blob: 403f6eb7d493e321746aef673e728a435060b7b2 [file] [log] [blame] [edit]
/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
/// \file fru_device.cpp
#include "fru_utils.hpp"
#include "utils.hpp"
#include <fcntl.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/steady_timer.hpp>
#include <boost/container/flat_map.hpp>
#include <nlohmann/json.hpp>
#include <phosphor-logging/lg2.hpp>
#include <sdbusplus/asio/connection.hpp>
#include <sdbusplus/asio/object_server.hpp>
#include <array>
#include <cerrno>
#include <charconv>
#include <chrono>
#include <ctime>
#include <filesystem>
#include <fstream>
#include <functional>
#include <future>
#include <iomanip>
#include <iostream>
#include <limits>
#include <map>
#include <optional>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <utility>
#include <variant>
#include <vector>
extern "C"
{
#include <i2c/smbus.h>
#include <linux/i2c-dev.h>
}
namespace fs = std::filesystem;
constexpr size_t maxFruSize = 512;
constexpr size_t maxEepromPageIndex = 255;
constexpr size_t busTimeoutSeconds = 10;
constexpr const char* blocklistPath = PACKAGE_DIR "blacklist.json";
const static constexpr char* baseboardFruLocation =
"/etc/fru/baseboard.fru.bin";
const static constexpr char* i2CDevLocation = "/dev";
// TODO Refactor these to not be globals
// NOLINTBEGIN(cppcoreguidelines-avoid-non-const-global-variables)
static boost::container::flat_map<size_t, std::optional<std::set<size_t>>>
busBlocklist;
struct FindDevicesWithCallback;
static boost::container::flat_map<
std::pair<size_t, size_t>, std::shared_ptr<sdbusplus::asio::dbus_interface>>
foundDevices;
static boost::container::flat_map<size_t, std::set<size_t>> failedAddresses;
static boost::container::flat_map<size_t, std::set<size_t>> fruAddresses;
boost::asio::io_context io;
// NOLINTEND(cppcoreguidelines-avoid-non-const-global-variables)
bool updateFRUProperty(
const std::string& updatePropertyReq, uint32_t bus, uint32_t address,
const std::string& propertyName,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
size_t& unknownBusObjectCount, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer,
std::shared_ptr<sdbusplus::asio::connection>& systemBus);
// Given a bus/address, produce the path in sysfs for an eeprom.
static std::string getEepromPath(size_t bus, size_t address)
{
std::stringstream output;
output << "/sys/bus/i2c/devices/" << bus << "-" << std::right
<< std::setfill('0') << std::setw(4) << std::hex << address
<< "/eeprom";
return output.str();
}
static bool hasEepromFile(size_t bus, size_t address)
{
auto path = getEepromPath(bus, address);
try
{
return fs::exists(path);
}
catch (...)
{
return false;
}
}
static int64_t readFromEeprom(int fd, off_t offset, size_t len, uint8_t* buf)
{
auto result = lseek(fd, offset, SEEK_SET);
if (result < 0)
{
std::cerr << "failed to seek\n";
return -1;
}
return read(fd, buf, len);
}
static int busStrToInt(const std::string_view busName)
{
auto findBus = busName.rfind('-');
if (findBus == std::string::npos)
{
return -1;
}
std::string_view num = busName.substr(findBus + 1);
int val = 0;
std::from_chars(num.data(), num.data() + num.size(), val);
return val;
}
static int getRootBus(size_t bus)
{
auto ec = std::error_code();
auto path = std::filesystem::read_symlink(
std::filesystem::path(
"/sys/bus/i2c/devices/i2c-" + std::to_string(bus) + "/mux_device"),
ec);
if (ec)
{
return -1;
}
std::string filename = path.filename();
auto findBus = filename.find('-');
if (findBus == std::string::npos)
{
return -1;
}
return std::stoi(filename.substr(0, findBus));
}
static bool isMuxBus(size_t bus)
{
auto ec = std::error_code();
auto isSymlink =
is_symlink(std::filesystem::path("/sys/bus/i2c/devices/i2c-" +
std::to_string(bus) + "/mux_device"),
ec);
return (!ec && isSymlink);
}
static void makeProbeInterface(size_t bus, size_t address,
sdbusplus::asio::object_server& objServer)
{
if (isMuxBus(bus))
{
return; // the mux buses are random, no need to publish
}
auto [it, success] = foundDevices.emplace(
std::make_pair(bus, address),
objServer.add_interface(
"/xyz/openbmc_project/FruDevice/" + std::to_string(bus) + "_" +
std::to_string(address),
"xyz.openbmc_project.Inventory.Item.I2CDevice"));
if (!success)
{
return; // already added
}
it->second->register_property("Bus", bus);
it->second->register_property("Address", address);
it->second->initialize();
}
static std::optional<bool> isDevice16Bit(int file)
{
// Set the higher data word address bits to 0. It's safe on 8-bit addressing
// EEPROMs because it doesn't write any actual data.
int ret = i2c_smbus_write_byte(file, 0);
if (ret < 0)
{
return std::nullopt;
}
/* Get first byte */
int byte1 = i2c_smbus_read_byte_data(file, 0);
if (byte1 < 0)
{
return std::nullopt;
}
/* Read 7 more bytes, it will read same first byte in case of
* 8 bit but it will read next byte in case of 16 bit
*/
for (int i = 0; i < 7; i++)
{
int byte2 = i2c_smbus_read_byte_data(file, 0);
if (byte2 < 0)
{
return std::nullopt;
}
if (byte2 != byte1)
{
return true;
}
}
return false;
}
// Issue an I2C transaction to first write to_target_buf_len bytes,then read
// from_target_buf_len bytes.
static int i2cSmbusWriteThenRead(
int file, uint16_t address, uint8_t* toTargetBuf, uint8_t toTargetBufLen,
uint8_t* fromTargetBuf, uint8_t fromTargetBufLen)
{
if (toTargetBuf == nullptr || toTargetBufLen == 0 ||
fromTargetBuf == nullptr || fromTargetBufLen == 0)
{
return -1;
}
constexpr size_t smbusWriteThenReadMsgCount = 2;
std::array<struct i2c_msg, smbusWriteThenReadMsgCount> msgs{};
struct i2c_rdwr_ioctl_data rdwr{};
msgs[0].addr = address;
msgs[0].flags = 0;
msgs[0].len = toTargetBufLen;
msgs[0].buf = toTargetBuf;
msgs[1].addr = address;
msgs[1].flags = I2C_M_RD;
msgs[1].len = fromTargetBufLen;
msgs[1].buf = fromTargetBuf;
rdwr.msgs = msgs.data();
rdwr.nmsgs = msgs.size();
int ret = ioctl(file, I2C_RDWR, &rdwr);
return (ret == static_cast<int>(msgs.size())) ? msgs[1].len : -1;
}
static int64_t readData(bool is16bit, bool isBytewise, int file,
uint16_t address, off_t offset, size_t len,
uint8_t* buf)
{
if (!is16bit)
{
if (!isBytewise)
{
return i2c_smbus_read_i2c_block_data(
file, static_cast<uint8_t>(offset), len, buf);
}
std::span<uint8_t> bufspan{buf, len};
for (size_t i = 0; i < len; i++)
{
int byte = i2c_smbus_read_byte_data(
file, static_cast<uint8_t>(offset + i));
if (byte < 0)
{
return static_cast<int64_t>(byte);
}
bufspan[i] = static_cast<uint8_t>(byte);
}
return static_cast<int64_t>(len);
}
offset = htobe16(offset);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
uint8_t* u8Offset = reinterpret_cast<uint8_t*>(&offset);
return i2cSmbusWriteThenRead(file, address, u8Offset, 2, buf, len);
}
// TODO: This code is very similar to the non-eeprom version and can be merged
// with some tweaks.
static std::vector<uint8_t> processEeprom(int bus, int address)
{
auto path = getEepromPath(bus, address);
int file = open(path.c_str(), O_RDONLY);
if (file < 0)
{
std::cerr << "Unable to open eeprom file: " << path << "\n";
return {};
}
std::string errorMessage = "eeprom at " + std::to_string(bus) +
" address " + std::to_string(address);
auto readFunc = [file](off_t offset, size_t length, uint8_t* outbuf) {
return readFromEeprom(file, offset, length, outbuf);
};
FRUReader reader(std::move(readFunc));
std::pair<std::vector<uint8_t>, bool> pair =
readFRUContents(reader, errorMessage);
close(file);
return pair.first;
}
std::set<size_t> findI2CEeproms(int i2cBus,
const std::shared_ptr<DeviceMap>& devices)
{
std::set<size_t> foundList;
std::string path = "/sys/bus/i2c/devices/i2c-" + std::to_string(i2cBus);
// For each file listed under the i2c device
// NOTE: This should be faster than just checking for each possible address
// path.
auto ec = std::error_code();
for (const auto& p : fs::directory_iterator(path, ec))
{
if (ec)
{
std::cerr << "directory_iterator err " << ec.message() << "\n";
break;
}
const std::string node = p.path().string();
std::smatch m;
bool found =
std::regex_match(node, m, std::regex(".+\\d+-([0-9abcdef]+$)"));
if (!found)
{
continue;
}
if (m.size() != 2)
{
std::cerr << "regex didn't capture\n";
continue;
}
std::ssub_match subMatch = m[1];
std::string addressString = subMatch.str();
std::string_view addressStringView(addressString);
size_t address = 0;
std::from_chars(addressStringView.begin(), addressStringView.end(),
address, 16);
const std::string eeprom = node + "/eeprom";
try
{
if (!fs::exists(eeprom))
{
continue;
}
}
catch (...)
{
continue;
}
// There is an eeprom file at this address, it may have invalid
// contents, but we found it.
foundList.insert(address);
std::vector<uint8_t> device = processEeprom(i2cBus, address);
if (!device.empty())
{
devices->emplace(address, device);
}
}
return foundList;
}
int getBusFRUs(int file, int first, int last, int bus,
std::shared_ptr<DeviceMap> devices, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer)
{
std::future<int> future = std::async(std::launch::async, [&]() {
// NOTE: When reading the devices raw on the bus, it can interfere with
// the driver's ability to operate, therefore read eeproms first before
// scanning for devices without drivers. Several experiments were run
// and it was determined that if there were any devices on the bus
// before the eeprom was hit and read, the eeprom driver wouldn't open
// while the bus device was open. An experiment was not performed to see
// if this issue was resolved if the i2c bus device was closed, but
// hexdumps of the eeprom later were successful.
// Scan for i2c eeproms loaded on this bus.
std::set<size_t> skipList = findI2CEeproms(bus, devices);
std::set<size_t>& failedItems = failedAddresses[bus];
std::set<size_t>& foundItems = fruAddresses[bus];
foundItems.clear();
auto busFind = busBlocklist.find(bus);
if (busFind != busBlocklist.end())
{
if (busFind->second != std::nullopt)
{
for (const auto& address : *(busFind->second))
{
skipList.insert(address);
}
}
}
std::set<size_t>* rootFailures = nullptr;
int rootBus = getRootBus(bus);
if (rootBus >= 0)
{
auto rootBusFind = busBlocklist.find(rootBus);
if (rootBusFind != busBlocklist.end())
{
if (rootBusFind->second != std::nullopt)
{
for (const auto& rootAddress : *(rootBusFind->second))
{
skipList.insert(rootAddress);
}
}
}
rootFailures = &(failedAddresses[rootBus]);
foundItems = fruAddresses[rootBus];
}
constexpr int startSkipTargetAddr = 0;
constexpr int endSkipTargetAddr = 12;
for (int ii = first; ii <= last; ii++)
{
if (foundItems.find(ii) != foundItems.end())
{
continue;
}
if (skipList.find(ii) != skipList.end())
{
continue;
}
// skipping since no device is present in this range
if (ii >= startSkipTargetAddr && ii <= endSkipTargetAddr)
{
continue;
}
// Set target address
if (ioctl(file, I2C_SLAVE, ii) < 0)
{
std::cerr << "device at bus " << bus << " address " << ii
<< " busy\n";
continue;
}
// probe
if (i2c_smbus_read_byte(file) < 0)
{
continue;
}
lg2::debug("something at bus {BUS}, addr {ADDR}", "BUS", bus,
"ADDR", ii);
makeProbeInterface(bus, ii, objServer);
if (failedItems.find(ii) != failedItems.end())
{
// if we failed to read it once, unlikely we can read it later
continue;
}
if (rootFailures != nullptr)
{
if (rootFailures->find(ii) != rootFailures->end())
{
continue;
}
}
/* Check for Device type if it is 8 bit or 16 bit */
std::optional<bool> is16Bit = isDevice16Bit(file);
if (!is16Bit.has_value())
{
std::cerr << "failed to read bus " << bus << " address " << ii
<< "\n";
if (powerIsOn)
{
failedItems.insert(ii);
}
continue;
}
bool is16BitBool{*is16Bit};
auto readFunc = [is16BitBool, file,
ii](off_t offset, size_t length, uint8_t* outbuf) {
return readData(is16BitBool, false, file, ii, offset, length,
outbuf);
};
FRUReader reader(std::move(readFunc));
std::string errorMessage =
"bus " + std::to_string(bus) + " address " + std::to_string(ii);
std::pair<std::vector<uint8_t>, bool> pair =
readFRUContents(reader, errorMessage);
const bool foundHeader = pair.second;
if (!foundHeader && !is16BitBool)
{
// certain FRU eeproms require bytewise reading.
// otherwise garbage is read. e.g. SuperMicro PWS 920P-SQ
auto readFunc =
[is16BitBool, file,
ii](off_t offset, size_t length, uint8_t* outbuf) {
return readData(is16BitBool, true, file, ii, offset,
length, outbuf);
};
FRUReader readerBytewise(std::move(readFunc));
pair = readFRUContents(readerBytewise, errorMessage);
}
if (pair.first.empty())
{
continue;
}
devices->emplace(ii, pair.first);
fruAddresses[bus].insert(ii);
}
return 1;
});
std::future_status status =
future.wait_for(std::chrono::seconds(busTimeoutSeconds));
if (status == std::future_status::timeout)
{
std::cerr << "Error reading bus " << bus << "\n";
if (powerIsOn)
{
busBlocklist[bus] = std::nullopt;
}
close(file);
return -1;
}
close(file);
return future.get();
}
void loadBlocklist(const char* path)
{
std::ifstream blocklistStream(path);
if (!blocklistStream.good())
{
// File is optional.
std::cerr << "Cannot open blocklist file.\n\n";
return;
}
nlohmann::json data =
nlohmann::json::parse(blocklistStream, nullptr, false);
if (data.is_discarded())
{
std::cerr << "Illegal blocklist file detected, cannot validate JSON, "
"exiting\n";
std::exit(EXIT_FAILURE);
}
// It's expected to have at least one field, "buses" that is an array of the
// buses by integer. Allow for future options to exclude further aspects,
// such as specific addresses or ranges.
if (data.type() != nlohmann::json::value_t::object)
{
std::cerr << "Illegal blocklist, expected to read dictionary\n";
std::exit(EXIT_FAILURE);
}
// If buses field is missing, that's fine.
if (data.count("buses") == 1)
{
// Parse the buses array after a little validation.
auto buses = data.at("buses");
if (buses.type() != nlohmann::json::value_t::array)
{
// Buses field present but invalid, therefore this is an error.
std::cerr << "Invalid contents for blocklist buses field\n";
std::exit(EXIT_FAILURE);
}
// Catch exception here for type mis-match.
try
{
for (const auto& busIterator : buses)
{
// If bus and addresses field are missing, that's fine.
if (busIterator.contains("bus") &&
busIterator.contains("addresses"))
{
auto busData = busIterator.at("bus");
auto bus = busData.get<size_t>();
auto addressData = busIterator.at("addresses");
auto addresses =
addressData.get<std::set<std::string_view>>();
auto& block = busBlocklist[bus].emplace();
for (const auto& address : addresses)
{
size_t addressInt = 0;
std::from_chars(address.begin() + 2, address.end(),
addressInt, 16);
block.insert(addressInt);
}
}
else
{
busBlocklist[busIterator.get<size_t>()] = std::nullopt;
}
}
}
catch (const nlohmann::detail::type_error& e)
{
// Type mis-match is a critical error.
std::cerr << "Invalid bus type: " << e.what() << "\n";
std::exit(EXIT_FAILURE);
}
}
}
static void findI2CDevices(const std::vector<fs::path>& i2cBuses,
BusMap& busmap, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer)
{
for (const auto& i2cBus : i2cBuses)
{
int bus = busStrToInt(i2cBus.string());
if (bus < 0)
{
std::cerr << "Cannot translate " << i2cBus << " to int\n";
continue;
}
auto busFind = busBlocklist.find(bus);
if (busFind != busBlocklist.end())
{
if (busFind->second == std::nullopt)
{
continue; // Skip blocked busses.
}
}
int rootBus = getRootBus(bus);
auto rootBusFind = busBlocklist.find(rootBus);
if (rootBusFind != busBlocklist.end())
{
if (rootBusFind->second == std::nullopt)
{
continue;
}
}
auto file = open(i2cBus.c_str(), O_RDWR);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus.string()
<< "\n";
continue;
}
unsigned long funcs = 0;
if (ioctl(file, I2C_FUNCS, &funcs) < 0)
{
std::cerr
<< "Error: Could not get the adapter functionality matrix bus "
<< bus << "\n";
close(file);
continue;
}
if (((funcs & I2C_FUNC_SMBUS_READ_BYTE) == 0U) ||
((I2C_FUNC_SMBUS_READ_I2C_BLOCK) == 0))
{
std::cerr << "Error: Can't use SMBus Receive Byte command bus "
<< bus << "\n";
continue;
}
auto& device = busmap[bus];
device = std::make_shared<DeviceMap>();
// i2cdetect by default uses the range 0x03 to 0x77, as
// this is what we have tested with, use this range. Could be
// changed in future.
lg2::debug("Scanning bus {BUS}", "BUS", bus);
// fd is closed in this function in case the bus locks up
getBusFRUs(file, 0x03, 0x77, bus, device, powerIsOn, objServer);
lg2::debug("Done scanning bus {BUS}", "BUS", bus);
}
}
// this class allows an async response after all i2c devices are discovered
struct FindDevicesWithCallback :
std::enable_shared_from_this<FindDevicesWithCallback>
{
FindDevicesWithCallback(const std::vector<fs::path>& i2cBuses,
BusMap& busmap, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer,
std::function<void()>&& callback) :
_i2cBuses(i2cBuses), _busMap(busmap), _powerIsOn(powerIsOn),
_objServer(objServer), _callback(std::move(callback))
{}
~FindDevicesWithCallback()
{
_callback();
}
void run()
{
findI2CDevices(_i2cBuses, _busMap, _powerIsOn, _objServer);
}
const std::vector<fs::path>& _i2cBuses;
BusMap& _busMap;
const bool& _powerIsOn;
sdbusplus::asio::object_server& _objServer;
std::function<void()> _callback;
};
void addFruObjectToDbus(
std::vector<uint8_t>& device,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
uint32_t bus, uint32_t address, size_t& unknownBusObjectCount,
const bool& powerIsOn, sdbusplus::asio::object_server& objServer,
std::shared_ptr<sdbusplus::asio::connection>& systemBus)
{
boost::container::flat_map<std::string, std::string> formattedFRU;
std::optional<std::string> optionalProductName = getProductName(
device, formattedFRU, bus, address, unknownBusObjectCount);
if (!optionalProductName)
{
std::cerr << "getProductName failed. product name is empty.\n";
return;
}
std::string productName =
"/xyz/openbmc_project/FruDevice/" + optionalProductName.value();
std::optional<int> index = findIndexForFRU(dbusInterfaceMap, productName);
if (index.has_value())
{
productName += "_";
productName += std::to_string(++(*index));
}
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface(productName, "xyz.openbmc_project.FruDevice");
dbusInterfaceMap[std::pair<size_t, size_t>(bus, address)] = iface;
for (auto& property : formattedFRU)
{
std::regex_replace(property.second.begin(), property.second.begin(),
property.second.end(), nonAsciiRegex, "_");
if (property.second.empty() && property.first != "PRODUCT_ASSET_TAG")
{
continue;
}
std::string key =
std::regex_replace(property.first, nonAsciiRegex, "_");
if (property.first == "PRODUCT_ASSET_TAG")
{
std::string propertyName = property.first;
iface->register_property(
key, property.second + '\0',
[bus, address, propertyName, &dbusInterfaceMap,
&unknownBusObjectCount, &powerIsOn, &objServer,
&systemBus](const std::string& req, std::string& resp) {
if (strcmp(req.c_str(), resp.c_str()) != 0)
{
// call the method which will update
if (updateFRUProperty(req, bus, address, propertyName,
dbusInterfaceMap,
unknownBusObjectCount, powerIsOn,
objServer, systemBus))
{
resp = req;
}
else
{
throw std::invalid_argument(
"FRU property update failed.");
}
}
return 1;
});
}
else if (!iface->register_property(key, property.second + '\0'))
{
std::cerr << "illegal key: " << key << "\n";
}
lg2::debug("parsed FRU property: {FIRST}: {SECOND}", "FIRST",
property.first, "SECOND", property.second);
}
// baseboard will be 0, 0
iface->register_property("BUS", bus);
iface->register_property("ADDRESS", address);
iface->initialize();
}
static bool readBaseboardFRU(std::vector<uint8_t>& baseboardFRU)
{
// try to read baseboard fru from file
std::ifstream baseboardFRUFile(baseboardFruLocation, std::ios::binary);
if (baseboardFRUFile.good())
{
baseboardFRUFile.seekg(0, std::ios_base::end);
size_t fileSize = static_cast<size_t>(baseboardFRUFile.tellg());
baseboardFRU.resize(fileSize);
baseboardFRUFile.seekg(0, std::ios_base::beg);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
char* charOffset = reinterpret_cast<char*>(baseboardFRU.data());
baseboardFRUFile.read(charOffset, fileSize);
}
else
{
return false;
}
return true;
}
bool writeFRU(uint8_t bus, uint8_t address, const std::vector<uint8_t>& fru)
{
boost::container::flat_map<std::string, std::string> tmp;
if (fru.size() > maxFruSize)
{
std::cerr << "Invalid fru.size() during writeFRU\n";
return false;
}
// verify legal fru by running it through fru parsing logic
if (formatIPMIFRU(fru, tmp) != resCodes::resOK)
{
std::cerr << "Invalid fru format during writeFRU\n";
return false;
}
// baseboard fru
if (bus == 0 && address == 0)
{
std::ofstream file(baseboardFruLocation, std::ios_base::binary);
if (!file.good())
{
std::cerr << "Error opening file " << baseboardFruLocation << "\n";
throw DBusInternalError();
return false;
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
const char* charOffset = reinterpret_cast<const char*>(fru.data());
file.write(charOffset, fru.size());
return file.good();
}
if (hasEepromFile(bus, address))
{
auto path = getEepromPath(bus, address);
int eeprom = open(path.c_str(), O_RDWR | O_CLOEXEC);
if (eeprom < 0)
{
std::cerr << "unable to open i2c device " << path << "\n";
throw DBusInternalError();
return false;
}
ssize_t writtenBytes = write(eeprom, fru.data(), fru.size());
if (writtenBytes < 0)
{
std::cerr << "unable to write to i2c device " << path << "\n";
close(eeprom);
throw DBusInternalError();
return false;
}
close(eeprom);
return true;
}
std::string i2cBus = "/dev/i2c-" + std::to_string(bus);
int file = open(i2cBus.c_str(), O_RDWR | O_CLOEXEC);
if (file < 0)
{
std::cerr << "unable to open i2c device " << i2cBus << "\n";
throw DBusInternalError();
return false;
}
if (ioctl(file, I2C_SLAVE_FORCE, address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
constexpr const size_t retryMax = 2;
uint16_t index = 0;
size_t retries = retryMax;
while (index < fru.size())
{
if (((index != 0U) && ((index % (maxEepromPageIndex + 1)) == 0)) &&
(retries == retryMax))
{
// The 4K EEPROM only uses the A2 and A1 device address bits
// with the third bit being a memory page address bit.
if (ioctl(file, I2C_SLAVE_FORCE, ++address) < 0)
{
std::cerr << "unable to set device address\n";
close(file);
throw DBusInternalError();
return false;
}
}
if (i2c_smbus_write_byte_data(file, static_cast<uint8_t>(index),
fru[index]) < 0)
{
if ((retries--) == 0U)
{
std::cerr << "error writing fru: " << strerror(errno) << "\n";
close(file);
throw DBusInternalError();
return false;
}
}
else
{
retries = retryMax;
index++;
}
// most eeproms require 5-10ms between writes
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
close(file);
return true;
}
void rescanOneBus(
BusMap& busmap, uint16_t busNum,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
bool dbusCall, size_t& unknownBusObjectCount, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer,
std::shared_ptr<sdbusplus::asio::connection>& systemBus)
{
for (auto device = foundDevices.begin(); device != foundDevices.end();)
{
if (device->first.first == static_cast<size_t>(busNum))
{
objServer.remove_interface(device->second);
device = foundDevices.erase(device);
}
else
{
device++;
}
}
fs::path busPath = fs::path("/dev/i2c-" + std::to_string(busNum));
if (!fs::exists(busPath))
{
if (dbusCall)
{
std::cerr << "Unable to access i2c bus " << static_cast<int>(busNum)
<< "\n";
throw std::invalid_argument("Invalid Bus.");
}
return;
}
std::vector<fs::path> i2cBuses;
i2cBuses.emplace_back(busPath);
auto scan = std::make_shared<FindDevicesWithCallback>(
i2cBuses, busmap, powerIsOn, objServer,
[busNum, &busmap, &dbusInterfaceMap, &unknownBusObjectCount, &powerIsOn,
&objServer, &systemBus]() {
for (auto busIface = dbusInterfaceMap.begin();
busIface != dbusInterfaceMap.end();)
{
if (busIface->first.first == static_cast<size_t>(busNum))
{
objServer.remove_interface(busIface->second);
busIface = dbusInterfaceMap.erase(busIface);
}
else
{
busIface++;
}
}
auto found = busmap.find(busNum);
if (found == busmap.end() || found->second == nullptr)
{
return;
}
for (auto& device : *(found->second))
{
addFruObjectToDbus(device.second, dbusInterfaceMap,
static_cast<uint32_t>(busNum), device.first,
unknownBusObjectCount, powerIsOn, objServer,
systemBus);
}
});
scan->run();
}
void rescanBusses(
BusMap& busmap,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
size_t& unknownBusObjectCount, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer,
std::shared_ptr<sdbusplus::asio::connection>& systemBus)
{
static boost::asio::steady_timer timer(io);
timer.expires_from_now(std::chrono::seconds(1));
// setup an async wait in case we get flooded with requests
timer.async_wait([&](const boost::system::error_code& ec) {
if (ec == boost::asio::error::operation_aborted)
{
return;
}
if (ec)
{
std::cerr << "Error in timer: " << ec.message() << "\n";
return;
}
auto devDir = fs::path("/dev/");
std::vector<fs::path> i2cBuses;
boost::container::flat_map<size_t, fs::path> busPaths;
if (!getI2cDevicePaths(devDir, busPaths))
{
std::cerr << "unable to find i2c devices\n";
return;
}
for (const auto& busPath : busPaths)
{
i2cBuses.emplace_back(busPath.second);
}
busmap.clear();
for (auto& [pair, interface] : foundDevices)
{
objServer.remove_interface(interface);
}
foundDevices.clear();
auto scan = std::make_shared<FindDevicesWithCallback>(
i2cBuses, busmap, powerIsOn, objServer, [&]() {
for (auto& busIface : dbusInterfaceMap)
{
objServer.remove_interface(busIface.second);
}
dbusInterfaceMap.clear();
unknownBusObjectCount = 0;
// todo, get this from a more sensable place
std::vector<uint8_t> baseboardFRU;
if (readBaseboardFRU(baseboardFRU))
{
// If no device on i2c bus 0, the insertion will happen.
auto bus0 =
busmap.try_emplace(0, std::make_shared<DeviceMap>());
bus0.first->second->emplace(0, baseboardFRU);
}
for (auto& devicemap : busmap)
{
for (auto& device : *devicemap.second)
{
addFruObjectToDbus(device.second, dbusInterfaceMap,
devicemap.first, device.first,
unknownBusObjectCount, powerIsOn,
objServer, systemBus);
}
}
});
scan->run();
});
}
// Details with example of Asset Tag Update
// To find location of Product Info Area asset tag as per FRU specification
// 1. Find product Info area starting offset (*8 - as header will be in
// multiple of 8 bytes).
// 2. Skip 3 bytes of product info area (like format version, area length,
// and language code).
// 3. Traverse manufacturer name, product name, product version, & product
// serial number, by reading type/length code to reach the Asset Tag.
// 4. Update the Asset Tag, reposition the product Info area in multiple of
// 8 bytes. Update the Product area length and checksum.
bool updateFRUProperty(
const std::string& updatePropertyReq, uint32_t bus, uint32_t address,
const std::string& propertyName,
boost::container::flat_map<
std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
size_t& unknownBusObjectCount, const bool& powerIsOn,
sdbusplus::asio::object_server& objServer,
std::shared_ptr<sdbusplus::asio::connection>& systemBus)
{
size_t updatePropertyReqLen = updatePropertyReq.length();
if (updatePropertyReqLen == 1 || updatePropertyReqLen > 63)
{
std::cerr
<< "FRU field data cannot be of 1 char or more than 63 chars. "
"Invalid Length "
<< updatePropertyReqLen << "\n";
return false;
}
std::vector<uint8_t> fruData;
if (!getFruData(fruData, bus, address))
{
std::cerr << "Failure getting FRU Data \n";
return false;
}
struct FruArea fruAreaParams{};
if (!findFruAreaLocationAndField(fruData, propertyName, fruAreaParams))
{
std::cerr << "findFruAreaLocationAndField failed \n";
return false;
}
std::vector<uint8_t> restFRUAreaFieldsData;
if (!copyRestFRUArea(fruData, propertyName, fruAreaParams,
restFRUAreaFieldsData))
{
std::cerr << "copyRestFRUArea failed \n";
return false;
}
// Push post update fru areas if any
unsigned int nextFRUAreaLoc = 0;
for (fruAreas nextFRUArea = fruAreas::fruAreaInternal;
nextFRUArea <= fruAreas::fruAreaMultirecord; ++nextFRUArea)
{
unsigned int fruAreaLoc =
fruData[getHeaderAreaFieldOffset(nextFRUArea)] * fruBlockSize;
if ((fruAreaLoc > fruAreaParams.restFieldsEnd) &&
((nextFRUAreaLoc == 0) || (fruAreaLoc < nextFRUAreaLoc)))
{
nextFRUAreaLoc = fruAreaLoc;
}
}
std::vector<uint8_t> restFRUAreasData;
if (nextFRUAreaLoc != 0U)
{
std::copy_n(fruData.begin() + nextFRUAreaLoc,
fruData.size() - nextFRUAreaLoc,
std::back_inserter(restFRUAreasData));
}
// check FRU area size
size_t fruAreaDataSize =
((fruAreaParams.updateFieldLoc - fruAreaParams.start + 1) +
restFRUAreaFieldsData.size());
size_t fruAreaAvailableSize = fruAreaParams.size - fruAreaDataSize;
if ((updatePropertyReqLen + 1) > fruAreaAvailableSize)
{
#ifdef ENABLE_FRU_AREA_RESIZE
size_t newFRUAreaSize = fruAreaDataSize + updatePropertyReqLen + 1;
// round size to 8-byte blocks
newFRUAreaSize =
((newFRUAreaSize - 1) / fruBlockSize + 1) * fruBlockSize;
size_t newFRUDataSize =
fruData.size() + newFRUAreaSize - fruAreaParams.size;
fruData.resize(newFRUDataSize);
fruAreaParams.size = newFRUAreaSize;
fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
#else
std::cerr << "FRU field length: " << updatePropertyReqLen + 1
<< " should not be greater than available FRU area size: "
<< fruAreaAvailableSize << "\n";
return false;
#endif // ENABLE_FRU_AREA_RESIZE
}
// write new requested property field length and data
constexpr uint8_t newTypeLenMask = 0xC0;
fruData[fruAreaParams.updateFieldLoc] =
static_cast<uint8_t>(updatePropertyReqLen | newTypeLenMask);
fruAreaParams.updateFieldLoc++;
std::copy(updatePropertyReq.begin(), updatePropertyReq.end(),
fruData.begin() + fruAreaParams.updateFieldLoc);
// Copy remaining data to main fru area - post updated fru field vector
fruAreaParams.restFieldsLoc =
fruAreaParams.updateFieldLoc + updatePropertyReqLen;
size_t fruAreaDataEnd =
fruAreaParams.restFieldsLoc + restFRUAreaFieldsData.size();
std::copy(restFRUAreaFieldsData.begin(), restFRUAreaFieldsData.end(),
fruData.begin() + fruAreaParams.restFieldsLoc);
// Update final fru with new fru area length and checksum
unsigned int nextFRUAreaNewLoc = updateFRUAreaLenAndChecksum(
fruData, fruAreaParams.start, fruAreaDataEnd, fruAreaParams.end);
#ifdef ENABLE_FRU_AREA_RESIZE
++nextFRUAreaNewLoc;
ssize_t nextFRUAreaOffsetDiff =
(nextFRUAreaNewLoc - nextFRUAreaLoc) / fruBlockSize;
// Append rest FRU Areas if size changed and there were other sections after
// updated one
if (nextFRUAreaOffsetDiff && nextFRUAreaLoc)
{
std::copy(restFRUAreasData.begin(), restFRUAreasData.end(),
fruData.begin() + nextFRUAreaNewLoc);
// Update Common Header
for (fruAreas nextFRUArea = fruAreas::fruAreaInternal;
nextFRUArea <= fruAreas::fruAreaMultirecord; ++nextFRUArea)
{
unsigned int fruAreaOffsetField =
getHeaderAreaFieldOffset(nextFRUArea);
size_t curFRUAreaOffset = fruData[fruAreaOffsetField];
if (curFRUAreaOffset > fruAreaParams.end)
{
fruData[fruAreaOffsetField] = static_cast<int8_t>(
curFRUAreaOffset + nextFRUAreaOffsetDiff);
}
}
// Calculate new checksum
std::vector<uint8_t> headerFRUData;
std::copy_n(fruData.begin(), 7, std::back_inserter(headerFRUData));
size_t checksumVal = calculateChecksum(headerFRUData);
fruData[7] = static_cast<uint8_t>(checksumVal);
// fill zeros if FRU Area size decreased
if (nextFRUAreaOffsetDiff < 0)
{
std::fill(fruData.begin() + nextFRUAreaNewLoc +
restFRUAreasData.size(),
fruData.end(), 0);
}
}
#else
// this is to avoid "unused variable" warning
(void)nextFRUAreaNewLoc;
#endif // ENABLE_FRU_AREA_RESIZE
if (fruData.empty())
{
return false;
}
if (!writeFRU(static_cast<uint8_t>(bus), static_cast<uint8_t>(address),
fruData))
{
return false;
}
// Rescan the bus so that GetRawFru dbus-call fetches updated values
rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn,
objServer, systemBus);
return true;
}
int main()
{
auto systemBus = std::make_shared<sdbusplus::asio::connection>(io);
sdbusplus::asio::object_server objServer(systemBus);
static size_t unknownBusObjectCount = 0;
static bool powerIsOn = false;
auto devDir = fs::path("/dev/");
auto matchString = std::string(R"(i2c-\d+$)");
std::vector<fs::path> i2cBuses;
if (!findFiles(devDir, matchString, i2cBuses))
{
std::cerr << "unable to find i2c devices\n";
return 1;
}
// check for and load blocklist with initial buses.
loadBlocklist(blocklistPath);
systemBus->request_name("xyz.openbmc_project.FruDevice");
// this is a map with keys of pair(bus number, address) and values of
// the object on dbus
boost::container::flat_map<std::pair<size_t, size_t>,
std::shared_ptr<sdbusplus::asio::dbus_interface>>
dbusInterfaceMap;
std::shared_ptr<sdbusplus::asio::dbus_interface> iface =
objServer.add_interface("/xyz/openbmc_project/FruDevice",
"xyz.openbmc_project.FruDeviceManager");
iface->register_method("ReScan", [&]() {
rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn,
objServer, systemBus);
});
iface->register_method("ReScanBus", [&](uint16_t bus) {
rescanOneBus(busMap, bus, dbusInterfaceMap, true, unknownBusObjectCount,
powerIsOn, objServer, systemBus);
});
iface->register_method("GetRawFru", getFRUInfo);
iface->register_method(
"WriteFru", [&](const uint16_t bus, const uint8_t address,
const std::vector<uint8_t>& data) {
if (!writeFRU(bus, address, data))
{
throw std::invalid_argument("Invalid Arguments.");
return;
}
// schedule rescan on success
rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount,
powerIsOn, objServer, systemBus);
});
iface->initialize();
std::function<void(sdbusplus::message_t & message)> eventHandler =
[&](sdbusplus::message_t& message) {
std::string objectName;
boost::container::flat_map<
std::string,
std::variant<std::string, bool, int64_t, uint64_t, double>>
values;
message.read(objectName, values);
auto findState = values.find("CurrentHostState");
if (findState != values.end())
{
if (std::get<std::string>(findState->second) ==
"xyz.openbmc_project.State.Host.HostState.Running")
{
powerIsOn = true;
}
}
if (powerIsOn)
{
rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount,
powerIsOn, objServer, systemBus);
}
};
sdbusplus::bus::match_t powerMatch = sdbusplus::bus::match_t(
static_cast<sdbusplus::bus_t&>(*systemBus),
"type='signal',interface='org.freedesktop.DBus.Properties',path='/xyz/"
"openbmc_project/state/"
"host0',arg0='xyz.openbmc_project.State.Host'",
eventHandler);
int fd = inotify_init();
inotify_add_watch(fd, i2CDevLocation, IN_CREATE | IN_MOVED_TO | IN_DELETE);
std::array<char, 4096> readBuffer{};
// monitor for new i2c devices
boost::asio::posix::stream_descriptor dirWatch(io, fd);
std::function<void(const boost::system::error_code, std::size_t)>
watchI2cBusses = [&](const boost::system::error_code& ec,
std::size_t bytesTransferred) {
if (ec)
{
std::cout << "Callback Error " << ec << "\n";
return;
}
size_t index = 0;
while ((index + sizeof(inotify_event)) <= bytesTransferred)
{
const char* p = &readBuffer[index];
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
const auto* iEvent = reinterpret_cast<const inotify_event*>(p);
switch (iEvent->mask)
{
case IN_CREATE:
case IN_MOVED_TO:
case IN_DELETE:
{
std::string_view name(&iEvent->name[0], iEvent->len);
if (boost::starts_with(name, "i2c"))
{
int bus = busStrToInt(name);
if (bus < 0)
{
std::cerr
<< "Could not parse bus " << name << "\n";
continue;
}
int rootBus = getRootBus(bus);
if (rootBus >= 0)
{
rescanOneBus(busMap,
static_cast<uint16_t>(rootBus),
dbusInterfaceMap, false,
unknownBusObjectCount, powerIsOn,
objServer, systemBus);
}
rescanOneBus(busMap, static_cast<uint16_t>(bus),
dbusInterfaceMap, false,
unknownBusObjectCount, powerIsOn,
objServer, systemBus);
}
}
break;
default:
break;
}
index += sizeof(inotify_event) + iEvent->len;
}
dirWatch.async_read_some(boost::asio::buffer(readBuffer),
watchI2cBusses);
};
dirWatch.async_read_some(boost::asio::buffer(readBuffer), watchI2cBusses);
// run the initial scan
rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn,
objServer, systemBus);
io.run();
return 0;
}