blob: 1cd1acb87a400996a7c6b85721fa0908400756f3 [file] [log] [blame]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <Utils.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/container/flat_map.hpp>
#include <chrono>
#include <ctime>
#include <filesystem>
#include <fstream>
#include <future>
#include <iomanip>
#include <iostream>
#include <nlohmann/json.hpp>
#include <regex>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <variant>
extern "C" {
#include <i2c/smbus.h>
#include <linux/i2c-dev.h>
}
namespace fs = std::filesystem;
static constexpr bool DEBUG = false;
static size_t UNKNOWN_BUS_OBJECT_COUNT = 0;
constexpr size_t MAX_FRU_SIZE = 512;
constexpr size_t MAX_EEPROM_PAGE_INDEX = 255;
constexpr size_t busTimeoutSeconds = 5;
constexpr const char* blacklistPath = PACKAGE_DIR "blacklist.json";
const static constexpr char* BASEBOARD_FRU_LOCATION =
"/etc/fru/baseboard.fru.bin";
const static constexpr char* I2C_DEV_LOCATION = "/dev";
static constexpr std::array<const char*, 5> FRU_AREAS = {
"INTERNAL", "CHASSIS", "BOARD", "PRODUCT", "MULTIRECORD"};
const static std::regex NON_ASCII_REGEX("[^\x01-\x7f]");
using DeviceMap = boost::container::flat_map<int, std::vector<char>>;
using BusMap = boost::container::flat_map<int, std::shared_ptr<DeviceMap>>;
static std::set<size_t> busBlacklist;
struct FindDevicesWithCallback;
static BusMap busMap;
// Given a bus/address, produce the path in sysfs for an eeprom.
static std::string getEepromPath(size_t bus, size_t address)
{
std::stringstream output;
output << "/sys/bus/i2c/devices/" << bus << "-" << std::right
<< std::setfill('0') << std::setw(4) << std::hex << address
<< "/eeprom";
return output.str();
}
static bool hasEepromFile(size_t bus, size_t address)
{
auto path = getEepromPath(bus, address);
try
{
return fs::exists(path);
}
catch (...)
{
return false;
}
}
static ssize_t readFromEeprom(int fd, uint16_t offset, uint8_t len,
uint8_t* buf)
{
auto result = lseek(fd, offset, SEEK_SET);
if (result < 0)
{
std::cerr << "failed to seek\n";
return -1;
}
return read(fd, buf, len);
}
static bool isMuxBus(size_t bus)
{
return is_symlink(std::filesystem::path(
"/sys/bus/i2c/devices/i2c-" + std::to_string(bus) + "/mux_device"));
}
static int isDevice16Bit(int file)
{
/* Get first byte */
int byte1 = i2c_smbus_read_byte_data(file, 0);
if (byte1 < 0)
{
return byte1;
}
/* Read 7 more bytes, it will read same first byte in case of
* 8 bit but it will read next byte in case of 16 bit
*/
for (int i = 0; i < 7; i++)
{
int byte2 = i2c_smbus_read_byte_data(file, 0);
if (byte2 < 0)
{
return byte2;
}
if (byte2 != byte1)
{
return 1;
}
}
return 0;
}
static int read_block_data(int flag, int file, uint16_t offset, uint8_t len,
uint8_t* buf)
{
uint8_t low_addr = static_cast<uint8_t>(offset);
uint8_t high_addr = static_cast<uint8_t>(offset >> 8);
if (flag == 0)
{
return i2c_smbus_read_i2c_block_data(file, low_addr, len, buf);
}
/* This is for 16 bit addressing EEPROM device. First an offset
* needs to be written before read data from a offset
*/
int ret = i2c_smbus_write_byte_data(file, 0, low_addr);
if (ret < 0)
{
return ret;
}
return i2c_smbus_read_i2c_block_data(file, high_addr, len, buf);
}
bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
{
// ipmi spec format version number is currently at 1, verify it
if (blockData[0] != 0x1)
{
return false;
}
// verify pad is set to 0
if (blockData[6] != 0x0)
{
return false;
}
// verify offsets are 0, or don't point to another offset
std::set<uint8_t> foundOffsets;
for (int ii = 1; ii < 6; ii++)
{
if (blockData[ii] == 0)
{
continue;
}
auto inserted = foundOffsets.insert(blockData[ii]);
if (!inserted.second)
{
return false;
}
}
// validate checksum
size_t sum = 0;
for (int jj = 0; jj < 7; jj++)
{
sum += blockData[jj];
}
sum = (256 - sum) & 0xFF;
if (sum != blockData[7])
{
return false;
}
return true;
}
// TODO: This code is very similar to the non-eeprom version and can be merged
// with some tweaks.
static std::vector<char> processEeprom(int bus, int address)
{
std::vector<char> device;
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> block_data;
auto path = getEepromPath(bus, address);
int file = open(path.c_str(), O_RDONLY);
if (file < 0)
{
std::cerr << "Unable to open eeprom file: " << path << "\n";
return device;
}
ssize_t readBytes = readFromEeprom(file, 0, 0x8, block_data.data());
if (readBytes < 0)
{
std::cerr << "failed to read eeprom at " << bus << " address "
<< address << "\n";
close(file);
return device;
}
if (!validateHeader(block_data))
{
if (DEBUG)
{
std::cerr << "Illegal header at bus " << bus << " address "
<< address << "\n";
}
close(file);
return device;
}
device.insert(device.end(), block_data.begin(), block_data.begin() + 8);
for (size_t jj = 1; jj <= FRU_AREAS.size(); jj++)
{
auto area_offset = device[jj];
if (area_offset == 0)
{
continue;
}
area_offset = static_cast<char>(area_offset * 8);
if (readFromEeprom(file, area_offset, 0x8, block_data.data()) < 0)
{
std::cerr << "failed to read bus " << bus << " address " << address
<< "\n";
device.clear();
close(file);
return device;
}
int length = block_data[1] * 8;
device.insert(device.end(), block_data.begin(), block_data.begin() + 8);
length -= 8;
area_offset = static_cast<char>(area_offset + 8);
while (length > 0)
{
auto to_get = std::min(0x20, length);
if (readFromEeprom(file, area_offset, static_cast<uint8_t>(to_get),
block_data.data()) < 0)
{
std::cerr << "failed to read bus " << bus << " address "
<< address << "\n";
device.clear();
close(file);
return device;
}
device.insert(device.end(), block_data.begin(),
block_data.begin() + to_get);
area_offset = static_cast<char>(area_offset + to_get);
length -= to_get;
}
}
close(file);
return device;
}
std::set<int> findI2CEeproms(int i2cBus, std::shared_ptr<DeviceMap> devices)
{
std::set<int> foundList;
std::string path = "/sys/bus/i2c/devices/i2c-" + std::to_string(i2cBus);
// For each file listed under the i2c device
// NOTE: This should be faster than just checking for each possible address
// path.
for (const auto& p : fs::directory_iterator(path))
{
const std::string node = p.path().string();
std::smatch m;
bool found =
std::regex_match(node, m, std::regex(".+\\d+-([0-9abcdef]+$)"));
if (!found)
{
continue;
}
if (m.size() != 2)
{
std::cerr << "regex didn't capture\n";
continue;
}
std::ssub_match subMatch = m[1];
std::string addressString = subMatch.str();
std::size_t ignored;
const int hexBase = 16;
int address = std::stoi(addressString, &ignored, hexBase);
const std::string eeprom = node + "/eeprom";
try
{
if (!fs::exists(eeprom))
{
continue;
}
}
catch (...)
{
continue;
}
// There is an eeprom file at this address, it may have invalid
// contents, but we found it.
foundList.insert(address);
std::vector<char> device = processEeprom(i2cBus, address);
if (!device.empty())
{
devices->emplace(address, device);
}
}
return foundList;
}
int get_bus_frus(int file, int first, int last, int bus,
std::shared_ptr<DeviceMap> devices)
{
std::future<int> future = std::async(std::launch::async, [&]() {
std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> block_data;
// NOTE: When reading the devices raw on the bus, it can interfere with
// the driver's ability to operate, therefore read eeproms first before
// scanning for devices without drivers. Several experiments were run
// and it was determined that if there were any devices on the bus
// before the eeprom was hit and read, the eeprom driver wouldn't open
// while the bus device was open. An experiment was not performed to see
// if this issue was resolved if the i2c bus device was closed, but
// hexdumps of the eeprom later were successful.
// Scan for i2c eeproms loaded on this bus.
std::set<int> skipList = findI2CEeproms(bus, devices);
for (int ii = first; ii <= last; ii++)
{
if (skipList.find(ii) != skipList.end())
{
continue;
}
// Set slave address
if (ioctl(file, I2C_SLAVE_FORCE, ii) < 0)
{
std::cerr << "device at bus " << bus << " register " << ii
<< " busy\n";
continue;
}
// probe
else if (i2c_smbus_read_byte(file) < 0)
{
continue;
}
if (DEBUG)
{
std::cout << "something at bus " << bus << " addr " << ii
<< "\n";
}
/* Check for Device type if it is 8 bit or 16 bit */
int flag = isDevice16Bit(file);
if (flag < 0)
{
std::cerr << "failed to read bus " << bus << " address " << ii
<< "\n";
continue;
}
if (read_block_data(flag, file, 0x0, 0x8, block_data.data()) < 0)
{
std::cerr << "failed to read bus " << bus << " address " << ii
<< "\n";
continue;
}
// check the header checksum
if (!validateHeader(block_data))
{
if (DEBUG)
{
std::cerr << "Illegal header at bus " << bus << " address "
<< ii << "\n";
}
continue;
}
std::vector<char> device;
device.insert(device.end(), block_data.begin(),
block_data.begin() + 8);
for (size_t jj = 1; jj <= FRU_AREAS.size(); jj++)
{
auto area_offset = device[jj];
if (area_offset == 0)
{
continue;
}
area_offset = static_cast<char>(area_offset * 8);
if (read_block_data(flag, file, area_offset, 0x8,
block_data.data()) < 0)
{
std::cerr << "failed to read bus " << bus << " address "
<< ii << "\n";
return -1;
}
int length = block_data[1] * 8;
device.insert(device.end(), block_data.begin(),
block_data.begin() + 8);
length -= 8;
area_offset = static_cast<char>(area_offset + 8);
while (length > 0)
{
auto to_get = std::min(0x20, length);
if (read_block_data(flag, file, area_offset,
static_cast<uint8_t>(to_get),
block_data.data()) < 0)
{
std::cerr << "failed to read bus " << bus << " address "
<< ii << "\n";
return -1;
}
device.insert(device.end(), block_data.begin(),
block_data.begin() + to_get);
area_offset = static_cast<char>(area_offset + to_get);
length -= to_get;
}
}
devices->emplace(ii, device);
}
return 1;
});
std::future_status status =
future.wait_for(std::chrono::seconds(busTimeoutSeconds));
if (status == std::future_status::timeout)
{
std::cerr << "Error reading bus " << bus << "\n";
busBlacklist.insert(bus);
close(file);
return -1;
}
close(file);
return future.get();
}
void loadBlacklist(const char* path)
{
std::ifstream blacklistStream(path);
if (!blacklistStream.good())
{
// File is optional.
std::cerr << "Cannot open blacklist file.\n\n";
return;
}
nlohmann::json data =
nlohmann::json::parse(blacklistStream, nullptr, false);
if (data.is_discarded())
{
std::cerr << "Illegal blacklist file detected, cannot validate JSON, "
"exiting\n";
std::exit(EXIT_FAILURE);
return;
}
// It's expected to have at least one field, "buses" that is an array of the
// buses by integer. Allow for future options to exclude further aspects,
// such as specific addresses or ranges.
if (data.type() != nlohmann::json::value_t::object)
{
std::cerr << "Illegal blacklist, expected to read dictionary\n";
std::exit(EXIT_FAILURE);
return;
}
// If buses field is missing, that's fine.
if (data.count("buses") == 1)
{
// Parse the buses array after a little validation.
auto buses = data.at("buses");
if (buses.type() != nlohmann::json::value_t::array)
{
// Buses field present but invalid, therefore this is an error.
std::cerr << "Invalid contents for blacklist buses field\n";
std::exit(EXIT_FAILURE);
return;
}
// Catch exception here for type mis-match.
try
{
for (const auto& bus : buses)
{
busBlacklist.insert(bus.get<size_t>());
}
}
catch (const nlohmann::detail::type_error& e)
{
// Type mis-match is a critical error.
std::cerr << "Invalid bus type: " << e.what() << "\n";
std::exit(EXIT_FAILURE);
return;
}
}
return;
}
static void FindI2CDevices(const std::vector<fs::path>& i2cBuses,
BusMap& busmap)
{
for (auto& i2cBus : i2cBuses)
{
auto busnum = i2cBus.string();
auto lastDash = busnum.rfind(std::string("-"));
// delete everything before dash inclusive
if (lastDash != std::string::npos)
{
busnum.erase(0, lastDash + 1);
}
auto bus = std::stoi(busnum);
if (busBlacklist.find(bus) != busBlacklist.end())
{
continue; // skip previously failed busses
}
auto file = open(i2cBus.c_str(), O_RDWR);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus.string()
<< "\n";
continue;
}
unsigned long funcs = 0;
if (ioctl(file, I2C_FUNCS, &funcs) < 0)
{
std::cerr
<< "Error: Could not get the adapter functionality matrix bus "
<< bus << "\n";
continue;
}
if (!(funcs & I2C_FUNC_SMBUS_READ_BYTE) ||
!(I2C_FUNC_SMBUS_READ_I2C_BLOCK))
{
std::cerr << "Error: Can't use SMBus Receive Byte command bus "
<< bus << "\n";
continue;
}
auto& device = busmap[bus];
device = std::make_shared<DeviceMap>();
// i2cdetect by default uses the range 0x03 to 0x77, as
// this is what we have tested with, use this range. Could be
// changed in future.
if (DEBUG)
{
std::cerr << "Scanning bus " << bus << "\n";
}
// fd is closed in this function in case the bus locks up
get_bus_frus(file, 0x03, 0x77, bus, device);
if (DEBUG)
{
std::cerr << "Done scanning bus " << bus << "\n";
}
}
}
// this class allows an async response after all i2c devices are discovered
struct FindDevicesWithCallback
: std::enable_shared_from_this<FindDevicesWithCallback>
{
FindDevicesWithCallback(const std::vector<fs::path>& i2cBuses,
boost::asio::io_service& io, BusMap& busmap,
std::function<void(void)>&& callback) :
_i2cBuses(i2cBuses),
_io(io), _busMap(busmap), _callback(std::move(callback))
{
}
~FindDevicesWithCallback()
{
_callback();
}
void run()
{
FindI2CDevices(_i2cBuses, _busMap);
}
const std::vector<fs::path>& _i2cBuses;
boost::asio::io_service& _io;
BusMap& _busMap;
std::function<void(void)> _callback;
};
static const std::tm intelEpoch(void)
{
std::tm val = {};
val.tm_year = 1996 - 1900;
return val;
}
bool formatFru(const std::vector<char>& fruBytes,
boost::container::flat_map<std::string, std::string>& result)
{
static const std::vector<const char*> CHASSIS_FRU_AREAS = {
"PART_NUMBER", "SERIAL_NUMBER", "INFO_AM1", "INFO_AM2"};
static const std::vector<const char*> BOARD_FRU_AREAS = {
"MANUFACTURER", "PRODUCT_NAME", "SERIAL_NUMBER", "PART_NUMBER",
"FRU_VERSION_ID", "INFO_AM1", "INFO_AM2"};
static const std::vector<const char*> PRODUCT_FRU_AREAS = {
"MANUFACTURER", "PRODUCT_NAME", "PART_NUMBER",
"VERSION", "SERIAL_NUMBER", "ASSET_TAG",
"FRU_VERSION_ID", "INFO_AM1", "INFO_AM2"};
if (fruBytes.size() <= 8)
{
return false;
}
std::vector<char>::const_iterator fruAreaOffsetField = fruBytes.begin();
result["Common_Format_Version"] =
std::to_string(static_cast<int>(*fruAreaOffsetField));
const std::vector<const char*>* fieldData;
for (const std::string& area : FRU_AREAS)
{
fruAreaOffsetField++;
if (fruAreaOffsetField >= fruBytes.end())
{
return false;
}
size_t offset = (*fruAreaOffsetField) * 8;
if (offset > 1)
{
// +2 to skip format and length
std::vector<char>::const_iterator fruBytesIter =
fruBytes.begin() + offset + 2;
if (fruBytesIter >= fruBytes.end())
{
return false;
}
if (area == "CHASSIS")
{
result["CHASSIS_TYPE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
fieldData = &CHASSIS_FRU_AREAS;
}
else if (area == "BOARD")
{
result["BOARD_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
if (fruBytesIter >= fruBytes.end())
{
return false;
}
unsigned int minutes = *fruBytesIter |
*(fruBytesIter + 1) << 8 |
*(fruBytesIter + 2) << 16;
std::tm fruTime = intelEpoch();
time_t timeValue = mktime(&fruTime);
timeValue += minutes * 60;
fruTime = *gmtime(&timeValue);
result["BOARD_MANUFACTURE_DATE"] = asctime(&fruTime);
result["BOARD_MANUFACTURE_DATE"]
.pop_back(); // remove trailing null
fruBytesIter += 3;
fieldData = &BOARD_FRU_AREAS;
}
else if (area == "PRODUCT")
{
result["PRODUCT_LANGUAGE_CODE"] =
std::to_string(static_cast<int>(*fruBytesIter));
fruBytesIter += 1;
fieldData = &PRODUCT_FRU_AREAS;
}
else
{
continue;
}
for (auto& field : *fieldData)
{
if (fruBytesIter >= fruBytes.end())
{
return false;
}
/* Checking for last byte C1 to indicate that no more
* field to be read */
if (static_cast<uint8_t>(*fruBytesIter) == 0xC1)
{
break;
}
size_t length = *fruBytesIter & 0x3f;
fruBytesIter += 1;
if (fruBytesIter >= fruBytes.end())
{
return false;
}
std::string value(fruBytesIter, fruBytesIter + length);
// Strip non null characters from the end
value.erase(std::find_if(value.rbegin(), value.rend(),
[](char ch) { return ch != 0; })
.base(),
value.end());
result[area + "_" + field] = std::move(value);
fruBytesIter += length;
if (fruBytesIter >= fruBytes.end())
{
std::cerr << "Warning Fru Length Mismatch:\n ";
for (auto& c : fruBytes)
{
std::cerr << c;
}
std::cerr << "\n";
if (DEBUG)
{
for (auto& keyPair : result)
{
std::cerr << keyPair.first << " : "
<< keyPair.second << "\n";
}
}
return false;
}
}
}
}
return true;
}
std::vector<uint8_t>& getFruInfo(const uint8_t& bus, const uint8_t& address)
{
auto deviceMap = busMap.find(bus);
if (deviceMap == busMap.end())
{
throw std::invalid_argument("Invalid Bus.");
}
auto device = deviceMap->second->find(address);
if (device == deviceMap->second->end())
{
throw std::invalid_argument("Invalid Address.");
}
std::vector<uint8_t>& ret =
reinterpret_cast<std::vector<uint8_t>&>(device->second);
return ret;
}
void AddFruObjectToDbus(
std::vector<char>& device, sdbusplus::asio::object_server& objServer,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
uint32_t bus, uint32_t address)
{
boost::container::flat_map<std::string, std::string> formattedFru;
if (!formatFru(device, formattedFru))
{
std::cerr << "failed to format fru for device at bus " << bus
<< " address " << address << "\n";
return;
}
auto productNameFind = formattedFru.find("BOARD_PRODUCT_NAME");
std::string productName;
// Not found under Board section or an empty string.
if (productNameFind == formattedFru.end() ||
productNameFind->second.empty())
{
productNameFind = formattedFru.find("PRODUCT_PRODUCT_NAME");
}
// Found under Product section and not an empty string.
if (productNameFind != formattedFru.end() &&
!productNameFind->second.empty())
{
productName = productNameFind->second;
std::regex illegalObject("[^A-Za-z0-9_]");
productName = std::regex_replace(productName, illegalObject, "_");
}
else
{
productName = "UNKNOWN" + std::to_string(UNKNOWN_BUS_OBJECT_COUNT);
UNKNOWN_BUS_OBJECT_COUNT++;
}
productName = "/xyz/openbmc_project/FruDevice/" + productName;
// avoid duplicates by checking to see if on a mux
if (bus > 0)
{
size_t index = 0;
for (auto const& busIface : dbusInterfaceMap)
{
if ((busIface.second->get_object_path() == productName))
{
if (isMuxBus(bus) && address == busIface.first.second &&
(getFruInfo(static_cast<uint8_t>(busIface.first.first),
static_cast<uint8_t>(busIface.first.second)) ==
getFruInfo(static_cast<uint8_t>(bus),
static_cast<uint8_t>(address))))
{
// This device is already added to the lower numbered bus,
// do not replicate it.
return;
}
// add underscore _index for the same object path on dbus
std::string strIndex = std::to_string(index);
if (index > 0)
{
productName.substr(0, productName.size() - strIndex.size());
}
else
{
productName += "_";
}
productName += std::to_string(index++);
}
}
}
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface(productName, "xyz.openbmc_project.FruDevice");
dbusInterfaceMap[std::pair<size_t, size_t>(bus, address)] = iface;
for (auto& property : formattedFru)
{
std::regex_replace(property.second.begin(), property.second.begin(),
property.second.end(), NON_ASCII_REGEX, "_");
if (property.second.empty())
{
continue;
}
std::string key =
std::regex_replace(property.first, NON_ASCII_REGEX, "_");
if (!iface->register_property(key, property.second + '\0'))
{
std::cerr << "illegal key: " << key << "\n";
}
if (DEBUG)
{
std::cout << property.first << ": " << property.second << "\n";
}
}
// baseboard will be 0, 0
iface->register_property("BUS", bus);
iface->register_property("ADDRESS", address);
iface->initialize();
}
static bool readBaseboardFru(std::vector<char>& baseboardFru)
{
// try to read baseboard fru from file
std::ifstream baseboardFruFile(BASEBOARD_FRU_LOCATION, std::ios::binary);
if (baseboardFruFile.good())
{
baseboardFruFile.seekg(0, std::ios_base::end);
size_t fileSize = static_cast<size_t>(baseboardFruFile.tellg());
baseboardFru.resize(fileSize);
baseboardFruFile.seekg(0, std::ios_base::beg);
baseboardFruFile.read(baseboardFru.data(), fileSize);
}
else
{
return false;
}
return true;
}
bool writeFru(uint8_t bus, uint8_t address, const std::vector<uint8_t>& fru)
{
boost::container::flat_map<std::string, std::string> tmp;
if (fru.size() > MAX_FRU_SIZE)
{
std::cerr << "Invalid fru.size() during writeFru\n";
return false;
}
// verify legal fru by running it through fru parsing logic
if (!formatFru(reinterpret_cast<const std::vector<char>&>(fru), tmp))
{
std::cerr << "Invalid fru format during writeFru\n";
return false;
}
// baseboard fru
if (bus == 0 && address == 0)
{
std::ofstream file(BASEBOARD_FRU_LOCATION, std::ios_base::binary);
if (!file.good())
{
std::cerr << "Error opening file " << BASEBOARD_FRU_LOCATION
<< "\n";
throw DBusInternalError();
return false;
}
file.write(reinterpret_cast<const char*>(fru.data()), fru.size());
return file.good();
}
else
{
if (hasEepromFile(bus, address))
{
auto path = getEepromPath(bus, address);
int eeprom = open(path.c_str(), O_RDWR | O_CLOEXEC);
if (eeprom < 0)
{
std::cerr << "unable to open i2c device " << path << "\n";
throw DBusInternalError();
return false;
}
ssize_t writtenBytes = write(eeprom, fru.data(), fru.size());
if (writtenBytes < 0)
{
std::cerr << "unable to write to i2c device " << path << "\n";
close(eeprom);
throw DBusInternalError();
return false;
}
close(eeprom);
return true;
}
std::string i2cBus = "/dev/i2c-" + std::to_string(bus);
int file = open(i2cBus.c_str(), O_RDWR | O_CLOEXEC);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus << "\n";
throw DBusInternalError();
return false;
}
if (ioctl(file, I2C_SLAVE_FORCE, address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
constexpr const size_t RETRY_MAX = 2;
uint16_t index = 0;
size_t retries = RETRY_MAX;
while (index < fru.size())
{
if ((index && ((index % (MAX_EEPROM_PAGE_INDEX + 1)) == 0)) &&
(retries == RETRY_MAX))
{
// The 4K EEPROM only uses the A2 and A1 device address bits
// with the third bit being a memory page address bit.
if (ioctl(file, I2C_SLAVE_FORCE, ++address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
}
if (i2c_smbus_write_byte_data(file, static_cast<uint8_t>(index),
fru[index]) < 0)
{
if (!retries--)
{
std::cerr << "error writing fru: " << strerror(errno)
<< "\n";
close(file);
throw DBusInternalError();
return false;
}
}
else
{
retries = RETRY_MAX;
index++;
}
// most eeproms require 5-10ms between writes
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
close(file);
return true;
}
}
void rescanBusses(
boost::asio::io_service& io, BusMap& busmap,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
sdbusplus::asio::object_server& objServer)
{
static boost::asio::deadline_timer timer(io);
timer.expires_from_now(boost::posix_time::seconds(1));
// setup an async wait in case we get flooded with requests
timer.async_wait([&](const boost::system::error_code&) {
auto devDir = fs::path("/dev/");
std::vector<fs::path> i2cBuses;
boost::container::flat_map<size_t, fs::path> busPaths;
if (!getI2cDevicePaths(devDir, busPaths))
{
std::cerr << "unable to find i2c devices\n";
return;
}
for (auto busPath : busPaths)
{
i2cBuses.emplace_back(busPath.second);
}
busmap.clear();
auto scan = std::make_shared<FindDevicesWithCallback>(
i2cBuses, io, busmap, [&]() {
for (auto& busIface : dbusInterfaceMap)
{
objServer.remove_interface(busIface.second);
}
dbusInterfaceMap.clear();
UNKNOWN_BUS_OBJECT_COUNT = 0;
// todo, get this from a more sensable place
std::vector<char> baseboardFru;
if (readBaseboardFru(baseboardFru))
{
boost::container::flat_map<int, std::vector<char>>
baseboardDev;
baseboardDev.emplace(0, baseboardFru);
busmap[0] = std::make_shared<DeviceMap>(baseboardDev);
}
for (auto& devicemap : busmap)
{
for (auto& device : *devicemap.second)
{
AddFruObjectToDbus(device.second, objServer,
dbusInterfaceMap, devicemap.first,
device.first);
}
}
});
scan->run();
});
}
int main()
{
auto devDir = fs::path("/dev/");
auto matchString = std::string(R"(i2c-\d+$)");
std::vector<fs::path> i2cBuses;
if (!findFiles(devDir, matchString, i2cBuses))
{
std::cerr << "unable to find i2c devices\n";
return 1;
}
// check for and load blacklist with initial buses.
loadBlacklist(blacklistPath);
boost::asio::io_service io;
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
auto objServer = sdbusplus::asio::object_server(systemBus);
systemBus->request_name("xyz.openbmc_project.FruDevice");
// this is a map with keys of pair(bus number, address) and values of
// the object on dbus
boost::container::flat_map<std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>
dbusInterfaceMap;
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface("/xyz/openbmc_project/FruDevice",
"xyz.openbmc_project.FruDeviceManager");
iface->register_method("ReScan", [&]() {
rescanBusses(io, busMap, dbusInterfaceMap, objServer);
});
iface->register_method("GetRawFru", getFruInfo);
iface->register_method("WriteFru", [&](const uint8_t bus,
const uint8_t address,
const std::vector<uint8_t>& data) {
if (!writeFru(bus, address, data))
{
throw std::invalid_argument("Invalid Arguments.");
return;
}
// schedule rescan on success
rescanBusses(io, busMap, dbusInterfaceMap, objServer);
});
iface->initialize();
std::function<void(sdbusplus::message::message & message)> eventHandler =
[&](sdbusplus::message::message& message) {
std::string objectName;
boost::container::flat_map<
std::string,
std::variant<std::string, bool, int64_t, uint64_t, double>>
values;
message.read(objectName, values);
auto findPgood = values.find("pgood");
if (findPgood != values.end())
{
rescanBusses(io, busMap, dbusInterfaceMap, objServer);
}
};
sdbusplus::bus::match::match powerMatch = sdbusplus::bus::match::match(
static_cast<sdbusplus::bus::bus&>(*systemBus),
"type='signal',interface='org.freedesktop.DBus.Properties',path='/xyz/"
"openbmc_project/Chassis/Control/"
"Power0',arg0='xyz.openbmc_project.Chassis.Control.Power'",
eventHandler);
int fd = inotify_init();
inotify_add_watch(fd, I2C_DEV_LOCATION,
IN_CREATE | IN_MOVED_TO | IN_DELETE);
std::array<char, 4096> readBuffer;
std::string pendingBuffer;
// monitor for new i2c devices
boost::asio::posix::stream_descriptor dirWatch(io, fd);
std::function<void(const boost::system::error_code, std::size_t)>
watchI2cBusses = [&](const boost::system::error_code& ec,
std::size_t bytes_transferred) {
if (ec)
{
std::cout << "Callback Error " << ec << "\n";
return;
}
pendingBuffer += std::string(readBuffer.data(), bytes_transferred);
bool devChange = false;
while (pendingBuffer.size() > sizeof(inotify_event))
{
const inotify_event* iEvent =
reinterpret_cast<const inotify_event*>(
pendingBuffer.data());
switch (iEvent->mask)
{
case IN_CREATE:
case IN_MOVED_TO:
case IN_DELETE:
if (boost::starts_with(std::string(iEvent->name),
"i2c"))
{
devChange = true;
}
}
pendingBuffer.erase(0, sizeof(inotify_event) + iEvent->len);
}
if (devChange)
{
rescanBusses(io, busMap, dbusInterfaceMap, objServer);
}
dirWatch.async_read_some(boost::asio::buffer(readBuffer),
watchI2cBusses);
};
dirWatch.async_read_some(boost::asio::buffer(readBuffer), watchI2cBusses);
// run the initial scan
rescanBusses(io, busMap, dbusInterfaceMap, objServer);
io.run();
return 0;
}