blob: 346171c90c12a98245b2df49e9d4793151a2e559 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
* Copyright (c) 2018-present Facebook.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ipmid/api.h>
#include <boost/container/flat_map.hpp>
#include <commandutils.hpp>
#include <ipmid/utils.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/message/types.hpp>
#include <sdbusplus/timer.hpp>
#include <sensorutils.hpp>
#include <storagecommands.hpp>
#include <iostream>
#include <unordered_map>
namespace ipmi
{
namespace storage
{
void registerStorageFunctions() __attribute__((constructor));
constexpr static const size_t maxMessageSize = 64;
constexpr static const size_t maxFruSdrNameSize = 16;
static constexpr int sensorMapUpdatePeriod = 2;
using SensorMap = std::map<std::string, std::map<std::string, DbusVariant>>;
using ManagedObjectSensor =
std::map<sdbusplus::message::object_path,
std::map<std::string, std::map<std::string, DbusVariant>>>;
static uint16_t sdrReservationID;
static boost::container::flat_map<std::string, ManagedObjectSensor> SensorCache;
static SensorSubTree sensorTree;
void registerSensorFunctions() __attribute__((constructor));
using ManagedObjectType = boost::container::flat_map<
sdbusplus::message::object_path,
boost::container::flat_map<
std::string, boost::container::flat_map<std::string, DbusVariant>>>;
using ManagedEntry = std::pair<
sdbusplus::message::object_path,
boost::container::flat_map<
std::string, boost::container::flat_map<std::string, DbusVariant>>>;
constexpr static const char* fruDeviceServiceName =
"xyz.openbmc_project.FruDevice";
constexpr static const size_t cacheTimeoutSeconds = 10;
static std::vector<uint8_t> fruCache;
static uint16_t cacheBus = 0xFFFF;
static uint8_t cacheAddr = 0XFF;
std::unique_ptr<sdbusplus::Timer> cacheTimer = nullptr;
// we unfortunately have to build a map of hashes in case there is a
// collision to verify our dev-id
boost::container::flat_map<uint8_t, std::pair<uint8_t, uint8_t>> deviceHashes;
static sdbusplus::bus_t dbus(ipmid_get_sd_bus_connection());
using InterfaceName = std::string;
using PropertyName = std::string;
using ThresholdStr = std::string;
enum class AlarmType
{
low,
high
};
struct Property
{
PropertyName name;
ThresholdStr threshold;
};
const std::vector<InterfaceName> thresholdCheckedOrder{
"xyz.openbmc_project.Sensor.Threshold.HardShutdown",
"xyz.openbmc_project.Sensor.Threshold.SoftShutdown",
"xyz.openbmc_project.Sensor.Threshold.Critical",
"xyz.openbmc_project.Sensor.Threshold.Warning"};
const std::unordered_map<std::string, std::map<AlarmType, Property>>
alarmProperties{
{"xyz.openbmc_project.Sensor.Threshold.HardShutdown",
{{AlarmType::low, Property{"HardShutdownAlarmLow", "LNR"}},
{AlarmType::high, Property{"HardShutdownAlarmHigh", "UNR"}}}},
{"xyz.openbmc_project.Sensor.Threshold.SoftShutdown",
{{AlarmType::low, Property{"SoftShutdownAlarmLow", "LNR"}},
{AlarmType::high, Property{"SoftShutdownAlarmHigh", "UNR"}}}},
{"xyz.openbmc_project.Sensor.Threshold.Critical",
{{AlarmType::low, Property{"CriticalAlarmLow", "LCR"}},
{AlarmType::high, Property{"CriticalAlarmHigh", "UCR"}}}},
{"xyz.openbmc_project.Sensor.Threshold.Warning",
{{AlarmType::low, Property{"WarningAlarmLow", "LNC"}},
{AlarmType::high, Property{"WarningAlarmHigh", "UNC"}}}},
};
static bool getSensorMap(std::string sensorConnection, std::string sensorPath,
SensorMap& sensorMap)
{
static boost::container::flat_map<
std::string, std::chrono::time_point<std::chrono::steady_clock>>
updateTimeMap;
auto updateFind = updateTimeMap.find(sensorConnection);
auto lastUpdate = std::chrono::time_point<std::chrono::steady_clock>();
if (updateFind != updateTimeMap.end())
{
lastUpdate = updateFind->second;
}
auto now = std::chrono::steady_clock::now();
if (std::chrono::duration_cast<std::chrono::seconds>(now - lastUpdate)
.count() > sensorMapUpdatePeriod)
{
updateTimeMap[sensorConnection] = now;
auto managedObj = dbus.new_method_call(
sensorConnection.c_str(), "/xyz/openbmc_project/sensors",
"org.freedesktop.DBus.ObjectManager", "GetManagedObjects");
ManagedObjectSensor managedObjects;
try
{
auto reply = dbus.call(managedObj);
reply.read(managedObjects);
}
catch (const sdbusplus::exception_t&)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Error getting managed objects from connection",
phosphor::logging::entry("CONNECTION=%s",
sensorConnection.c_str()));
return false;
}
SensorCache[sensorConnection] = managedObjects;
}
auto connection = SensorCache.find(sensorConnection);
if (connection == SensorCache.end())
{
return false;
}
auto path = connection->second.find(sensorPath);
if (path == connection->second.end())
{
return false;
}
sensorMap = path->second;
return true;
}
bool writeFru()
{
sdbusplus::message_t writeFru = dbus.new_method_call(
fruDeviceServiceName, "/xyz/openbmc_project/FruDevice",
"xyz.openbmc_project.FruDeviceManager", "WriteFru");
writeFru.append(cacheBus, cacheAddr, fruCache);
try
{
sdbusplus::message_t writeFruResp = dbus.call(writeFru);
}
catch (const sdbusplus::exception_t&)
{
// todo: log sel?
phosphor::logging::log<phosphor::logging::level::ERR>(
"error writing fru");
return false;
}
return true;
}
void createTimer()
{
if (cacheTimer == nullptr)
{
cacheTimer = std::make_unique<sdbusplus::Timer>(writeFru);
}
}
ipmi_ret_t replaceCacheFru(uint8_t devId)
{
static uint8_t lastDevId = 0xFF;
bool timerRunning = (cacheTimer != nullptr) && !cacheTimer->isExpired();
if (lastDevId == devId && timerRunning)
{
return IPMI_CC_OK; // cache already up to date
}
// if timer is running, stop it and writeFru manually
else if (timerRunning)
{
cacheTimer->stop();
writeFru();
}
sdbusplus::message_t getObjects = dbus.new_method_call(
fruDeviceServiceName, "/", "org.freedesktop.DBus.ObjectManager",
"GetManagedObjects");
ManagedObjectType frus;
try
{
sdbusplus::message_t resp = dbus.call(getObjects);
resp.read(frus);
}
catch (const sdbusplus::exception_t&)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"replaceCacheFru: error getting managed objects");
return IPMI_CC_RESPONSE_ERROR;
}
deviceHashes.clear();
uint8_t fruHash = 0;
uint8_t mbFruBus = 0, mbFruAddr = 0;
auto device = getMbFruDevice();
if (device)
{
std::tie(mbFruBus, mbFruAddr) = *device;
deviceHashes.emplace(0, std::make_pair(mbFruBus, mbFruAddr));
fruHash++;
}
for (const auto& fru : frus)
{
auto fruIface = fru.second.find("xyz.openbmc_project.FruDevice");
if (fruIface == fru.second.end())
{
continue;
}
auto busFind = fruIface->second.find("BUS");
auto addrFind = fruIface->second.find("ADDRESS");
if (busFind == fruIface->second.end() ||
addrFind == fruIface->second.end())
{
phosphor::logging::log<phosphor::logging::level::INFO>(
"fru device missing Bus or Address",
phosphor::logging::entry("FRU=%s", fru.first.str.c_str()));
continue;
}
uint8_t fruBus = std::get<uint32_t>(busFind->second);
uint8_t fruAddr = std::get<uint32_t>(addrFind->second);
if (fruBus != mbFruBus || fruAddr != mbFruAddr)
{
deviceHashes.emplace(fruHash, std::make_pair(fruBus, fruAddr));
fruHash++;
}
}
auto deviceFind = deviceHashes.find(devId);
if (deviceFind == deviceHashes.end())
{
return IPMI_CC_SENSOR_INVALID;
}
fruCache.clear();
sdbusplus::message_t getRawFru = dbus.new_method_call(
fruDeviceServiceName, "/xyz/openbmc_project/FruDevice",
"xyz.openbmc_project.FruDeviceManager", "GetRawFru");
cacheBus = deviceFind->second.first;
cacheAddr = deviceFind->second.second;
getRawFru.append(cacheBus, cacheAddr);
try
{
sdbusplus::message_t getRawResp = dbus.call(getRawFru);
getRawResp.read(fruCache);
}
catch (const sdbusplus::exception_t&)
{
lastDevId = 0xFF;
cacheBus = 0xFFFF;
cacheAddr = 0xFF;
return IPMI_CC_RESPONSE_ERROR;
}
lastDevId = devId;
return IPMI_CC_OK;
}
ipmi_ret_t ipmiStorageReadFRUData(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t)
{
if (*dataLen != 4)
{
*dataLen = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*dataLen = 0; // default to 0 in case of an error
auto req = static_cast<GetFRUAreaReq*>(request);
if (req->countToRead > maxMessageSize - 1)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
ipmi_ret_t status = replaceCacheFru(req->fruDeviceID);
if (status != IPMI_CC_OK)
{
return status;
}
size_t fromFRUByteLen = 0;
if (req->countToRead + req->fruInventoryOffset < fruCache.size())
{
fromFRUByteLen = req->countToRead;
}
else if (fruCache.size() > req->fruInventoryOffset)
{
fromFRUByteLen = fruCache.size() - req->fruInventoryOffset;
}
size_t padByteLen = req->countToRead - fromFRUByteLen;
uint8_t* respPtr = static_cast<uint8_t*>(response);
*respPtr = req->countToRead;
std::copy(fruCache.begin() + req->fruInventoryOffset,
fruCache.begin() + req->fruInventoryOffset + fromFRUByteLen,
++respPtr);
// if longer than the fru is requested, fill with 0xFF
if (padByteLen)
{
respPtr += fromFRUByteLen;
std::fill(respPtr, respPtr + padByteLen, 0xFF);
}
*dataLen = fromFRUByteLen + 1;
return IPMI_CC_OK;
}
ipmi_ret_t ipmiStorageWriteFRUData(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t)
{
if (*dataLen < 4 ||
*dataLen >=
0xFF + 3) // count written return is one byte, so limit to one
// byte of data after the three request data bytes
{
*dataLen = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
auto req = static_cast<WriteFRUDataReq*>(request);
size_t writeLen = *dataLen - 3;
*dataLen = 0; // default to 0 in case of an error
ipmi_ret_t status = replaceCacheFru(req->fruDeviceID);
if (status != IPMI_CC_OK)
{
return status;
}
size_t lastWriteAddr = req->fruInventoryOffset + writeLen;
if (fruCache.size() < lastWriteAddr)
{
fruCache.resize(req->fruInventoryOffset + writeLen);
}
std::copy(req->data, req->data + writeLen,
fruCache.begin() + req->fruInventoryOffset);
bool atEnd = false;
if (fruCache.size() >= sizeof(FRUHeader))
{
FRUHeader* header = reinterpret_cast<FRUHeader*>(fruCache.data());
size_t lastRecordStart = std::max(
header->internalOffset,
std::max(header->chassisOffset,
std::max(header->boardOffset, header->productOffset)));
// TODO: Handle Multi-Record FRUs?
lastRecordStart *= 8; // header starts in are multiples of 8 bytes
// get the length of the area in multiples of 8 bytes
if (lastWriteAddr > (lastRecordStart + 1))
{
// second byte in record area is the length
int areaLength(fruCache[lastRecordStart + 1]);
areaLength *= 8; // it is in multiples of 8 bytes
if (lastWriteAddr >= (areaLength + lastRecordStart))
{
atEnd = true;
}
}
}
uint8_t* respPtr = static_cast<uint8_t*>(response);
if (atEnd)
{
// cancel timer, we're at the end so might as well send it
cacheTimer->stop();
if (!writeFru())
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
*respPtr = std::min(fruCache.size(), static_cast<size_t>(0xFF));
}
else
{
// start a timer, if no further data is sent in cacheTimeoutSeconds
// seconds, check to see if it is valid
createTimer();
cacheTimer->start(std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::seconds(cacheTimeoutSeconds)));
*respPtr = 0;
}
*dataLen = 1;
return IPMI_CC_OK;
}
ipmi_ret_t getFruSdrCount(size_t& count)
{
ipmi_ret_t ret = replaceCacheFru(0);
if (ret != IPMI_CC_OK)
{
return ret;
}
count = deviceHashes.size();
return IPMI_CC_OK;
}
ipmi_ret_t getFruSdrs(size_t index, get_sdr::SensorDataFruRecord& resp)
{
ipmi_ret_t ret = replaceCacheFru(0); // this will update the hash list
if (ret != IPMI_CC_OK)
{
return ret;
}
if (deviceHashes.size() < index)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
auto device = deviceHashes.begin() + index;
uint8_t& bus = device->second.first;
uint8_t& address = device->second.second;
ManagedObjectType frus;
sdbusplus::message_t getObjects = dbus.new_method_call(
fruDeviceServiceName, "/", "org.freedesktop.DBus.ObjectManager",
"GetManagedObjects");
try
{
sdbusplus::message_t resp = dbus.call(getObjects);
resp.read(frus);
}
catch (const sdbusplus::exception_t&)
{
return IPMI_CC_RESPONSE_ERROR;
}
boost::container::flat_map<std::string, DbusVariant>* fruData = nullptr;
auto fru = std::find_if(frus.begin(), frus.end(),
[bus, address, &fruData](ManagedEntry& entry) {
auto findFruDevice = entry.second.find("xyz.openbmc_project.FruDevice");
if (findFruDevice == entry.second.end())
{
return false;
}
fruData = &(findFruDevice->second);
auto findBus = findFruDevice->second.find("BUS");
auto findAddress = findFruDevice->second.find("ADDRESS");
if (findBus == findFruDevice->second.end() ||
findAddress == findFruDevice->second.end())
{
return false;
}
if (std::get<uint32_t>(findBus->second) != bus)
{
return false;
}
if (std::get<uint32_t>(findAddress->second) != address)
{
return false;
}
return true;
});
if (fru == frus.end())
{
return IPMI_CC_RESPONSE_ERROR;
}
std::string name;
auto findProductName = fruData->find("BOARD_PRODUCT_NAME");
auto findBoardName = fruData->find("PRODUCT_PRODUCT_NAME");
if (findProductName != fruData->end())
{
name = std::get<std::string>(findProductName->second);
}
else if (findBoardName != fruData->end())
{
name = std::get<std::string>(findBoardName->second);
}
else
{
name = "UNKNOWN";
}
if (name.size() > maxFruSdrNameSize)
{
name = name.substr(0, maxFruSdrNameSize);
}
size_t sizeDiff = maxFruSdrNameSize - name.size();
resp.header.record_id_lsb = 0x0; // calling code is to implement these
resp.header.record_id_msb = 0x0;
resp.header.sdr_version = ipmiSdrVersion;
resp.header.record_type = 0x11; // FRU Device Locator
resp.header.record_length = sizeof(resp.body) + sizeof(resp.key) - sizeDiff;
resp.key.deviceAddress = 0x20;
resp.key.fruID = device->first;
resp.key.accessLun = 0x80; // logical / physical fru device
resp.key.channelNumber = 0x0;
resp.body.reserved = 0x0;
resp.body.deviceType = 0x10;
resp.body.entityID = 0x0;
resp.body.entityInstance = 0x1;
resp.body.oem = 0x0;
resp.body.deviceIDLen = name.size();
name.copy(resp.body.deviceID, name.size());
return IPMI_CC_OK;
}
ipmi_ret_t ipmiStorageReserveSDR(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t, ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t)
{
printCommand(+netfn, +cmd);
if (*dataLen)
{
*dataLen = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*dataLen = 0; // default to 0 in case of an error
sdrReservationID++;
if (sdrReservationID == 0)
{
sdrReservationID++;
}
*dataLen = 2;
auto resp = static_cast<uint8_t*>(response);
resp[0] = sdrReservationID & 0xFF;
resp[1] = sdrReservationID >> 8;
return IPMI_CC_OK;
}
ipmi_ret_t ipmiStorageGetSDR(ipmi_netfn_t netfn, ipmi_cmd_t cmd,
ipmi_request_t request, ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t)
{
printCommand(+netfn, +cmd);
if (*dataLen != 6)
{
*dataLen = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
auto requestedSize = *dataLen;
*dataLen = 0; // default to 0 in case of an error
constexpr uint16_t lastRecordIndex = 0xFFFF;
auto req = static_cast<GetSDRReq*>(request);
// reservation required for partial reads with non zero offset into
// record
if ((sdrReservationID == 0 || req->reservationID != sdrReservationID) &&
req->offset)
{
return IPMI_CC_INVALID_RESERVATION_ID;
}
if (!getSensorSubtree(sensorTree) && sensorTree.empty())
{
return IPMI_CC_RESPONSE_ERROR;
}
size_t fruCount = 0;
ipmi_ret_t ret = ipmi::storage::getFruSdrCount(fruCount);
if (ret != IPMI_CC_OK)
{
return ret;
}
size_t lastRecord = sensorTree.size() + fruCount - 1;
if (req->recordID == lastRecordIndex)
{
req->recordID = lastRecord;
}
if (req->recordID > lastRecord)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
uint16_t nextRecord = lastRecord >= static_cast<size_t>(req->recordID + 1)
? req->recordID + 1
: 0XFFFF;
auto responseClear = static_cast<uint8_t*>(response);
std::fill(responseClear, responseClear + requestedSize, 0);
auto resp = static_cast<get_sdr::GetSdrResp*>(response);
resp->next_record_id_lsb = nextRecord & 0xFF;
resp->next_record_id_msb = nextRecord >> 8;
if (req->recordID >= sensorTree.size())
{
size_t fruIndex = req->recordID - sensorTree.size();
if (fruIndex >= fruCount)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
get_sdr::SensorDataFruRecord data;
if (req->offset > sizeof(data))
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
ret = ipmi::storage::getFruSdrs(fruIndex, data);
if (ret != IPMI_CC_OK)
{
return ret;
}
data.header.record_id_msb = req->recordID << 8;
data.header.record_id_lsb = req->recordID & 0xFF;
if (sizeof(data) < (req->offset + req->bytesToRead))
{
req->bytesToRead = sizeof(data) - req->offset;
}
*dataLen = req->bytesToRead + 2; // next record
std::memcpy(&resp->record_data, (char*)&data + req->offset,
req->bytesToRead);
return IPMI_CC_OK;
}
std::string connection;
std::string path;
uint16_t sensorIndex = req->recordID;
for (const auto& sensor : sensorTree)
{
if (sensorIndex-- == 0)
{
if (!sensor.second.size())
{
return IPMI_CC_RESPONSE_ERROR;
}
connection = sensor.second.begin()->first;
path = sensor.first;
break;
}
}
SensorMap sensorMap;
if (!getSensorMap(connection, path, sensorMap))
{
return IPMI_CC_RESPONSE_ERROR;
}
uint8_t sensornumber = (req->recordID & 0xFF);
get_sdr::SensorDataFullRecord record = {};
record.header.record_id_msb = req->recordID << 8;
record.header.record_id_lsb = req->recordID & 0xFF;
record.header.sdr_version = ipmiSdrVersion;
record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD;
record.header.record_length = sizeof(get_sdr::SensorDataFullRecord) -
sizeof(get_sdr::SensorDataRecordHeader);
record.key.owner_id = 0x20;
record.key.owner_lun = 0x0;
record.key.sensor_number = sensornumber;
record.body.entity_id = 0x0;
record.body.entity_instance = 0x01;
record.body.sensor_capabilities = 0x60; // auto rearm - todo hysteresis
record.body.sensor_type = getSensorTypeFromPath(path);
std::string type = getSensorTypeStringFromPath(path);
auto typeCstr = type.c_str();
auto findUnits = sensorUnits.find(typeCstr);
if (findUnits != sensorUnits.end())
{
record.body.sensor_units_2_base =
static_cast<uint8_t>(findUnits->second);
} // else default 0x0 unspecified
record.body.event_reading_type = getSensorEventTypeFromPath(path);
auto sensorObject = sensorMap.find("xyz.openbmc_project.Sensor.Value");
if (sensorObject == sensorMap.end())
{
return IPMI_CC_RESPONSE_ERROR;
}
auto maxObject = sensorObject->second.find("MaxValue");
auto minObject = sensorObject->second.find("MinValue");
double max = 128;
double min = -127;
if (maxObject != sensorObject->second.end())
{
max = std::visit(VariantToDoubleVisitor(), maxObject->second);
}
if (minObject != sensorObject->second.end())
{
min = std::visit(VariantToDoubleVisitor(), minObject->second);
}
int16_t mValue;
int8_t rExp;
int16_t bValue;
int8_t bExp;
bool bSigned;
if (!getSensorAttributes(max, min, mValue, rExp, bValue, bExp, bSigned))
{
return IPMI_CC_RESPONSE_ERROR;
}
// apply M, B, and exponents, M and B are 10 bit values, exponents are 4
record.body.m_lsb = mValue & 0xFF;
// move the smallest bit of the MSB into place (bit 9)
// the MSbs are bits 7:8 in m_msb_and_tolerance
uint8_t mMsb = (mValue & (1 << 8)) > 0 ? (1 << 6) : 0;
// assign the negative
if (mValue < 0)
{
mMsb |= (1 << 7);
}
record.body.m_msb_and_tolerance = mMsb;
record.body.b_lsb = bValue & 0xFF;
// move the smallest bit of the MSB into place
// the MSbs are bits 7:8 in b_msb_and_accuracy_lsb
uint8_t bMsb = (bValue & (1 << 8)) > 0 ? (1 << 6) : 0;
// assign the negative
if (bValue < 0)
{
bMsb |= (1 << 7);
}
record.body.b_msb_and_accuracy_lsb = bMsb;
record.body.r_b_exponents = bExp & 0x7;
if (bExp < 0)
{
record.body.r_b_exponents |= 1 << 3;
}
record.body.r_b_exponents = (rExp & 0x7) << 4;
if (rExp < 0)
{
record.body.r_b_exponents |= 1 << 7;
}
// todo fill out rest of units
if (bSigned)
{
record.body.sensor_units_1 = 1 << 7;
}
// populate sensor name from path
std::string name;
size_t nameStart = path.rfind("/");
if (nameStart != std::string::npos)
{
name = path.substr(nameStart + 1, std::string::npos - nameStart);
}
std::replace(name.begin(), name.end(), '_', ' ');
if (name.size() > FULL_RECORD_ID_STR_MAX_LENGTH)
{
name.resize(FULL_RECORD_ID_STR_MAX_LENGTH);
}
record.body.id_string_info = name.size();
std::strncpy(record.body.id_string, name.c_str(),
sizeof(record.body.id_string));
if (sizeof(get_sdr::SensorDataFullRecord) <
(req->offset + req->bytesToRead))
{
req->bytesToRead = sizeof(get_sdr::SensorDataFullRecord) - req->offset;
}
*dataLen = 2 +
req->bytesToRead; // bytesToRead + MSB and LSB of next record id
std::memcpy(&resp->record_data, (char*)&record + req->offset,
req->bytesToRead);
return IPMI_CC_OK;
}
static int getSensorConnectionByName(std::string& name, std::string& connection,
std::string& path)
{
if (!getSensorSubtree(sensorTree) && sensorTree.empty())
{
return -1;
}
for (const auto& sensor : sensorTree)
{
path = sensor.first;
if (path.find(name) != std::string::npos)
{
connection = sensor.second.begin()->first;
return 0;
}
}
return -1;
}
int getSensorThreshold(std::string& name, std::string& thresholdStr)
{
std::string connection;
std::string path;
int ret = -1;
thresholdStr = "";
ret = getSensorConnectionByName(name, connection, path);
if (ret < 0)
{
return ret;
}
SensorMap sensorMap;
if (!getSensorMap(connection, path, sensorMap))
{
return ret;
}
// Iterate threshold interfaces with priority order
for (auto& interface : thresholdCheckedOrder)
{
auto interfaceProperty = alarmProperties.find(interface);
if (interfaceProperty == alarmProperties.end())
{
continue;
}
auto propertyValue = interfaceProperty->second;
// Checks threshold properties value in sensorMap
auto thresholdInterfaceSensorMap = sensorMap.find(interface);
// Ignore if interface not set
if (thresholdInterfaceSensorMap == sensorMap.end())
{
continue;
}
auto& thresholdMap = thresholdInterfaceSensorMap->second;
auto& propertyAlarmHigh = propertyValue.at(AlarmType::high);
auto alarmHigh = thresholdMap.find(propertyAlarmHigh.name);
if (alarmHigh != thresholdMap.end())
{
if (std::get<bool>(alarmHigh->second))
{
thresholdStr = propertyAlarmHigh.threshold;
break;
}
}
auto& propertyAlarmLow = propertyValue.at(AlarmType::low);
auto alarmLow = thresholdMap.find(propertyAlarmLow.name);
if (alarmLow != thresholdMap.end())
{
if (std::get<bool>(alarmLow->second))
{
thresholdStr = propertyAlarmLow.threshold;
break;
}
}
}
return 0;
}
int getSensorValue(std::string& name, double& val)
{
std::string connection;
std::string path;
int ret = -1;
ret = getSensorConnectionByName(name, connection, path);
if (ret < 0)
{
return ret;
}
SensorMap sensorMap;
if (!getSensorMap(connection, path, sensorMap))
{
return ret;
}
auto sensorObject = sensorMap.find("xyz.openbmc_project.Sensor.Value");
if (sensorObject == sensorMap.end() ||
sensorObject->second.find("Value") == sensorObject->second.end())
{
return ret;
}
auto& valueVariant = sensorObject->second["Value"];
val = std::visit(VariantToDoubleVisitor(), valueVariant);
return 0;
}
const static boost::container::flat_map<const char*, std::string, CmpStr>
sensorUnitStr{{{"temperature", "C"},
{"voltage", "V"},
{"current", "mA"},
{"fan_tach", "RPM"},
{"fan_pwm", "RPM"},
{"power", "W"}}};
int getSensorUnit(std::string& name, std::string& unit)
{
std::string connection;
std::string path;
int ret = -1;
ret = getSensorConnectionByName(name, connection, path);
if (ret < 0)
{
return ret;
}
std::string sensorTypeStr = getSensorTypeStringFromPath(path);
auto findSensor = sensorUnitStr.find(sensorTypeStr.c_str());
if (findSensor != sensorUnitStr.end())
{
unit = findSensor->second;
return 0;
}
else
return -1;
}
ipmi_ret_t ipmiStorageGetFRUInvAreaInfo(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t dataLen, ipmi_context_t)
{
if (*dataLen != 1)
{
*dataLen = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*dataLen = 0; // default to 0 in case of an error
uint8_t reqDev = *(static_cast<uint8_t*>(request));
if (reqDev == 0xFF)
{
return IPMI_CC_INVALID_FIELD_REQUEST;
}
ipmi_ret_t status = replaceCacheFru(reqDev);
if (status != IPMI_CC_OK)
{
return status;
}
GetFRUAreaResp* respPtr = static_cast<GetFRUAreaResp*>(response);
respPtr->inventorySizeLSB = fruCache.size() & 0xFF;
respPtr->inventorySizeMSB = fruCache.size() >> 8;
respPtr->accessType = static_cast<uint8_t>(GetFRUAreaAccessType::byte);
*dataLen = sizeof(GetFRUAreaResp);
return IPMI_CC_OK;
}
void registerStorageFunctions()
{
// <Get FRU Inventory Area Info>
ipmiPrintAndRegister(
NETFUN_STORAGE,
static_cast<ipmi_cmd_t>(IPMINetfnStorageCmds::ipmiCmdGetFRUInvAreaInfo),
NULL, ipmiStorageGetFRUInvAreaInfo, PRIVILEGE_OPERATOR);
// <READ FRU Data>
ipmiPrintAndRegister(
NETFUN_STORAGE,
static_cast<ipmi_cmd_t>(IPMINetfnStorageCmds::ipmiCmdReadFRUData), NULL,
ipmiStorageReadFRUData, PRIVILEGE_OPERATOR);
// <WRITE FRU Data>
ipmiPrintAndRegister(
NETFUN_STORAGE,
static_cast<ipmi_cmd_t>(IPMINetfnStorageCmds::ipmiCmdWriteFRUData),
NULL, ipmiStorageWriteFRUData, PRIVILEGE_OPERATOR);
// <Reserve SDR Repo>
ipmiPrintAndRegister(
NETFUN_STORAGE,
static_cast<ipmi_cmd_t>(IPMINetfnStorageCmds::ipmiCmdReserveSDR),
nullptr, ipmiStorageReserveSDR, PRIVILEGE_USER);
// <Get Sdr>
ipmiPrintAndRegister(
NETFUN_STORAGE,
static_cast<ipmi_cmd_t>(IPMINetfnStorageCmds::ipmiCmdGetSDR), nullptr,
ipmiStorageGetSDR, PRIVILEGE_USER);
return;
}
} // namespace storage
} // namespace ipmi