0)
{
lg2::error("PropertyName not recognized: {PROP}", "PROP",
propertyName);
return false;
}
skipToFRUUpdateField += fieldNum;
}
for (size_t i = 1; i < skipToFRUUpdateField; i++)
{
if (fruDataIter < fruData.size())
{
fieldLength = getFieldLength(fruData[fruDataIter]);
if (fieldLength < 0)
{
break;
}
fruDataIter += 1 + fieldLength;
}
}
fruAreaParams.updateFieldLoc = fruDataIter;
return true;
}
// Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
// Return true for success and false for failure.
bool copyRestFRUArea(std::vector<uint8_t>& fruData,
const std::string& propertyName,
struct FruArea& fruAreaParams,
std::vector<uint8_t>& restFRUAreaFieldsData)
{
size_t fieldLoc = fruAreaParams.updateFieldLoc;
size_t start = fruAreaParams.start;
size_t fruAreaSize = fruAreaParams.size;
// Push post update fru field bytes to a vector
ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
if (fieldLength < 0)
{
lg2::error("Property {PROP} not present ", "PROP", propertyName);
return false;
}
size_t fruDataIter = 0;
fruDataIter = fieldLoc;
fruDataIter += 1 + fieldLength;
size_t restFRUFieldsLoc = fruDataIter;
size_t endOfFieldsLoc = 0;
if (fruDataIter < fruData.size())
{
while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
{
if (fruDataIter >= (start + fruAreaSize))
{
fruDataIter = start + fruAreaSize;
break;
}
fruDataIter += 1 + fieldLength;
}
endOfFieldsLoc = fruDataIter;
}
std::copy_n(fruData.begin() + restFRUFieldsLoc,
endOfFieldsLoc - restFRUFieldsLoc + 1,
std::back_inserter(restFRUAreaFieldsData));
fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
fruAreaParams.restFieldsEnd = endOfFieldsLoc;
return true;
}
// Get all device dbus path and match path with product name using
// regular expression and find the device index for all devices.
std::optional<int> findIndexForFRU(
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
std::string& productName)
{
int highest = -1;
bool found = false;
for (const auto& busIface : dbusInterfaceMap)
{
std::string path = busIface.second->get_object_path();
if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
{
// Check if the match named has extra information.
found = true;
std::smatch baseMatch;
bool match = std::regex_match(path, baseMatch,
std::regex(productName + "_(\\d+)$"));
if (match)
{
if (baseMatch.size() == 2)
{
std::ssub_match baseSubMatch = baseMatch[1];
std::string base = baseSubMatch.str();
int value = std::stoi(base);
highest = (value > highest) ? value : highest;
}
}
}
} // end searching objects
if (!found)
{
return std::nullopt;
}
return highest;
}
// This function does format fru data as per IPMI format and find the
// productName in the formatted fru data, get that productName and return
// productName if found or return NULL.
std::optional<std::string> getProductName(
std::vector<uint8_t>& device,
boost::container::flat_map<std::string, std::string>& formattedFRU,
uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
{
std::string productName;
resCodes res = formatIPMIFRU(device, formattedFRU);
if (res == resCodes::resErr)
{
lg2::error("failed to parse FRU for device at bus {BUS} address {ADDR}",
"BUS", bus, "ADDR", address);
return std::nullopt;
}
if (res == resCodes::resWarn)
{
lg2::error(
"Warnings while parsing FRU for device at bus {BUS} address {ADDR}",
"BUS", bus, "ADDR", address);
}
auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
// Not found under Board section or an empty string.
if (productNameFind == formattedFRU.end() ||
productNameFind->second.empty())
{
productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
}
// Found under Product section and not an empty string.
if (productNameFind != formattedFRU.end() &&
!productNameFind->second.empty())
{
productName = productNameFind->second;
std::regex illegalObject("[^A-Za-z0-9_]");
productName = std::regex_replace(productName, illegalObject, "_");
}
else
{
productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
unknownBusObjectCount++;
}
return productName;
}
bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
{
try
{
fruData = getFRUInfo(static_cast<uint16_t>(bus),
static_cast<uint8_t>(address));
}
catch (const std::invalid_argument& e)
{
lg2::error("Failure getting FRU Info: {ERR}", "ERR", e);
return false;
}
return !fruData.empty();
}
bool isFieldEditable(std::string_view fieldName)
{
if (fieldName == "PRODUCT_ASSET_TAG")
{
return true; // PRODUCT_ASSET_TAG is always editable.
}
if (!ENABLE_FRU_UPDATE_PROPERTY)
{
return false; // If FRU update is disabled, no fields are editable.
}
// Editable fields
constexpr std::array<std::string_view, 8> editableFields = {
"MANUFACTURER", "PRODUCT_NAME", "PART_NUMBER", "VERSION",
"SERIAL_NUMBER", "ASSET_TAG", "FRU_VERSION_ID", "INFO_AM"};
// Find position of first underscore
std::size_t pos = fieldName.find('_');
if (pos == std::string_view::npos || pos + 1 >= fieldName.size())
{
return false;
}
// Extract substring after the underscore
std::string_view subField = fieldName.substr(pos + 1);
// Trim trailing digits
while (!subField.empty() && (std::isdigit(subField.back()) != 0))
{
subField.remove_suffix(1);
}
// Match against editable fields
return std::ranges::contains(editableFields, subField);
}
bool updateAddProperty(const std::string& propertyValue,
const std::string& propertyName,
std::vector<uint8_t>& fruData)
{
// Validate field length: must be 2–63 characters
const size_t len = propertyValue.length();
if (len == 1 || len > 63)
{
lg2::error(
"FRU field data must be 0 or between 2 and 63 characters. Invalid Length: {LEN}",
"LEN", len);
return false;
}
if (fruData.empty())
{
lg2::error("Empty FRU data\n");
return false;
}
// Extract area name (prefix before underscore)
std::string areaName = propertyName.substr(0, propertyName.find('_'));
auto areaIterator =
std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
if (areaIterator == fruAreaNames.end())
{
lg2::error("Failed to get FRU area for property: {AREA}", "AREA",
areaName);
return false;
}
fruAreas fruAreaToUpdate = static_cast<fruAreas>(
std::distance(fruAreaNames.begin(), areaIterator));
std::vector<std::vector<uint8_t>> areasData;
if (!disassembleFruData(fruData, areasData))
{
lg2::error("Failed to disassemble Fru Data");
return false;
}
std::vector<uint8_t>& areaData =
areasData[static_cast<size_t>(fruAreaToUpdate)];
if (areaData.empty())
{
// If ENABLE_FRU_AREA_RESIZE is not defined then return with failure
#ifndef ENABLE_FRU_AREA_RESIZE
lg2::error(
"FRU area {AREA} not present and ENABLE_FRU_AREA_RESIZE is not set. "
"Returning failure.",
"AREA", areaName);
return false;
#endif
if (!createDummyArea(fruAreaToUpdate, areaData))
{
lg2::error("Failed to create dummy area for {AREA}", "AREA",
areaName);
return false;
}
}
if (!setField(fruAreaToUpdate, areaData, propertyName, propertyValue))
{
lg2::error("Failed to set field value for property: {PROPERTY}",
"PROPERTY", propertyName);
return false;
}
if (!assembleFruData(fruData, areasData))
{
lg2::error("Failed to reassemble FRU data");
return false;
}
if (fruData.empty())
{
lg2::error("FRU data is empty after assembly");
return false;
}
return true;
}