blob: 782ab2b8c9ecf277a7f59fa17145e05a186cccf1 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
* Copyright (c) 2018-present Facebook.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "xyz/openbmc_project/Common/error.hpp"
#include <ipmid/api.h>
#include <nlohmann/json.hpp>
#include <array>
#include <commandutils.hpp>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <oemcommands.hpp>
#include <ipmid/utils.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/bus.hpp>
#include <string>
#include <vector>
#define SIZE_IANA_ID 3
namespace ipmi
{
using namespace phosphor::logging;
static void registerOEMFunctions() __attribute__((constructor));
sdbusplus::bus::bus dbus(ipmid_get_sd_bus_connection()); // from ipmid/api.h
static constexpr size_t maxFRUStringLength = 0x3F;
ipmi_ret_t plat_udbg_get_post_desc(uint8_t, uint8_t *, uint8_t, uint8_t *,
uint8_t *, uint8_t *);
ipmi_ret_t plat_udbg_get_frame_data(uint8_t, uint8_t, uint8_t *, uint8_t *,
uint8_t *);
ipmi_ret_t plat_udbg_control_panel(uint8_t, uint8_t, uint8_t, uint8_t *,
uint8_t *);
namespace variant_ns = sdbusplus::message::variant_ns;
nlohmann::json oemData;
enum class LanParam : uint8_t
{
INPROGRESS = 0,
AUTHSUPPORT = 1,
AUTHENABLES = 2,
IP = 3,
IPSRC = 4,
MAC = 5,
SUBNET = 6,
GATEWAY = 12,
VLAN = 20,
CIPHER_SUITE_COUNT = 22,
CIPHER_SUITE_ENTRIES = 23,
IPV6 = 59,
};
namespace network
{
constexpr auto ROOT = "/xyz/openbmc_project/network";
constexpr auto SERVICE = "xyz.openbmc_project.Network";
constexpr auto IPV4_TYPE = "ipv4";
constexpr auto IPV6_TYPE = "ipv6";
constexpr auto IPV4_PREFIX = "169.254";
constexpr auto IPV6_PREFIX = "fe80";
constexpr auto IP_INTERFACE = "xyz.openbmc_project.Network.IP";
constexpr auto MAC_INTERFACE = "xyz.openbmc_project.Network.MACAddress";
bool isLinkLocalIP(const std::string &address)
{
return address.find(IPV4_PREFIX) == 0 || address.find(IPV6_PREFIX) == 0;
}
DbusObjectInfo getIPObject(sdbusplus::bus::bus &bus,
const std::string &interface,
const std::string &serviceRoot,
const std::string &match)
{
auto objectTree = getAllDbusObjects(bus, serviceRoot, interface, match);
if (objectTree.empty())
{
log<level::ERR>("No Object has implemented the IP interface",
entry("INTERFACE=%s", interface.c_str()));
}
DbusObjectInfo objectInfo;
for (auto &object : objectTree)
{
auto variant =
ipmi::getDbusProperty(bus, object.second.begin()->first,
object.first, IP_INTERFACE, "Address");
objectInfo = std::make_pair(object.first, object.second.begin()->first);
// if LinkLocalIP found look for Non-LinkLocalIP
if (isLinkLocalIP(std::get<std::string>(variant)))
{
continue;
}
else
{
break;
}
}
return objectInfo;
}
} // namespace network
//----------------------------------------------------------------------
// Helper functions for storing oem data
//----------------------------------------------------------------------
void flushOemData()
{
std::ofstream file(JSON_OEM_DATA_FILE);
file << oemData;
return;
}
std::string bytesToStr(uint8_t *byte, int len)
{
std::stringstream ss;
int i;
ss << std::hex;
for (i = 0; i < len; i++)
{
ss << std::setw(2) << std::setfill('0') << (int)byte[i];
}
return ss.str();
}
int strToBytes(std::string &str, uint8_t *data)
{
std::string sstr;
int i;
for (i = 0; i < (str.length()) / 2; i++)
{
sstr = str.substr(i * 2, 2);
data[i] = (uint8_t)std::strtol(sstr.c_str(), NULL, 16);
}
return i;
}
ipmi_ret_t getNetworkData(uint8_t lan_param, char *data)
{
ipmi_ret_t rc = IPMI_CC_OK;
sdbusplus::bus::bus bus(ipmid_get_sd_bus_connection());
const std::string ethdevice = "eth0";
switch (static_cast<LanParam>(lan_param))
{
case LanParam::IP:
{
auto ethIP = ethdevice + "/" + ipmi::network::IPV4_TYPE;
std::string ipaddress;
auto ipObjectInfo = ipmi::network::getIPObject(
bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ethIP);
auto properties = ipmi::getAllDbusProperties(
bus, ipObjectInfo.second, ipObjectInfo.first,
ipmi::network::IP_INTERFACE);
ipaddress = variant_ns::get<std::string>(properties["Address"]);
std::strcpy(data, ipaddress.c_str());
}
break;
case LanParam::IPV6:
{
auto ethIP = ethdevice + "/" + ipmi::network::IPV6_TYPE;
std::string ipaddress;
auto ipObjectInfo = ipmi::network::getIPObject(
bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ethIP);
auto properties = ipmi::getAllDbusProperties(
bus, ipObjectInfo.second, ipObjectInfo.first,
ipmi::network::IP_INTERFACE);
ipaddress = variant_ns::get<std::string>(properties["Address"]);
std::strcpy(data, ipaddress.c_str());
}
break;
case LanParam::MAC:
{
std::string macAddress;
auto macObjectInfo =
ipmi::getDbusObject(bus, ipmi::network::MAC_INTERFACE,
ipmi::network::ROOT, ethdevice);
auto variant = ipmi::getDbusProperty(
bus, macObjectInfo.second, macObjectInfo.first,
ipmi::network::MAC_INTERFACE, "MACAddress");
macAddress = variant_ns::get<std::string>(variant);
sscanf(macAddress.c_str(), ipmi::network::MAC_ADDRESS_FORMAT,
(data), (data + 1), (data + 2), (data + 3), (data + 4),
(data + 5));
std::strcpy(data, macAddress.c_str());
}
break;
default:
rc = IPMI_CC_PARM_OUT_OF_RANGE;
}
return rc;
}
// return code: 0 successful
int8_t getFruData(std::string &data, std::string &name)
{
std::string objpath = "/xyz/openbmc_project/FruDevice";
std::string intf = "xyz.openbmc_project.FruDeviceManager";
std::string service = getService(dbus, intf, objpath);
ObjectValueTree valueTree = getManagedObjects(dbus, service, "/");
if (valueTree.empty())
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"No object implements interface",
phosphor::logging::entry("INTF=%s", intf.c_str()));
return -1;
}
for (const auto &item : valueTree)
{
auto interface = item.second.find("xyz.openbmc_project.FruDevice");
if (interface == item.second.end())
{
continue;
}
auto property = interface->second.find(name.c_str());
if (property == interface->second.end())
{
continue;
}
try
{
Value variant = property->second;
std::string &result =
sdbusplus::message::variant_ns::get<std::string>(variant);
if (result.size() > maxFRUStringLength)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"FRU serial number exceed maximum length");
return -1;
}
data = result;
return 0;
}
catch (sdbusplus::message::variant_ns::bad_variant_access &e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
return -1;
}
}
return -1;
}
typedef struct
{
uint8_t cur_power_state;
uint8_t last_power_event;
uint8_t misc_power_state;
uint8_t front_panel_button_cap_status;
} ipmi_get_chassis_status_t;
// Todo: Needs to update this as per power policy when integrated
//----------------------------------------------------------------------
// Get Chassis Status commands
//----------------------------------------------------------------------
ipmi_ret_t ipmiGetChassisStatus(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
ipmi_get_chassis_status_t chassis_status;
uint8_t s = 2;
*data_len = 4;
// Current Power State
// [7] reserved
// [6..5] power restore policy
// 00b = chassis stays powered off after AC/mains returns
// 01b = after AC returns, power is restored to the state that was
// in effect when AC/mains was lost.
// 10b = chassis always powers up after AC/mains returns
// 11b = unknow
// Set to 00b, by observing the hardware behavior.
// Do we need to define a dbus property to identify the restore
// policy?
// [4] power control fault
// 1b = controller attempted to turn system power on or off, but
// system did not enter desired state.
// Set to 0b, since We don't support it..
// [3] power fault
// 1b = fault detected in main power subsystem.
// set to 0b. for we don't support it.
// [2] 1b = interlock (chassis is presently shut down because a chassis
// panel interlock switch is active). (IPMI 1.5)
// set to 0b, for we don't support it.
// [1] power overload
// 1b = system shutdown because of power overload condition.
// set to 0b, for we don't support it.
// [0] power is on
// 1b = system power is on
// 0b = system power is off(soft-off S4/S5, or mechanical off)
chassis_status.cur_power_state = ((s & 0x3) << 5) | (1 & 0x1);
// Last Power Event
// [7..5] – reserved
// [4] – 1b = last ‘Power is on’ state was entered via IPMI command
// [3] – 1b = last power down caused by power fault
// [2] – 1b = last power down caused by a power interlock being activated
// [1] – 1b = last power down caused by a Power overload
// [0] – 1b = AC failed
// set to 0x0, for we don't support these fields.
chassis_status.last_power_event = 0;
// Misc. Chassis State
// [7] – reserved
// [6] – 1b = Chassis Identify command and state info supported (Optional)
// 0b = Chassis Identify command support unspecified via this command.
// (The Get Command Support command , if implemented, would still
// indicate support for the Chassis Identify command)
// [5..4] – Chassis Identify State. Mandatory when bit[6] =1b, reserved
// (return
// as 00b) otherwise. Returns the present chassis identify state.
// Refer to the Chassis Identify command for more info.
// 00b = chassis identify state = Off
// 01b = chassis identify state = Temporary(timed) On
// 10b = chassis identify state = Indefinite On
// 11b = reserved
// [3] – 1b = Cooling/fan fault detected
// [2] – 1b = Drive Fault
// [1] – 1b = Front Panel Lockout active (power off and reset via chassis
// push-buttons disabled.)
// [0] – 1b = Chassis Intrusion active
// set to 0, for we don't support them.
chassis_status.misc_power_state = 0x40;
// Front Panel Button Capabilities and disable/enable status(Optional)
// set to 0, for we don't support them.
chassis_status.front_panel_button_cap_status = 0;
// Pack the actual response
std::memcpy(response, &chassis_status, *data_len);
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Frame Info
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetFrameInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t num_frames = 3;
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[SIZE_IANA_ID] = num_frames;
*data_len = SIZE_IANA_ID + 1;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Updated Frames
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetUpdFrames(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t num_updates = 3;
*data_len = 4;
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[SIZE_IANA_ID] = num_updates;
*data_len = SIZE_IANA_ID + num_updates + 1;
res[SIZE_IANA_ID + 1] = 1; // info page update
res[SIZE_IANA_ID + 2] = 2; // cri sel update
res[SIZE_IANA_ID + 3] = 3; // cri sensor update
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug POST Description
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetPostDesc(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t index = 0;
uint8_t next = 0;
uint8_t end = 0;
uint8_t phase = 0;
uint8_t count = 0;
int ret;
index = req[3];
phase = req[4];
phosphor::logging::log<phosphor::logging::level::INFO>(
"Get POST Description Event");
ret = plat_udbg_get_post_desc(index, &next, phase, &end, &count, &res[8]);
if (ret)
{
memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID;
return IPMI_CC_UNSPECIFIED_ERROR;
}
memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[3] = index;
res[4] = next;
res[5] = phase;
res[6] = end;
res[7] = count;
*data_len = SIZE_IANA_ID + 5 + count;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug GPIO Description
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetGpioDesc(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
phosphor::logging::log<phosphor::logging::level::INFO>(
"Get GPIO Description Event");
std::memcpy(res, req, SIZE_IANA_ID + 1); // IANA ID
*data_len = SIZE_IANA_ID + 1;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Frame Data
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetFrameData(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t frame;
uint8_t page;
uint8_t next;
uint8_t count;
int ret;
frame = req[3];
page = req[4];
int fr = frame;
int pg = page;
ret = plat_udbg_get_frame_data(frame, page, &next, &count, &res[7]);
if (ret)
{
memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID;
return IPMI_CC_UNSPECIFIED_ERROR;
}
memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[3] = frame;
res[4] = page;
res[5] = next;
res[6] = count;
*data_len = SIZE_IANA_ID + 4 + count;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Control Panel
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetCtrlPanel(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t panel;
uint8_t operation;
uint8_t item;
uint8_t count;
ipmi_ret_t ret;
panel = req[3];
operation = req[4];
item = req[5];
ret = plat_udbg_control_panel(panel, operation, item, &count, &res[3]);
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID + count;
return ret;
}
//----------------------------------------------------------------------
// Set Dimm Info (CMD_OEM_SET_DIMM_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t index = req[0];
uint8_t type = req[1];
uint16_t speed;
uint32_t size;
memcpy(&speed, &req[2], 2);
memcpy(&size, &req[4], 4);
std::stringstream ss;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)index;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_INDEX] = index;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_TYPE] = type;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SPEED] = speed;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SIZE] = size;
flushOemData();
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Board ID (CMD_OEM_GET_BOARD_ID)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemGetBoardID(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
/* TODO: Needs to implement this after GPIO implementation */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set Boot Order (CMD_OEM_SET_BOOT_ORDER)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetBootOrder(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t len = *data_len;
uint8_t mode = req[0];
nlohmann::json bootMode;
int i;
*data_len = 0;
if (len != SIZE_BOOT_ORDER)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Boot order length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
bootMode["UEFI"] = (mode & BOOT_MODE_UEFI ? true : false);
bootMode["CMOS_CLR"] = (mode & BOOT_MODE_CMOS_CLR ? true : false);
bootMode["FORCE_BOOT"] = (mode & BOOT_MODE_FORCE_BOOT ? true : false);
bootMode["BOOT_FLAG"] = (mode & BOOT_MODE_BOOT_FLAG ? true : false);
oemData[KEY_BOOT_ORDER][KEY_BOOT_MODE] = bootMode;
/* Initialize boot sequence array */
oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ] = {};
for (i = 1; i < SIZE_BOOT_ORDER; i++)
oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ][i - 1] = bootSeq[req[i]];
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Boot Order (CMD_OEM_GET_BOOT_ORDER)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemGetBootOrder(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *res = reinterpret_cast<uint8_t *>(response);
nlohmann::json bootMode = oemData[KEY_BOOT_ORDER][KEY_BOOT_MODE];
uint8_t mode = 0;
int i;
*data_len = SIZE_BOOT_ORDER;
if (bootMode["UEFI"])
mode |= BOOT_MODE_UEFI;
if (bootMode["CMOS_CLR"])
mode |= BOOT_MODE_CMOS_CLR;
if (bootMode["BOOT_FLAG"])
mode |= BOOT_MODE_BOOT_FLAG;
res[0] = mode;
for (i = 1; i < SIZE_BOOT_ORDER; i++)
res[i] = bootMap[oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ][i - 1]];
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set Machine Config Info (CMD_OEM_SET_MACHINE_CONFIG_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetMachineCfgInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
machineConfigInfo_t *req = reinterpret_cast<machineConfigInfo_t *>(request);
uint8_t len = *data_len;
*data_len = 0;
if (len < sizeof(machineConfigInfo_t))
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid machine configuration length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
if (req->chassis_type >= sizeof(chassisType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] =
chassisType[req->chassis_type];
if (req->mb_type >= sizeof(mbType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = mbType[req->mb_type];
oemData[KEY_MC_CONFIG][KEY_MC_PROC_CNT] = req->proc_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_MEM_CNT] = req->mem_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_HDD35_CNT] = req->hdd35_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_HDD25_CNT] = req->hdd25_cnt;
if (req->riser_type >= sizeof(riserType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = riserType[req->riser_type];
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC] = {};
int i = 0;
if (req->pcie_card_loc & BIT_0)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT1";
if (req->pcie_card_loc & BIT_1)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT2";
if (req->pcie_card_loc & BIT_2)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT3";
if (req->pcie_card_loc & BIT_3)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT4";
if (req->slot1_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] =
pcieType[req->slot1_pcie_type];
if (req->slot2_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] =
pcieType[req->slot2_pcie_type];
if (req->slot3_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] =
pcieType[req->slot3_pcie_type];
if (req->slot4_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] =
pcieType[req->slot4_pcie_type];
oemData[KEY_MC_CONFIG][KEY_MC_AEP_CNT] = req->aep_mem_cnt;
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set POST start (CMD_OEM_SET_POST_START)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPostStart(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
phosphor::logging::log<phosphor::logging::level::INFO>("POST Start Event");
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set POST End (CMD_OEM_SET_POST_END)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPostEnd(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
struct timespec ts;
phosphor::logging::log<phosphor::logging::level::INFO>("POST End Event");
*data_len = 0;
// Timestamp post end time.
clock_gettime(CLOCK_REALTIME, &ts);
oemData[KEY_TS_SLED] = ts.tv_sec;
flushOemData();
// Sync time with system
// TODO: Add code for syncing time
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set PPIN Info (CMD_OEM_SET_PPIN_INFO)
//----------------------------------------------------------------------
// Inform BMC about PPIN data of 8 bytes for each CPU
//
// Request:
// Byte 1:8 – CPU0 PPIN data
// Optional:
// Byte 9:16 – CPU1 PPIN data
//
// Response:
// Byte 1 – Completion Code
ipmi_ret_t ipmiOemSetPPINInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
std::string ppinStr;
int len;
if (*data_len > SIZE_CPU_PPIN * 2)
len = SIZE_CPU_PPIN * 2;
else
len = *data_len;
*data_len = 0;
ppinStr = bytesToStr(req, len);
oemData[KEY_PPIN_INFO] = ppinStr.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set ADR Trigger (CMD_OEM_SET_ADR_TRIGGER)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetAdrTrigger(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set Bios Flash Info (CMD_OEM_SET_BIOS_FLASH_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetBiosFlashInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set PPR (CMD_OEM_SET_PPR)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPpr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t pprCnt, pprAct, pprIndex;
uint8_t selParam = req[0];
uint8_t len = *data_len;
std::stringstream ss;
std::string str;
*data_len = 0;
switch (selParam)
{
case PPR_ACTION:
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) ==
oemData[KEY_PPR].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
if (pprCnt == 0)
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
pprAct = req[1];
/* Check if ppr is enabled or disabled */
if (!(pprAct & 0x80))
pprAct = 0;
oemData[KEY_PPR][KEY_PPR_ACTION] = pprAct;
break;
case PPR_ROW_COUNT:
if (req[1] > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
oemData[KEY_PPR][KEY_PPR_ROW_COUNT] = req[1];
break;
case PPR_ROW_ADDR:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
if (len < PPR_ROW_ADDR_LEN + 1)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid PPR Row Address length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex;
str = bytesToStr(&req[1], PPR_ROW_ADDR_LEN);
oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR] = str.c_str();
break;
case PPR_HISTORY_DATA:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
if (len < PPR_HST_DATA_LEN + 1)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid PPR history data length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex;
str = bytesToStr(&req[1], PPR_HST_DATA_LEN);
oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA] = str.c_str();
break;
default:
return IPMI_CC_PARM_OUT_OF_RANGE;
break;
}
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get PPR (CMD_OEM_GET_PPR)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemGetPpr(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
uint8_t *req = reinterpret_cast<uint8_t *>(request);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t pprCnt, pprIndex;
uint8_t selParam = req[0];
std::stringstream ss;
std::string str;
/* Any failure will return zero length data */
*data_len = 0;
switch (selParam)
{
case PPR_ACTION:
res[0] = 0;
*data_len = 1;
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) !=
oemData[KEY_PPR].end())
{
pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
if (pprCnt != 0)
{
if (oemData[KEY_PPR].find(KEY_PPR_ACTION) !=
oemData[KEY_PPR].end())
{
res[0] = oemData[KEY_PPR][KEY_PPR_ACTION];
}
}
}
break;
case PPR_ROW_COUNT:
res[0] = 0;
*data_len = 1;
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) !=
oemData[KEY_PPR].end())
res[0] = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
break;
case PPR_ROW_ADDR:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_ROW_ADDR) ==
oemData[KEY_PPR][ss.str()].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
str = oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR];
*data_len = strToBytes(str, res);
break;
case PPR_HISTORY_DATA:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_HST_DATA) ==
oemData[KEY_PPR][ss.str()].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
str = oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA];
*data_len = strToBytes(str, res);
break;
default:
return IPMI_CC_PARM_OUT_OF_RANGE;
break;
}
return IPMI_CC_OK;
}
/* FB OEM QC Commands */
//----------------------------------------------------------------------
// Set Proc Info (CMD_OEM_Q_SET_PROC_INFO)
//----------------------------------------------------------------------
//"Request:
// Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first
// Byte 4 – Processor Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of Processor Information)
// Response:
// Byte 1 – Completion code
//
// Parameter#1: (Processor Product Name)
//
// Byte 1..48 –Product name(ASCII code)
// Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz
//
// Param#2: Processor Basic Information
// Byte 1 – Core Number
// Byte 2 – Thread Number (LSB)
// Byte 3 – Thread Number (MSB)
// Byte 4 – Processor frequency in MHz (LSB)
// Byte 5 – Processor frequency in MHz (MSB)
// Byte 6..7 – Revision
//
ipmi_ret_t ipmiOemQSetProcInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
qProcInfo_t *req = reinterpret_cast<qProcInfo_t *>(request);
uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t *);
std::stringstream ss;
std::string str;
uint8_t len = *data_len;
*data_len = 0;
/* check for requested data params */
if (len < 5 || req->paramSel < 1 || req->paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
len = len - 5; // Get Actual data length
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->procIndex;
oemData[KEY_Q_PROC_INFO][ss.str()][KEY_PROC_INDEX] = req->procIndex;
str = bytesToStr(req->data, len);
oemData[KEY_Q_PROC_INFO][ss.str()][cpuInfoKey[req->paramSel]] = str.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Proc Info (CMD_OEM_Q_GET_PROC_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first
// Byte 4 – Processor Index, 0 base
// Byte 5 – Parameter Selector
// Response:
// Byte 1 – Completion code
// Byte 2..N – Configuration Parameter Data (see below for Parameters
// of Processor Information)
//
// Parameter#1: (Processor Product Name)
//
// Byte 1..48 –Product name(ASCII code)
// Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz
//
// Param#2: Processor Basic Information
// Byte 1 – Core Number
// Byte 2 – Thread Number (LSB)
// Byte 3 – Thread Number (MSB)
// Byte 4 – Processor frequency in MHz (LSB)
// Byte 5 – Processor frequency in MHz (MSB)
// Byte 6..7 – Revision
//
ipmi_ret_t ipmiOemQGetProcInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
qProcInfo_t *req = reinterpret_cast<qProcInfo_t *>(request);
uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t *);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
std::stringstream ss;
std::string str;
*data_len = 0;
/* check for requested data params */
if (req->paramSel < 1 || req->paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->procIndex;
if (oemData[KEY_Q_PROC_INFO].find(ss.str()) ==
oemData[KEY_Q_PROC_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
if (oemData[KEY_Q_PROC_INFO][ss.str()].find(cpuInfoKey[req->paramSel]) ==
oemData[KEY_Q_PROC_INFO][ss.str()].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
str = oemData[KEY_Q_PROC_INFO][ss.str()][cpuInfoKey[req->paramSel]];
*data_len = strToBytes(str, res);
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set Dimm Info (CMD_OEM_Q_SET_DIMM_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first
// Byte 4 – DIMM Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of DIMM Information)
// Response:
// Byte 1 – Completion code
//
// Param#1 (DIMM Location):
// Byte 1 – DIMM Present
// Byte 1 – DIMM Present
// 01h – Present
// FFh – Not Present
// Byte 2 – Node Number, 0 base
// Byte 3 – Channel Number , 0 base
// Byte 4 – DIMM Number , 0 base
//
// Param#2 (DIMM Type):
// Byte 1 – DIMM Type
// Bit [7:6]
// For DDR3
// 00 – Normal Voltage (1.5V)
// 01 – Ultra Low Voltage (1.25V)
// 10 – Low Voltage (1.35V)
// 11 – Reserved
// For DDR4
// 00 – Reserved
// 01 – Reserved
// 10 – Reserved
// 11 – Normal Voltage (1.2V)
// Bit [5:0]
// 0x00 – SDRAM
// 0x01 – DDR-1 RAM
// 0x02 – Rambus
// 0x03 – DDR-2 RAM
// 0x04 – FBDIMM
// 0x05 – DDR-3 RAM
// 0x06 – DDR-4 RAM
//
// Param#3 (DIMM Speed):
// Byte 1..2 – DIMM speed in MHz, LSB
// Byte 3..6 – DIMM size in Mbytes, LSB
//
// Param#4 (Module Part Number):
// Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C)
//
// Param#5 (Module Serial Number):
// Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C)
//
// Param#6 (Module Manufacturer ID):
// Byte 1 - Module Manufacturer ID, LSB
// Byte 2 - Module Manufacturer ID, MSB
//
ipmi_ret_t ipmiOemQSetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
qDimmInfo_t *req = reinterpret_cast<qDimmInfo_t *>(request);
uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t *);
std::stringstream ss;
std::string str;
uint8_t len = *data_len;
*data_len = 0;
/* check for requested data params */
if (len < 5 || req->paramSel < 1 || req->paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
len = len - 5; // Get Actual data length
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->dimmIndex;
oemData[KEY_Q_DIMM_INFO][ss.str()][KEY_DIMM_INDEX] = req->dimmIndex;
str = bytesToStr(req->data, len);
oemData[KEY_Q_DIMM_INFO][ss.str()][dimmInfoKey[req->paramSel]] =
str.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Dimm Info (CMD_OEM_Q_GET_DIMM_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first
// Byte 4 – DIMM Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of DIMM Information)
// Response:
// Byte 1 – Completion code
// Byte 2..N – Configuration Parameter Data (see Table_1213h Parameters
// of DIMM Information)
//
// Param#1 (DIMM Location):
// Byte 1 – DIMM Present
// Byte 1 – DIMM Present
// 01h – Present
// FFh – Not Present
// Byte 2 – Node Number, 0 base
// Byte 3 – Channel Number , 0 base
// Byte 4 – DIMM Number , 0 base
//
// Param#2 (DIMM Type):
// Byte 1 – DIMM Type
// Bit [7:6]
// For DDR3
// 00 – Normal Voltage (1.5V)
// 01 – Ultra Low Voltage (1.25V)
// 10 – Low Voltage (1.35V)
// 11 – Reserved
// For DDR4
// 00 – Reserved
// 01 – Reserved
// 10 – Reserved
// 11 – Normal Voltage (1.2V)
// Bit [5:0]
// 0x00 – SDRAM
// 0x01 – DDR-1 RAM
// 0x02 – Rambus
// 0x03 – DDR-2 RAM
// 0x04 – FBDIMM
// 0x05 – DDR-3 RAM
// 0x06 – DDR-4 RAM
//
// Param#3 (DIMM Speed):
// Byte 1..2 – DIMM speed in MHz, LSB
// Byte 3..6 – DIMM size in Mbytes, LSB
//
// Param#4 (Module Part Number):
// Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C)
//
// Param#5 (Module Serial Number):
// Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C)
//
// Param#6 (Module Manufacturer ID):
// Byte 1 - Module Manufacturer ID, LSB
// Byte 2 - Module Manufacturer ID, MSB
//
ipmi_ret_t ipmiOemQGetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t context)
{
qDimmInfo_t *req = reinterpret_cast<qDimmInfo_t *>(request);
uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t *);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
std::stringstream ss;
std::string str;
*data_len = 0;
/* check for requested data params */
if (req->paramSel < 1 || req->paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->dimmIndex;
if (oemData[KEY_Q_DIMM_INFO].find(ss.str()) ==
oemData[KEY_Q_DIMM_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
if (oemData[KEY_Q_DIMM_INFO][ss.str()].find(dimmInfoKey[req->paramSel]) ==
oemData[KEY_Q_DIMM_INFO][ss.str()].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
str = oemData[KEY_Q_DIMM_INFO][ss.str()][dimmInfoKey[req->paramSel]];
*data_len = strToBytes(str, res);
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set Drive Info (CMD_OEM_Q_SET_DRIVE_INFO)
//----------------------------------------------------------------------
// BIOS issue this command to provide HDD information to BMC.
//
// BIOS just can get information by standard ATA / SMART command for
// OB SATA controller.
// BIOS can get
// 1. Serial Number
// 2. Model Name
// 3. HDD FW Version
// 4. HDD Capacity
// 5. HDD WWN
//
// Use Get HDD info Param #5 to know the MAX HDD info index.
//
// Request:
// Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first
// Byte 4 –
// [7:4] Reserved
// [3:0] HDD Controller Type
// 0x00 – BIOS
// 0x01 – Expander
// 0x02 – LSI
// Byte 5 – HDD Info Index, 0 base
// Byte 6 – Parameter Selector
// Byte 7..N – Configuration parameter data (see Table_1415h Parameters of HDD
// Information)
//
// Response:
// Byte 1 – Completion Code
//
// Param#0 (HDD Location):
// Byte 1 – Controller
// [7:3] Device Number
// [2:0] Function Number
// For Intel C610 series (Wellsburg)
// D31:F2 (0xFA) – SATA control 1
// D31:F5 (0xFD) – SATA control 2
// D17:F4 (0x8C) – sSata control
// Byte 2 – Port Number
// Byte 3 – Location (0xFF: No HDD Present)
// BIOS default set Byte 3 to 0xFF, if No HDD Present. And then skip send param
// #1~4, #6, #7 to BMC (still send param #5) BIOS default set Byte 3 to 0, if
// the HDD present. BMC or other people who know the HDD location has
// responsibility for update Location info
//
// Param#1 (Serial Number):
// Bytes 1..33: HDD Serial Number
//
// Param#2 (Model Name):
// Byte 1..33 – HDD Model Name
//
// Param#3 (HDD FW Version):
// Byte 1..17 –HDD FW version
//
// Param#4 (Capacity):
// Byte 1..4 –HDD Block Size, LSB
// Byte 5..12 - HDD Block Number, LSB
// HDD Capacity = HDD Block size * HDD BLock number (Unit Byte)
//
// Param#5 (Max HDD Quantity):
// Byte 1 - Max HDD Quantity
// Max supported port numbers in this PCH
//
// Param#6 (HDD Type)
// Byte 1 – HDD Type
// 0h – Reserved
// 1h – SAS
// 2h – SATA
// 3h – PCIE SSD (NVME)
//
// Param#7 (HDD WWN)
// Data 1...8: HDD World Wide Name, LSB
//
ipmi_ret_t ipmiOemQSetDriveInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
qDriveInfo_t *req = reinterpret_cast<qDriveInfo_t *>(request);
uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t *);
uint8_t ctrlType = req->hddCtrlType & 0x0f;
std::stringstream ss;
std::string str;
uint8_t len = *data_len;
*data_len = 0;
/* check for requested data params */
if (len < 6 || req->paramSel < 1 || req->paramSel >= numParam ||
ctrlType > 2)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
len = len - 6; // Get Actual data length
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex;
oemData[KEY_Q_DRIVE_INFO][KEY_HDD_CTRL_TYPE] = req->hddCtrlType;
oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()][KEY_HDD_INDEX] =
req->hddIndex;
str = bytesToStr(req->data, len);
oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()]
[driveInfoKey[req->paramSel]] = str.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Drive Info (CMD_OEM_Q_GET_DRIVE_INFO)
//----------------------------------------------------------------------
// BMC needs to check HDD presented or not first. If NOT presented, return
// completion code 0xD5.
//
// Request:
// Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first
// Byte 4 –
//[7:4] Reserved
//[3:0] HDD Controller Type
// 0x00 – BIOS
// 0x01 – Expander
// 0x02 – LSI
// Byte 5 – HDD Index, 0 base
// Byte 6 – Parameter Selector (See Above Set HDD Information)
// Response:
// Byte 1 – Completion Code
// 0xD5 – Not support in current status (HDD Not Present)
// Byte 2..N – Configuration parameter data (see Table_1415h Parameters of HDD
// Information)
//
ipmi_ret_t ipmiOemQGetDriveInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len,
ipmi_context_t context)
{
qDriveInfo_t *req = reinterpret_cast<qDriveInfo_t *>(request);
uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t *);
uint8_t *res = reinterpret_cast<uint8_t *>(response);
uint8_t ctrlType = req->hddCtrlType & 0x0f;
std::stringstream ss;
std::string str;
*data_len = 0;
/* check for requested data params */
if (req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
if (oemData[KEY_Q_DRIVE_INFO].find(ctrlTypeKey[ctrlType]) ==
oemData[KEY_Q_DRIVE_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex;
if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]].find(ss.str()) ==
oemData[KEY_Q_DRIVE_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()].find(
dimmInfoKey[req->paramSel]) ==
oemData[KEY_Q_DRIVE_INFO][ss.str()].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
str = oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()]
[dimmInfoKey[req->paramSel]];
*data_len = strToBytes(str, res);
return IPMI_CC_OK;
}
static void registerOEMFunctions(void)
{
/* Get OEM data from json file */
std::ifstream file(JSON_OEM_DATA_FILE);
if (file)
file >> oemData;
phosphor::logging::log<phosphor::logging::level::INFO>(
"Registering OEM commands");
ipmiPrintAndRegister(NETFUN_CHASSIS, 1, NULL, ipmiGetChassisStatus,
PRIVILEGE_USER); // get chassis status
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_INFO,
NULL, ipmiOemDbgGetFrameInfo,
PRIVILEGE_USER); // get debug frame info
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ,
CMD_OEM_USB_DBG_GET_UPDATED_FRAMES, NULL,
ipmiOemDbgGetUpdFrames,
PRIVILEGE_USER); // get debug updated frames
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_POST_DESC,
NULL, ipmiOemDbgGetPostDesc,
PRIVILEGE_USER); // get debug post description
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_GPIO_DESC,
NULL, ipmiOemDbgGetGpioDesc,
PRIVILEGE_USER); // get debug gpio description
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_DATA,
NULL, ipmiOemDbgGetFrameData,
PRIVILEGE_USER); // get debug frame data
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_CTRL_PANEL,
NULL, ipmiOemDbgGetCtrlPanel,
PRIVILEGE_USER); // get debug control panel
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_DIMM_INFO, NULL,
ipmiOemSetDimmInfo,
PRIVILEGE_USER); // Set Dimm Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOARD_ID, NULL,
ipmiOemGetBoardID,
PRIVILEGE_USER); // Get Board ID
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BOOT_ORDER, NULL,
ipmiOemSetBootOrder,
PRIVILEGE_USER); // Set Boot Order
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOOT_ORDER, NULL,
ipmiOemGetBootOrder,
PRIVILEGE_USER); // Get Boot Order
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_MACHINE_CONFIG_INFO, NULL,
ipmiOemSetMachineCfgInfo,
PRIVILEGE_USER); // Set Machine Config Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_START, NULL,
ipmiOemSetPostStart,
PRIVILEGE_USER); // Set POST start
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_END, NULL,
ipmiOemSetPostEnd,
PRIVILEGE_USER); // Set POST End
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPIN_INFO, NULL,
ipmiOemSetPPINInfo,
PRIVILEGE_USER); // Set PPIN Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_ADR_TRIGGER, NULL,
ipmiOemSetAdrTrigger,
PRIVILEGE_USER); // Set ADR Trigger
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BIOS_FLASH_INFO, NULL,
ipmiOemSetBiosFlashInfo,
PRIVILEGE_USER); // Set Bios Flash Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPR, NULL, ipmiOemSetPpr,
PRIVILEGE_USER); // Set PPR
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_PPR, NULL, ipmiOemGetPpr,
PRIVILEGE_USER); // Get PPR
/* FB OEM QC Commands */
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_PROC_INFO, NULL,
ipmiOemQSetProcInfo,
PRIVILEGE_USER); // Set Proc Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_PROC_INFO, NULL,
ipmiOemQGetProcInfo,
PRIVILEGE_USER); // Get Proc Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DIMM_INFO, NULL,
ipmiOemQSetDimmInfo,
PRIVILEGE_USER); // Set Dimm Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DIMM_INFO, NULL,
ipmiOemQGetDimmInfo,
PRIVILEGE_USER); // Get Dimm Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DRIVE_INFO, NULL,
ipmiOemQSetDriveInfo,
PRIVILEGE_USER); // Set Drive Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DRIVE_INFO, NULL,
ipmiOemQGetDriveInfo,
PRIVILEGE_USER); // Get Drive Info
return;
}
} // namespace ipmi