blob: ca56c45627fce8e08ac30767d8dead2022d68470 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
* Copyright (c) 2018-present Facebook.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "xyz/openbmc_project/Common/error.hpp"
#include <xyz/openbmc_project/Control/Boot/Mode/server.hpp>
#include <xyz/openbmc_project/Control/Boot/Source/server.hpp>
#include <xyz/openbmc_project/Control/Boot/Type/server.hpp>
#include <ipmid/api.hpp>
#include <ipmid/utils.hpp>
#include <commandutils.hpp>
#include <nlohmann/json.hpp>
#include <oemcommands.hpp>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/bus.hpp>
#include <ipmid/api.hpp>
#include <ipmid/api-types.hpp>
#include <array>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <regex>
#define SIZE_IANA_ID 3
namespace ipmi
{
using namespace phosphor::logging;
void getSelectorPosition(size_t& position);
static void registerOEMFunctions() __attribute__((constructor));
sdbusplus::bus_t dbus(ipmid_get_sd_bus_connection()); // from ipmid/api.h
static constexpr size_t maxFRUStringLength = 0x3F;
constexpr uint8_t cmdSetSystemGuid = 0xEF;
constexpr uint8_t cmdSetQDimmInfo = 0x12;
constexpr uint8_t cmdGetQDimmInfo = 0x13;
int plat_udbg_get_post_desc(uint8_t, uint8_t*, uint8_t, uint8_t*, uint8_t*,
uint8_t*);
int plat_udbg_get_gpio_desc(uint8_t, uint8_t*, uint8_t*, uint8_t*, uint8_t*,
uint8_t*);
ipmi_ret_t plat_udbg_get_frame_data(uint8_t, uint8_t, uint8_t*, uint8_t*,
uint8_t*);
ipmi_ret_t plat_udbg_control_panel(uint8_t, uint8_t, uint8_t, uint8_t*,
uint8_t*);
int sendMeCmd(uint8_t, uint8_t, std::vector<uint8_t>&, std::vector<uint8_t>&);
int sendBicCmd(uint8_t, uint8_t, uint8_t, std::vector<uint8_t>&,
std::vector<uint8_t>&);
nlohmann::json oemData __attribute__((init_priority(101)));
static constexpr size_t GUID_SIZE = 16;
// TODO Make offset and location runtime configurable to ensure we
// can make each define their own locations.
static constexpr off_t OFFSET_SYS_GUID = 0x17F0;
static constexpr const char* FRU_EEPROM = "/sys/bus/i2c/devices/6-0054/eeprom";
enum class LanParam : uint8_t
{
INPROGRESS = 0,
AUTHSUPPORT = 1,
AUTHENABLES = 2,
IP = 3,
IPSRC = 4,
MAC = 5,
SUBNET = 6,
GATEWAY = 12,
VLAN = 20,
CIPHER_SUITE_COUNT = 22,
CIPHER_SUITE_ENTRIES = 23,
IPV6 = 59,
};
namespace network
{
constexpr auto ROOT = "/xyz/openbmc_project/network";
constexpr auto SERVICE = "xyz.openbmc_project.Network";
constexpr auto IPV4_TYPE = "ipv4";
constexpr auto IPV6_TYPE = "ipv6";
constexpr auto IPV4_PREFIX = "169.254";
constexpr auto IPV6_PREFIX = "fe80";
constexpr auto IP_INTERFACE = "xyz.openbmc_project.Network.IP";
constexpr auto MAC_INTERFACE = "xyz.openbmc_project.Network.MACAddress";
constexpr auto IPV4_PROTOCOL = "xyz.openbmc_project.Network.IP.Protocol.IPv4";
constexpr auto IPV6_PROTOCOL = "xyz.openbmc_project.Network.IP.Protocol.IPv6";
bool isLinkLocalIP(const std::string& address)
{
return address.find(IPV4_PREFIX) == 0 || address.find(IPV6_PREFIX) == 0;
}
DbusObjectInfo getIPObject(sdbusplus::bus_t& bus, const std::string& interface,
const std::string& serviceRoot,
const std::string& protocol,
const std::string& ethdev)
{
auto objectTree = getAllDbusObjects(bus, serviceRoot, interface, ethdev);
if (objectTree.empty())
{
log<level::ERR>("No Object has implemented the IP interface",
entry("INTERFACE=%s", interface.c_str()));
}
DbusObjectInfo objectInfo;
for (auto& object : objectTree)
{
auto variant =
ipmi::getDbusProperty(bus, object.second.begin()->first,
object.first, IP_INTERFACE, "Type");
if (std::get<std::string>(variant) != protocol)
{
continue;
}
variant = ipmi::getDbusProperty(bus, object.second.begin()->first,
object.first, IP_INTERFACE, "Address");
objectInfo = std::make_pair(object.first, object.second.begin()->first);
// if LinkLocalIP found look for Non-LinkLocalIP
if (isLinkLocalIP(std::get<std::string>(variant)))
{
continue;
}
else
{
break;
}
}
return objectInfo;
}
} // namespace network
namespace boot
{
using BootSource =
sdbusplus::xyz::openbmc_project::Control::Boot::server::Source::Sources;
using BootMode =
sdbusplus::xyz::openbmc_project::Control::Boot::server::Mode::Modes;
using BootType =
sdbusplus::xyz::openbmc_project::Control::Boot::server::Type::Types;
using IpmiValue = uint8_t;
std::map<IpmiValue, BootSource> sourceIpmiToDbus = {
{0x0f, BootSource::Default}, {0x00, BootSource::RemovableMedia},
{0x01, BootSource::Network}, {0x02, BootSource::Disk},
{0x03, BootSource::ExternalMedia}, {0x09, BootSource::Network}};
std::map<IpmiValue, BootMode> modeIpmiToDbus = {{0x04, BootMode::Setup},
{0x00, BootMode::Regular}};
std::map<IpmiValue, BootType> typeIpmiToDbus = {{0x00, BootType::Legacy},
{0x01, BootType::EFI}};
std::map<std::optional<BootSource>, IpmiValue> sourceDbusToIpmi = {
{BootSource::Default, 0x0f},
{BootSource::RemovableMedia, 0x00},
{BootSource::Network, 0x01},
{BootSource::Disk, 0x02},
{BootSource::ExternalMedia, 0x03}};
std::map<std::optional<BootMode>, IpmiValue> modeDbusToIpmi = {
{BootMode::Setup, 0x04}, {BootMode::Regular, 0x00}};
std::map<std::optional<BootType>, IpmiValue> typeDbusToIpmi = {
{BootType::Legacy, 0x00}, {BootType::EFI, 0x01}};
static constexpr auto bootEnableIntf = "xyz.openbmc_project.Object.Enable";
static constexpr auto bootModeIntf = "xyz.openbmc_project.Control.Boot.Mode";
static constexpr auto bootSourceIntf =
"xyz.openbmc_project.Control.Boot.Source";
static constexpr auto bootTypeIntf = "xyz.openbmc_project.Control.Boot.Type";
static constexpr auto bootSourceProp = "BootSource";
static constexpr auto bootModeProp = "BootMode";
static constexpr auto bootTypeProp = "BootType";
static constexpr auto bootEnableProp = "Enabled";
std::tuple<std::string, std::string> objPath(size_t id)
{
std::string hostName = "host" + std::to_string(id);
std::string bootObjPath =
"/xyz/openbmc_project/control/" + hostName + "/boot";
return std::make_tuple(std::move(bootObjPath), std::move(hostName));
}
} // namespace boot
//----------------------------------------------------------------------
// Helper functions for storing oem data
//----------------------------------------------------------------------
void flushOemData()
{
std::ofstream file(JSON_OEM_DATA_FILE);
file << oemData;
file.close();
return;
}
std::string bytesToStr(uint8_t* byte, int len)
{
std::stringstream ss;
int i;
ss << std::hex;
for (i = 0; i < len; i++)
{
ss << std::setw(2) << std::setfill('0') << (int)byte[i];
}
return ss.str();
}
int strToBytes(std::string& str, uint8_t* data)
{
std::string sstr;
size_t i;
for (i = 0; i < (str.length()) / 2; i++)
{
sstr = str.substr(i * 2, 2);
data[i] = (uint8_t)std::strtol(sstr.c_str(), NULL, 16);
}
return i;
}
int readDimmType(std::string& data, uint8_t param)
{
nlohmann::json dimmObj;
/* Get dimm type names stored in json file */
std::ifstream file(JSON_DIMM_TYPE_FILE);
if (file)
{
file >> dimmObj;
file.close();
}
else
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"DIMM type names file not found",
phosphor::logging::entry("DIMM_TYPE_FILE=%s", JSON_DIMM_TYPE_FILE));
return -1;
}
std::string dimmKey = "dimm_type" + std::to_string(param);
auto obj = dimmObj[dimmKey]["short_name"];
data = obj;
return 0;
}
ipmi_ret_t getNetworkData(uint8_t lan_param, char* data)
{
ipmi_ret_t rc = IPMI_CC_OK;
sdbusplus::bus_t bus(ipmid_get_sd_bus_connection());
const std::string ethdevice = "eth0";
switch (static_cast<LanParam>(lan_param))
{
case LanParam::IP:
{
std::string ipaddress;
auto ipObjectInfo = ipmi::network::getIPObject(
bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT,
ipmi::network::IPV4_PROTOCOL, ethdevice);
auto properties = ipmi::getAllDbusProperties(
bus, ipObjectInfo.second, ipObjectInfo.first,
ipmi::network::IP_INTERFACE);
ipaddress = std::get<std::string>(properties["Address"]);
std::strcpy(data, ipaddress.c_str());
}
break;
case LanParam::IPV6:
{
std::string ipaddress;
auto ipObjectInfo = ipmi::network::getIPObject(
bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT,
ipmi::network::IPV6_PROTOCOL, ethdevice);
auto properties = ipmi::getAllDbusProperties(
bus, ipObjectInfo.second, ipObjectInfo.first,
ipmi::network::IP_INTERFACE);
ipaddress = std::get<std::string>(properties["Address"]);
std::strcpy(data, ipaddress.c_str());
}
break;
case LanParam::MAC:
{
std::string macAddress;
auto macObjectInfo =
ipmi::getDbusObject(bus, ipmi::network::MAC_INTERFACE,
ipmi::network::ROOT, ethdevice);
auto variant = ipmi::getDbusProperty(
bus, macObjectInfo.second, macObjectInfo.first,
ipmi::network::MAC_INTERFACE, "MACAddress");
macAddress = std::get<std::string>(variant);
sscanf(macAddress.c_str(), ipmi::network::MAC_ADDRESS_FORMAT,
(data), (data + 1), (data + 2), (data + 3), (data + 4),
(data + 5));
std::strcpy(data, macAddress.c_str());
}
break;
default:
rc = IPMI_CC_PARM_OUT_OF_RANGE;
}
return rc;
}
bool isMultiHostPlatform()
{
bool platform;
if (hostInstances == "0")
{
platform = false;
}
else
{
platform = true;
}
return platform;
}
// return code: 0 successful
int8_t getFruData(std::string& data, std::string& name)
{
size_t pos;
static constexpr const auto depth = 0;
std::vector<std::string> paths;
std::string machinePath;
std::string baseBoard = "Baseboard";
bool platform = isMultiHostPlatform();
if (platform == true)
{
getSelectorPosition(pos);
}
sd_bus* bus = NULL;
int ret = sd_bus_default_system(&bus);
if (ret < 0)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Failed to connect to system bus",
phosphor::logging::entry("ERRNO=0x%X", -ret));
sd_bus_unref(bus);
return -1;
}
sdbusplus::bus_t dbus(bus);
auto mapperCall = dbus.new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper",
"GetSubTreePaths");
static constexpr std::array<const char*, 1> interface = {
"xyz.openbmc_project.Inventory.Decorator.Asset"};
mapperCall.append("/xyz/openbmc_project/inventory/", depth, interface);
try
{
auto reply = dbus.call(mapperCall);
reply.read(paths);
}
catch (sdbusplus::exception_t& e)
{
phosphor::logging::log<phosphor::logging::level::ERR>(e.what());
return -1;
}
for (const auto& path : paths)
{
if (platform == true)
{
if (pos == BMC_POS)
{
machinePath = baseBoard;
}
else
{
machinePath = "_" + std::to_string(pos);
}
}
else
{
machinePath = baseBoard;
}
auto found = path.find(machinePath);
if (found == std::string::npos)
{
continue;
}
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
std::string service = getService(
*dbus, "xyz.openbmc_project.Inventory.Decorator.Asset", path);
auto Value = ipmi::getDbusProperty(
*dbus, service, path,
"xyz.openbmc_project.Inventory.Decorator.Asset", name);
data = std::get<std::string>(Value);
return 0;
}
return -1;
}
int8_t sysConfig(std::vector<std::string>& data, size_t pos)
{
nlohmann::json sysObj;
std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(pos);
std::string result, typeName;
uint8_t res[MAX_BUF];
/* Get sysConfig data stored in json file */
std::ifstream file(JSON_OEM_DATA_FILE);
if (file)
{
file >> sysObj;
file.close();
}
else
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"oemData file not found",
phosphor::logging::entry("OEM_DATA_FILE=%s", JSON_OEM_DATA_FILE));
return -1;
}
if (sysObj.find(dimmInfo) == sysObj.end())
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"sysconfig key not available",
phosphor::logging::entry("SYS_JSON_KEY=%s", dimmInfo.c_str()));
return -1;
}
/* Get dimm type names stored in json file */
nlohmann::json dimmObj;
std::ifstream dimmFile(JSON_DIMM_TYPE_FILE);
if (file)
{
dimmFile >> dimmObj;
dimmFile.close();
}
else
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"DIMM type names file not found",
phosphor::logging::entry("DIMM_TYPE_FILE=%s", JSON_DIMM_TYPE_FILE));
return -1;
}
std::vector<std::string> a;
for (auto& j : dimmObj.items())
{
std::string name = j.key();
a.push_back(name);
}
uint8_t len = a.size();
for (uint8_t ii = 0; ii < len; ii++)
{
std::string indKey = std::to_string(ii);
std::string speedSize = sysObj[dimmInfo][indKey][DIMM_SPEED];
strToBytes(speedSize, res);
auto speed = (res[1] << 8 | res[0]);
size_t dimmSize = ((res[3] << 8 | res[2]) / 1000);
if (dimmSize == 0)
{
std::cerr << "Dimm information not available for slot_" +
std::to_string(ii)
<< std::endl;
continue;
}
std::string type = sysObj[dimmInfo][indKey][DIMM_TYPE];
std::string dualInlineMem = sysObj[dimmInfo][indKey][KEY_DIMM_TYPE];
strToBytes(type, res);
size_t dimmType = res[0];
if (dimmVenMap.find(dimmType) == dimmVenMap.end())
{
typeName = "unknown";
}
else
{
typeName = dimmVenMap[dimmType];
}
result = dualInlineMem + "/" + typeName + "/" + std::to_string(speed) +
"MHz" + "/" + std::to_string(dimmSize) + "GB";
data.push_back(result);
}
return 0;
}
int8_t procInfo(std::string& result, size_t pos)
{
std::vector<char> data;
uint8_t res[MAX_BUF];
std::string procIndex = "00";
nlohmann::json proObj;
std::string procInfo = KEY_Q_PROC_INFO + std::to_string(pos);
/* Get processor data stored in json file */
std::ifstream file(JSON_OEM_DATA_FILE);
if (file)
{
file >> proObj;
file.close();
}
else
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"oemData file not found",
phosphor::logging::entry("OEM_DATA_FILE=%s", JSON_OEM_DATA_FILE));
return -1;
}
if (proObj.find(procInfo) == proObj.end())
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"processor info key not available",
phosphor::logging::entry("PROC_JSON_KEY=%s", procInfo.c_str()));
return -1;
}
std::string procName = proObj[procInfo][procIndex][KEY_PROC_NAME];
std::string basicInfo = proObj[procInfo][procIndex][KEY_BASIC_INFO];
// Processor Product Name
strToBytes(procName, res);
data.assign(reinterpret_cast<char*>(&res),
reinterpret_cast<char*>(&res) + sizeof(res));
std::string s(data.begin(), data.end());
std::regex regex(" ");
std::vector<std::string> productName(
std::sregex_token_iterator(s.begin(), s.end(), regex, -1),
std::sregex_token_iterator());
// Processor core and frequency
strToBytes(basicInfo, res);
uint16_t coreNum = res[0];
double procFrequency = (float)(res[4] << 8 | res[3]) / 1000;
result = "CPU:" + productName[2] + "/" + std::to_string(procFrequency) +
"GHz" + "/" + std::to_string(coreNum) + "c";
return 0;
}
typedef struct
{
uint8_t cur_power_state;
uint8_t last_power_event;
uint8_t misc_power_state;
uint8_t front_panel_button_cap_status;
} ipmi_get_chassis_status_t;
//----------------------------------------------------------------------
// Get Debug Frame Info
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetFrameInfo(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t num_frames = 3;
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[SIZE_IANA_ID] = num_frames;
*data_len = SIZE_IANA_ID + 1;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Updated Frames
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetUpdFrames(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t num_updates = 3;
*data_len = 4;
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[SIZE_IANA_ID] = num_updates;
*data_len = SIZE_IANA_ID + num_updates + 1;
res[SIZE_IANA_ID + 1] = 1; // info page update
res[SIZE_IANA_ID + 2] = 2; // cri sel update
res[SIZE_IANA_ID + 3] = 3; // cri sensor update
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug POST Description
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetPostDesc(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t index = 0;
uint8_t next = 0;
uint8_t end = 0;
uint8_t phase = 0;
uint8_t descLen = 0;
int ret;
index = req[3];
phase = req[4];
ret = plat_udbg_get_post_desc(index, &next, phase, &end, &descLen, &res[8]);
if (ret)
{
memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID;
return IPMI_CC_UNSPECIFIED_ERROR;
}
memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[3] = index;
res[4] = next;
res[5] = phase;
res[6] = end;
res[7] = descLen;
*data_len = SIZE_IANA_ID + 5 + descLen;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug GPIO Description
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetGpioDesc(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t index = 0;
uint8_t next = 0;
uint8_t level = 0;
uint8_t pinDef = 0;
uint8_t descLen = 0;
int ret;
index = req[3];
ret = plat_udbg_get_gpio_desc(index, &next, &level, &pinDef, &descLen,
&res[8]);
if (ret)
{
memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID;
return IPMI_CC_UNSPECIFIED_ERROR;
}
memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[3] = index;
res[4] = next;
res[5] = level;
res[6] = pinDef;
res[7] = descLen;
*data_len = SIZE_IANA_ID + 5 + descLen;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Frame Data
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetFrameData(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t frame;
uint8_t page;
uint8_t next;
uint8_t count;
int ret;
frame = req[3];
page = req[4];
ret = plat_udbg_get_frame_data(frame, page, &next, &count, &res[7]);
if (ret)
{
memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID;
return IPMI_CC_UNSPECIFIED_ERROR;
}
memcpy(res, req, SIZE_IANA_ID); // IANA ID
res[3] = frame;
res[4] = page;
res[5] = next;
res[6] = count;
*data_len = SIZE_IANA_ID + 4 + count;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Debug Control Panel
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemDbgGetCtrlPanel(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t panel;
uint8_t operation;
uint8_t item;
uint8_t count;
ipmi_ret_t ret;
panel = req[3];
operation = req[4];
item = req[5];
ret = plat_udbg_control_panel(panel, operation, item, &count, &res[3]);
std::memcpy(res, req, SIZE_IANA_ID); // IANA ID
*data_len = SIZE_IANA_ID + count;
return ret;
}
//----------------------------------------------------------------------
// Set Dimm Info (CMD_OEM_SET_DIMM_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetDimmInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t index = req[0];
uint8_t type = req[1];
uint16_t speed;
uint32_t size;
memcpy(&speed, &req[2], 2);
memcpy(&size, &req[4], 4);
std::stringstream ss;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)index;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_INDEX] = index;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_TYPE] = type;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SPEED] = speed;
oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SIZE] = size;
flushOemData();
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Board ID (CMD_OEM_GET_BOARD_ID)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemGetBoardID(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
/* TODO: Needs to implement this after GPIO implementation */
*data_len = 0;
return IPMI_CC_OK;
}
/* Helper functions to set boot order */
void setBootOrder(std::string bootObjPath, uint8_t* data,
std::string bootOrderKey)
{
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
// SETTING BOOT MODE PROPERTY
uint8_t bootModeBit = data[0] & 0x04;
auto bootValue = ipmi::boot::modeIpmiToDbus.at(bootModeBit);
std::string bootOption =
sdbusplus::message::convert_to_string<boot::BootMode>(bootValue);
std::string service =
getService(*dbus, ipmi::boot::bootModeIntf, bootObjPath);
setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootModeIntf,
ipmi::boot::bootModeProp, bootOption);
// SETTING BOOT SOURCE PROPERTY
auto bootOrder = ipmi::boot::sourceIpmiToDbus.at(data[1]);
std::string bootSource =
sdbusplus::message::convert_to_string<boot::BootSource>(bootOrder);
service = getService(*dbus, ipmi::boot::bootSourceIntf, bootObjPath);
setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootSourceIntf,
ipmi::boot::bootSourceProp, bootSource);
// SETTING BOOT TYPE PROPERTY
uint8_t bootTypeBit = data[0] & 0x01;
auto bootTypeVal = ipmi::boot::typeIpmiToDbus.at(bootTypeBit);
std::string bootType =
sdbusplus::message::convert_to_string<boot::BootType>(bootTypeVal);
service = getService(*dbus, ipmi::boot::bootTypeIntf, bootObjPath);
setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootTypeIntf,
ipmi::boot::bootTypeProp, bootType);
// Set the valid bit to boot enabled property
service = getService(*dbus, ipmi::boot::bootEnableIntf, bootObjPath);
setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootEnableIntf,
ipmi::boot::bootEnableProp,
(data[0] & BOOT_MODE_BOOT_FLAG) ? true : false);
nlohmann::json bootMode;
uint8_t mode = data[0];
int i;
bootMode["UEFI"] = (mode & BOOT_MODE_UEFI ? true : false);
bootMode["CMOS_CLR"] = (mode & BOOT_MODE_CMOS_CLR ? true : false);
bootMode["FORCE_BOOT"] = (mode & BOOT_MODE_FORCE_BOOT ? true : false);
bootMode["BOOT_FLAG"] = (mode & BOOT_MODE_BOOT_FLAG ? true : false);
oemData[bootOrderKey][KEY_BOOT_MODE] = bootMode;
/* Initialize boot sequence array */
oemData[bootOrderKey][KEY_BOOT_SEQ] = {};
for (i = 1; i < SIZE_BOOT_ORDER; i++)
{
if (data[i] >= BOOT_SEQ_ARRAY_SIZE)
oemData[bootOrderKey][KEY_BOOT_SEQ][i - 1] = "NA";
else
oemData[bootOrderKey][KEY_BOOT_SEQ][i - 1] = bootSeq[data[i]];
}
flushOemData();
}
//----------------------------------------------------------------------
// Set Boot Order (CMD_OEM_SET_BOOT_ORDER)
//----------------------------------------------------------------------
ipmi::RspType<std::vector<uint8_t>>
ipmiOemSetBootOrder(ipmi::Context::ptr ctx, std::vector<uint8_t> data)
{
uint8_t bootSeq[SIZE_BOOT_ORDER];
size_t len = data.size();
if (len != SIZE_BOOT_ORDER)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Boot order length received");
return ipmi::responseReqDataLenInvalid();
}
std::copy(std::begin(data), std::end(data), bootSeq);
std::optional<size_t> hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
auto [bootObjPath, hostName] = ipmi::boot::objPath(*hostId);
setBootOrder(bootObjPath, bootSeq, hostName);
return ipmi::responseSuccess(data);
}
//----------------------------------------------------------------------
// Get Boot Order (CMD_OEM_GET_BOOT_ORDER)
//----------------------------------------------------------------------
ipmi::RspType<uint8_t, uint8_t, uint8_t, uint8_t, uint8_t, uint8_t>
ipmiOemGetBootOrder(ipmi::Context::ptr ctx)
{
uint8_t bootSeq[SIZE_BOOT_ORDER];
uint8_t mode = 0;
std::optional<size_t> hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
auto [bootObjPath, hostName] = ipmi::boot::objPath(*hostId);
std::shared_ptr<sdbusplus::asio::connection> dbus = getSdBus();
// GETTING PROPERTY OF MODE INTERFACE
std::string service =
getService(*dbus, ipmi::boot::bootModeIntf, bootObjPath);
Value variant =
getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootModeIntf,
ipmi::boot::bootModeProp);
auto bootMode = sdbusplus::message::convert_from_string<boot::BootMode>(
std::get<std::string>(variant));
uint8_t bootOption = ipmi::boot::modeDbusToIpmi.at(bootMode);
// GETTING PROPERTY OF TYPE INTERFACE
service = getService(*dbus, ipmi::boot::bootTypeIntf, bootObjPath);
variant =
getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootTypeIntf,
ipmi::boot::bootTypeProp);
auto bootType = sdbusplus::message::convert_from_string<boot::BootType>(
std::get<std::string>(variant));
// Get the valid bit from boot enabled property
service = getService(*dbus, ipmi::boot::bootEnableIntf, bootObjPath);
variant =
getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootEnableIntf,
ipmi::boot::bootEnableProp);
bool validFlag = std::get<bool>(variant);
uint8_t bootTypeVal = ipmi::boot::typeDbusToIpmi.at(bootType);
uint8_t bootVal = bootOption | bootTypeVal;
if (validFlag)
{
bootVal |= BOOT_MODE_BOOT_FLAG;
}
if (oemData.find(hostName) == oemData.end())
{
/* Return default boot order 0100090203ff */
uint8_t defaultBoot[SIZE_BOOT_ORDER] = {
BOOT_MODE_UEFI,
static_cast<uint8_t>(bootMap["USB_DEV"]),
static_cast<uint8_t>(bootMap["NET_IPV6"]),
static_cast<uint8_t>(bootMap["SATA_HDD"]),
static_cast<uint8_t>(bootMap["SATA_CD"]),
0xff};
memcpy(bootSeq, defaultBoot, SIZE_BOOT_ORDER);
phosphor::logging::log<phosphor::logging::level::INFO>(
"Set default boot order");
setBootOrder(bootObjPath, defaultBoot, hostName);
}
else
{
nlohmann::json bootMode = oemData[hostName][KEY_BOOT_MODE];
if (bootMode["CMOS_CLR"])
bootVal |= BOOT_MODE_CMOS_CLR;
bootSeq[0] = mode;
for (int i = 1; i < SIZE_BOOT_ORDER; i++)
{
std::string seqStr = oemData[hostName][KEY_BOOT_SEQ][i - 1];
if (bootMap.find(seqStr) != bootMap.end())
bootSeq[i] = bootMap[seqStr];
else
bootSeq[i] = 0xff;
}
}
return ipmi::responseSuccess(bootVal, bootSeq[1], bootSeq[2], bootSeq[3],
bootSeq[4], bootSeq[5]);
}
// Set Machine Config Info (CMD_OEM_SET_MACHINE_CONFIG_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetMachineCfgInfo(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request, ipmi_response_t,
ipmi_data_len_t data_len, ipmi_context_t)
{
machineConfigInfo_t* req = reinterpret_cast<machineConfigInfo_t*>(request);
uint8_t len = *data_len;
*data_len = 0;
if (len < sizeof(machineConfigInfo_t))
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid machine configuration length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
if (req->chassis_type >= sizeof(chassisType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] =
chassisType[req->chassis_type];
if (req->mb_type >= sizeof(mbType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = mbType[req->mb_type];
oemData[KEY_MC_CONFIG][KEY_MC_PROC_CNT] = req->proc_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_MEM_CNT] = req->mem_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_HDD35_CNT] = req->hdd35_cnt;
oemData[KEY_MC_CONFIG][KEY_MC_HDD25_CNT] = req->hdd25_cnt;
if (req->riser_type >= sizeof(riserType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = riserType[req->riser_type];
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC] = {};
int i = 0;
if (req->pcie_card_loc & BIT_0)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT1";
if (req->pcie_card_loc & BIT_1)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT2";
if (req->pcie_card_loc & BIT_2)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT3";
if (req->pcie_card_loc & BIT_3)
oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT4";
if (req->slot1_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] =
pcieType[req->slot1_pcie_type];
if (req->slot2_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] =
pcieType[req->slot2_pcie_type];
if (req->slot3_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] =
pcieType[req->slot3_pcie_type];
if (req->slot4_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*))
oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = "UNKNOWN";
else
oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] =
pcieType[req->slot4_pcie_type];
oemData[KEY_MC_CONFIG][KEY_MC_AEP_CNT] = req->aep_mem_cnt;
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set POST start (CMD_OEM_SET_POST_START)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPostStart(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
phosphor::logging::log<phosphor::logging::level::INFO>("POST Start Event");
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set POST End (CMD_OEM_SET_POST_END)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPostEnd(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
struct timespec ts;
phosphor::logging::log<phosphor::logging::level::INFO>("POST End Event");
*data_len = 0;
// Timestamp post end time.
clock_gettime(CLOCK_REALTIME, &ts);
oemData[KEY_TS_SLED] = ts.tv_sec;
flushOemData();
// Sync time with system
// TODO: Add code for syncing time
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set PPIN Info (CMD_OEM_SET_PPIN_INFO)
//----------------------------------------------------------------------
// Inform BMC about PPIN data of 8 bytes for each CPU
//
// Request:
// Byte 1:8 – CPU0 PPIN data
// Optional:
// Byte 9:16 – CPU1 PPIN data
//
// Response:
// Byte 1 – Completion Code
ipmi_ret_t ipmiOemSetPPINInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
std::string ppinStr;
int len;
if (*data_len > SIZE_CPU_PPIN * 2)
len = SIZE_CPU_PPIN * 2;
else
len = *data_len;
*data_len = 0;
ppinStr = bytesToStr(req, len);
oemData[KEY_PPIN_INFO] = ppinStr.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set ADR Trigger (CMD_OEM_SET_ADR_TRIGGER)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetAdrTrigger(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
// Helper function to set guid at offset in EEPROM
[[maybe_unused]] static int setGUID(off_t offset, uint8_t* guid)
{
int fd = -1;
ssize_t len;
int ret = 0;
errno = 0;
// Check if file is present
if (access(FRU_EEPROM, F_OK) == -1)
{
std::cerr << "Unable to access: " << FRU_EEPROM << std::endl;
return errno;
}
// Open the file
fd = open(FRU_EEPROM, O_WRONLY);
if (fd == -1)
{
std::cerr << "Unable to open: " << FRU_EEPROM << std::endl;
return errno;
}
// seek to the offset
lseek(fd, offset, SEEK_SET);
// Write bytes to location
len = write(fd, guid, GUID_SIZE);
if (len != GUID_SIZE)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"GUID write data to EEPROM failed");
ret = errno;
}
close(fd);
return ret;
}
//----------------------------------------------------------------------
// Set System GUID (CMD_OEM_SET_SYSTEM_GUID)
//----------------------------------------------------------------------
#if BIC_ENABLED
ipmi::RspType<> ipmiOemSetSystemGuid(ipmi::Context::ptr ctx,
std::vector<uint8_t> reqData)
{
std::vector<uint8_t> respData;
if (reqData.size() != GUID_SIZE) // 16bytes
{
return ipmi::responseReqDataLenInvalid();
}
uint8_t bicAddr = (uint8_t)ctx->hostIdx << 2;
if (sendBicCmd(ctx->netFn, ctx->cmd, bicAddr, reqData, respData))
return ipmi::responseUnspecifiedError();
return ipmi::responseSuccess();
}
#else
ipmi_ret_t ipmiOemSetSystemGuid(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request, ipmi_response_t,
ipmi_data_len_t data_len, ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
if (*data_len != GUID_SIZE) // 16bytes
{
*data_len = 0;
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
*data_len = 0;
if (setGUID(OFFSET_SYS_GUID, req))
{
return IPMI_CC_UNSPECIFIED_ERROR;
}
return IPMI_CC_OK;
}
#endif
//----------------------------------------------------------------------
// Set Bios Flash Info (CMD_OEM_SET_BIOS_FLASH_INFO)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetBiosFlashInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
/* Do nothing, return success */
*data_len = 0;
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Set PPR (CMD_OEM_SET_PPR)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemSetPpr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
ipmi_response_t, ipmi_data_len_t data_len,
ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t pprCnt, pprAct, pprIndex;
uint8_t selParam = req[0];
uint8_t len = *data_len;
std::stringstream ss;
std::string str;
*data_len = 0;
switch (selParam)
{
case PPR_ACTION:
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) ==
oemData[KEY_PPR].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
if (pprCnt == 0)
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
pprAct = req[1];
/* Check if ppr is enabled or disabled */
if (!(pprAct & 0x80))
pprAct = 0;
oemData[KEY_PPR][KEY_PPR_ACTION] = pprAct;
break;
case PPR_ROW_COUNT:
if (req[1] > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
oemData[KEY_PPR][KEY_PPR_ROW_COUNT] = req[1];
break;
case PPR_ROW_ADDR:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
if (len < PPR_ROW_ADDR_LEN + 1)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid PPR Row Address length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex;
str = bytesToStr(&req[1], PPR_ROW_ADDR_LEN);
oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR] = str.c_str();
break;
case PPR_HISTORY_DATA:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
if (len < PPR_HST_DATA_LEN + 1)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid PPR history data length received");
return IPMI_CC_REQ_DATA_LEN_INVALID;
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex;
str = bytesToStr(&req[1], PPR_HST_DATA_LEN);
oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA] = str.c_str();
break;
default:
return IPMI_CC_PARM_OUT_OF_RANGE;
break;
}
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get PPR (CMD_OEM_GET_PPR)
//----------------------------------------------------------------------
ipmi_ret_t ipmiOemGetPpr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request,
ipmi_response_t response, ipmi_data_len_t data_len,
ipmi_context_t)
{
uint8_t* req = reinterpret_cast<uint8_t*>(request);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t pprCnt, pprIndex;
uint8_t selParam = req[0];
std::stringstream ss;
std::string str;
/* Any failure will return zero length data */
*data_len = 0;
switch (selParam)
{
case PPR_ACTION:
res[0] = 0;
*data_len = 1;
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) !=
oemData[KEY_PPR].end())
{
pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
if (pprCnt != 0)
{
if (oemData[KEY_PPR].find(KEY_PPR_ACTION) !=
oemData[KEY_PPR].end())
{
res[0] = oemData[KEY_PPR][KEY_PPR_ACTION];
}
}
}
break;
case PPR_ROW_COUNT:
res[0] = 0;
*data_len = 1;
if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) !=
oemData[KEY_PPR].end())
res[0] = oemData[KEY_PPR][KEY_PPR_ROW_COUNT];
break;
case PPR_ROW_ADDR:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_ROW_ADDR) ==
oemData[KEY_PPR][ss.str()].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
str = oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR];
*data_len = strToBytes(str, res);
break;
case PPR_HISTORY_DATA:
pprIndex = req[1];
if (pprIndex > 100)
return IPMI_CC_PARM_OUT_OF_RANGE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)pprIndex;
if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_HST_DATA) ==
oemData[KEY_PPR][ss.str()].end())
return IPMI_CC_PARM_OUT_OF_RANGE;
str = oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA];
*data_len = strToBytes(str, res);
break;
default:
return IPMI_CC_PARM_OUT_OF_RANGE;
break;
}
return IPMI_CC_OK;
}
/* FB OEM QC Commands */
//----------------------------------------------------------------------
// Set Proc Info (CMD_OEM_Q_SET_PROC_INFO)
//----------------------------------------------------------------------
//"Request:
// Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first
// Byte 4 – Processor Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of Processor Information)
// Response:
// Byte 1 – Completion code
//
// Parameter#1: (Processor Product Name)
//
// Byte 1..48 –Product name(ASCII code)
// Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz
//
// Param#2: Processor Basic Information
// Byte 1 – Core Number
// Byte 2 – Thread Number (LSB)
// Byte 3 – Thread Number (MSB)
// Byte 4 – Processor frequency in MHz (LSB)
// Byte 5 – Processor frequency in MHz (MSB)
// Byte 6..7 – Revision
//
ipmi::RspType<> ipmiOemQSetProcInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t,
uint8_t, uint8_t procIndex,
uint8_t paramSel,
std::vector<uint8_t> request)
{
uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t*);
std::stringstream ss;
std::string str;
uint8_t len = request.size();
auto hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
std::string procInfo = KEY_Q_PROC_INFO + std::to_string(*hostId);
/* check for requested data params */
if (len < 5 || paramSel < 1 || paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return ipmi::responseParmOutOfRange();
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)procIndex;
oemData[procInfo][ss.str()][KEY_PROC_INDEX] = procIndex;
str = bytesToStr(request.data(), len);
oemData[procInfo][ss.str()][cpuInfoKey[paramSel]] = str.c_str();
flushOemData();
return ipmi::responseSuccess();
}
//----------------------------------------------------------------------
// Get Proc Info (CMD_OEM_Q_GET_PROC_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first
// Byte 4 – Processor Index, 0 base
// Byte 5 – Parameter Selector
// Response:
// Byte 1 – Completion code
// Byte 2..N – Configuration Parameter Data (see below for Parameters
// of Processor Information)
//
// Parameter#1: (Processor Product Name)
//
// Byte 1..48 –Product name(ASCII code)
// Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz
//
// Param#2: Processor Basic Information
// Byte 1 – Core Number
// Byte 2 – Thread Number (LSB)
// Byte 3 – Thread Number (MSB)
// Byte 4 – Processor frequency in MHz (LSB)
// Byte 5 – Processor frequency in MHz (MSB)
// Byte 6..7 – Revision
//
ipmi::RspType<std::vector<uint8_t>>
ipmiOemQGetProcInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t,
uint8_t procIndex, uint8_t paramSel)
{
uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t*);
std::stringstream ss;
std::string str;
uint8_t res[MAX_BUF];
auto hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
std::string procInfo = KEY_Q_PROC_INFO + std::to_string(*hostId);
if (paramSel < 1 || paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return ipmi::responseParmOutOfRange();
}
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)procIndex;
if (oemData[procInfo].find(ss.str()) == oemData[procInfo].end())
return ipmi::responseCommandNotAvailable();
if (oemData[procInfo][ss.str()].find(cpuInfoKey[paramSel]) ==
oemData[procInfo][ss.str()].end())
return ipmi::responseCommandNotAvailable();
str = oemData[procInfo][ss.str()][cpuInfoKey[paramSel]];
int dataLen = strToBytes(str, res);
std::vector<uint8_t> response(&res[0], &res[dataLen]);
return ipmi::responseSuccess(response);
}
//----------------------------------------------------------------------
// Set Dimm Info (CMD_OEM_Q_SET_DIMM_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first
// Byte 4 – DIMM Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of DIMM Information)
// Response:
// Byte 1 – Completion code
//
// Param#1 (DIMM Location):
// Byte 1 – DIMM Present
// Byte 1 – DIMM Present
// 01h – Present
// FFh – Not Present
// Byte 2 – Node Number, 0 base
// Byte 3 – Channel Number , 0 base
// Byte 4 – DIMM Number , 0 base
//
// Param#2 (DIMM Type):
// Byte 1 – DIMM Type
// Bit [7:6]
// For DDR3
// 00 – Normal Voltage (1.5V)
// 01 – Ultra Low Voltage (1.25V)
// 10 – Low Voltage (1.35V)
// 11 – Reserved
// For DDR4
// 00 – Reserved
// 01 – Reserved
// 10 – Reserved
// 11 – Normal Voltage (1.2V)
// Bit [5:0]
// 0x00 – SDRAM
// 0x01 – DDR-1 RAM
// 0x02 – Rambus
// 0x03 – DDR-2 RAM
// 0x04 – FBDIMM
// 0x05 – DDR-3 RAM
// 0x06 – DDR-4 RAM
//
// Param#3 (DIMM Speed):
// Byte 1..2 – DIMM speed in MHz, LSB
// Byte 3..6 – DIMM size in Mbytes, LSB
//
// Param#4 (Module Part Number):
// Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C)
//
// Param#5 (Module Serial Number):
// Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C)
//
// Param#6 (Module Manufacturer ID):
// Byte 1 - Module Manufacturer ID, LSB
// Byte 2 - Module Manufacturer ID, MSB
//
ipmi::RspType<> ipmiOemQSetDimmInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t,
uint8_t, uint8_t dimmIndex,
uint8_t paramSel,
std::vector<uint8_t> request)
{
uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t*);
std::stringstream ss;
std::string str;
uint8_t len = request.size();
std::string dimmType;
readDimmType(dimmType, dimmIndex);
auto hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(*hostId);
if (len < 3 || paramSel < 1 || paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return ipmi::responseParmOutOfRange();
}
ss << std::hex;
ss << (int)dimmIndex;
oemData[dimmInfo][ss.str()][KEY_DIMM_INDEX] = dimmIndex;
oemData[dimmInfo][ss.str()][KEY_DIMM_TYPE] = dimmType;
str = bytesToStr(request.data(), len);
oemData[dimmInfo][ss.str()][dimmInfoKey[paramSel]] = str.c_str();
flushOemData();
return ipmi::responseSuccess();
}
// Get Dimm Info (CMD_OEM_Q_GET_DIMM_INFO)
//----------------------------------------------------------------------
// Request:
// Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first
// Byte 4 – DIMM Index, 0 base
// Byte 5 – Parameter Selector
// Byte 6..N – Configuration parameter data (see below for Parameters
// of DIMM Information)
// Response:
// Byte 1 – Completion code
// Byte 2..N – Configuration Parameter Data (see Table_1213h Parameters
// of DIMM Information)
//
// Param#1 (DIMM Location):
// Byte 1 – DIMM Present
// Byte 1 – DIMM Present
// 01h – Present
// FFh – Not Present
// Byte 2 – Node Number, 0 base
// Byte 3 – Channel Number , 0 base
// Byte 4 – DIMM Number , 0 base
//
// Param#2 (DIMM Type):
// Byte 1 – DIMM Type
// Bit [7:6]
// For DDR3
// 00 – Normal Voltage (1.5V)
// 01 – Ultra Low Voltage (1.25V)
// 10 – Low Voltage (1.35V)
// 11 – Reserved
// For DDR4
// 00 – Reserved
// 01 – Reserved
// 10 – Reserved
// 11 – Normal Voltage (1.2V)
// Bit [5:0]
// 0x00 – SDRAM
// 0x01 – DDR-1 RAM
// 0x02 – Rambus
// 0x03 – DDR-2 RAM
// 0x04 – FBDIMM
// 0x05 – DDR-3 RAM
// 0x06 – DDR-4 RAM
//
// Param#3 (DIMM Speed):
// Byte 1..2 – DIMM speed in MHz, LSB
// Byte 3..6 – DIMM size in Mbytes, LSB
//
// Param#4 (Module Part Number):
// Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C)
//
// Param#5 (Module Serial Number):
// Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C)
//
// Param#6 (Module Manufacturer ID):
// Byte 1 - Module Manufacturer ID, LSB
// Byte 2 - Module Manufacturer ID, MSB
//
ipmi::RspType<std::vector<uint8_t>>
ipmiOemQGetDimmInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t,
uint8_t dimmIndex, uint8_t paramSel)
{
uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t*);
uint8_t res[MAX_BUF];
std::stringstream ss;
std::string str;
std::string dimmType;
readDimmType(dimmType, dimmIndex);
auto hostId = findHost(ctx->hostIdx);
if (!hostId)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid Host Id received");
return ipmi::responseInvalidCommand();
}
std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(*hostId);
if (paramSel < 1 || paramSel >= numParam)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return ipmi::responseParmOutOfRange();
}
ss << std::hex;
ss << (int)dimmIndex;
oemData[dimmInfo][ss.str()][KEY_DIMM_TYPE] = dimmType;
if (oemData[dimmInfo].find(ss.str()) == oemData[dimmInfo].end())
return ipmi::responseCommandNotAvailable();
if (oemData[dimmInfo][ss.str()].find(dimmInfoKey[paramSel]) ==
oemData[dimmInfo][ss.str()].end())
return ipmi::responseCommandNotAvailable();
str = oemData[dimmInfo][ss.str()][dimmInfoKey[paramSel]];
int data_length = strToBytes(str, res);
std::vector<uint8_t> response(&res[0], &res[data_length]);
return ipmi::responseSuccess(response);
}
//----------------------------------------------------------------------
// Set Drive Info (CMD_OEM_Q_SET_DRIVE_INFO)
//----------------------------------------------------------------------
// BIOS issue this command to provide HDD information to BMC.
//
// BIOS just can get information by standard ATA / SMART command for
// OB SATA controller.
// BIOS can get
// 1. Serial Number
// 2. Model Name
// 3. HDD FW Version
// 4. HDD Capacity
// 5. HDD WWN
//
// Use Get HDD info Param #5 to know the MAX HDD info index.
//
// Request:
// Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first
// Byte 4 –
// [7:4] Reserved
// [3:0] HDD Controller Type
// 0x00 – BIOS
// 0x01 – Expander
// 0x02 – LSI
// Byte 5 – HDD Info Index, 0 base
// Byte 6 – Parameter Selector
// Byte 7..N – Configuration parameter data (see Table_1415h Parameters of HDD
// Information)
//
// Response:
// Byte 1 – Completion Code
//
// Param#0 (HDD Location):
// Byte 1 – Controller
// [7:3] Device Number
// [2:0] Function Number
// For Intel C610 series (Wellsburg)
// D31:F2 (0xFA) – SATA control 1
// D31:F5 (0xFD) – SATA control 2
// D17:F4 (0x8C) – sSata control
// Byte 2 – Port Number
// Byte 3 – Location (0xFF: No HDD Present)
// BIOS default set Byte 3 to 0xFF, if No HDD Present. And then skip send param
// #1~4, #6, #7 to BMC (still send param #5) BIOS default set Byte 3 to 0, if
// the HDD present. BMC or other people who know the HDD location has
// responsibility for update Location info
//
// Param#1 (Serial Number):
// Bytes 1..33: HDD Serial Number
//
// Param#2 (Model Name):
// Byte 1..33 – HDD Model Name
//
// Param#3 (HDD FW Version):
// Byte 1..17 –HDD FW version
//
// Param#4 (Capacity):
// Byte 1..4 –HDD Block Size, LSB
// Byte 5..12 - HDD Block Number, LSB
// HDD Capacity = HDD Block size * HDD BLock number (Unit Byte)
//
// Param#5 (Max HDD Quantity):
// Byte 1 - Max HDD Quantity
// Max supported port numbers in this PCH
//
// Param#6 (HDD Type)
// Byte 1 – HDD Type
// 0h – Reserved
// 1h – SAS
// 2h – SATA
// 3h – PCIE SSD (NVME)
//
// Param#7 (HDD WWN)
// Data 1...8: HDD World Wide Name, LSB
//
ipmi_ret_t ipmiOemQSetDriveInfo(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request, ipmi_response_t,
ipmi_data_len_t data_len, ipmi_context_t)
{
qDriveInfo_t* req = reinterpret_cast<qDriveInfo_t*>(request);
uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t*);
uint8_t ctrlType = req->hddCtrlType & 0x0f;
std::stringstream ss;
std::string str;
uint8_t len = *data_len;
*data_len = 0;
/* check for requested data params */
if (len < 6 || req->paramSel < 1 || req->paramSel >= numParam ||
ctrlType > 2)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
len = len - 6; // Get Actual data length
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex;
oemData[KEY_Q_DRIVE_INFO][KEY_HDD_CTRL_TYPE] = req->hddCtrlType;
oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()][KEY_HDD_INDEX] =
req->hddIndex;
str = bytesToStr(req->data, len);
oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()]
[driveInfoKey[req->paramSel]] = str.c_str();
flushOemData();
return IPMI_CC_OK;
}
//----------------------------------------------------------------------
// Get Drive Info (CMD_OEM_Q_GET_DRIVE_INFO)
//----------------------------------------------------------------------
// BMC needs to check HDD presented or not first. If NOT presented, return
// completion code 0xD5.
//
// Request:
// Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first
// Byte 4 –
//[7:4] Reserved
//[3:0] HDD Controller Type
// 0x00 – BIOS
// 0x01 – Expander
// 0x02 – LSI
// Byte 5 – HDD Index, 0 base
// Byte 6 – Parameter Selector (See Above Set HDD Information)
// Response:
// Byte 1 – Completion Code
// 0xD5 – Not support in current status (HDD Not Present)
// Byte 2..N – Configuration parameter data (see Table_1415h Parameters of HDD
// Information)
//
ipmi_ret_t ipmiOemQGetDriveInfo(ipmi_netfn_t, ipmi_cmd_t,
ipmi_request_t request,
ipmi_response_t response,
ipmi_data_len_t data_len, ipmi_context_t)
{
qDriveInfo_t* req = reinterpret_cast<qDriveInfo_t*>(request);
uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t*);
uint8_t* res = reinterpret_cast<uint8_t*>(response);
uint8_t ctrlType = req->hddCtrlType & 0x0f;
std::stringstream ss;
std::string str;
*data_len = 0;
/* check for requested data params */
if (req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2)
{
phosphor::logging::log<phosphor::logging::level::ERR>(
"Invalid parameter received");
return IPMI_CC_PARM_OUT_OF_RANGE;
}
if (oemData[KEY_Q_DRIVE_INFO].find(ctrlTypeKey[ctrlType]) ==
oemData[KEY_Q_DRIVE_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
ss << std::hex;
ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex;
if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]].find(ss.str()) ==
oemData[KEY_Q_DRIVE_INFO].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()].find(
dimmInfoKey[req->paramSel]) ==
oemData[KEY_Q_DRIVE_INFO][ss.str()].end())
return CC_PARAM_NOT_SUPP_IN_CURR_STATE;
str = oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()]
[dimmInfoKey[req->paramSel]];
*data_len = strToBytes(str, res);
return IPMI_CC_OK;
}
/* Helper function for sending DCMI commands to ME/BIC and
* getting response back
*/
ipmi::RspType<std::vector<uint8_t>>
sendDCMICmd([[maybe_unused]] ipmi::Context::ptr ctx,
[[maybe_unused]] uint8_t cmd, std::vector<uint8_t>& cmdData)
{
std::vector<uint8_t> respData;
#if BIC_ENABLED
uint8_t bicAddr = (uint8_t)ctx->hostIdx << 2;
if (sendBicCmd(ctx->netFn, ctx->cmd, bicAddr, cmdData, respData))
{
return ipmi::responseUnspecifiedError();
}
#else
/* Add group id as first byte to request for ME command */
cmdData.insert(cmdData.begin(), groupDCMI);
if (sendMeCmd(ipmi::netFnGroup, cmd, cmdData, respData))
{
return ipmi::responseUnspecifiedError();
}
/* Remove group id as first byte as it will be added by IPMID */
respData.erase(respData.begin());
#endif
return ipmi::responseSuccess(std::move(respData));
}
/* DCMI Command handellers. */
ipmi::RspType<std::vector<uint8_t>>
ipmiOemDCMIGetPowerReading(ipmi::Context::ptr ctx,
std::vector<uint8_t> reqData)
{
return sendDCMICmd(ctx, ipmi::dcmi::cmdGetPowerReading, reqData);
}
ipmi::RspType<std::vector<uint8_t>>
ipmiOemDCMIGetPowerLimit(ipmi::Context::ptr ctx,
std::vector<uint8_t> reqData)
{
return sendDCMICmd(ctx, ipmi::dcmi::cmdGetPowerLimit, reqData);
}
ipmi::RspType<std::vector<uint8_t>>
ipmiOemDCMISetPowerLimit(ipmi::Context::ptr ctx,
std::vector<uint8_t> reqData)
{
return sendDCMICmd(ctx, ipmi::dcmi::cmdSetPowerLimit, reqData);
}
ipmi::RspType<std::vector<uint8_t>>
ipmiOemDCMIApplyPowerLimit(ipmi::Context::ptr ctx,
std::vector<uint8_t> reqData)
{
return sendDCMICmd(ctx, ipmi::dcmi::cmdActDeactivatePwrLimit, reqData);
}
static void registerOEMFunctions(void)
{
/* Get OEM data from json file */
std::ifstream file(JSON_OEM_DATA_FILE);
if (file)
{
file >> oemData;
file.close();
}
phosphor::logging::log<phosphor::logging::level::INFO>(
"Registering OEM commands");
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_INFO,
NULL, ipmiOemDbgGetFrameInfo,
PRIVILEGE_USER); // get debug frame info
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ,
CMD_OEM_USB_DBG_GET_UPDATED_FRAMES, NULL,
ipmiOemDbgGetUpdFrames,
PRIVILEGE_USER); // get debug updated frames
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_POST_DESC,
NULL, ipmiOemDbgGetPostDesc,
PRIVILEGE_USER); // get debug post description
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_GPIO_DESC,
NULL, ipmiOemDbgGetGpioDesc,
PRIVILEGE_USER); // get debug gpio description
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_DATA,
NULL, ipmiOemDbgGetFrameData,
PRIVILEGE_USER); // get debug frame data
ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_CTRL_PANEL,
NULL, ipmiOemDbgGetCtrlPanel,
PRIVILEGE_USER); // get debug control panel
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_DIMM_INFO, NULL,
ipmiOemSetDimmInfo,
PRIVILEGE_USER); // Set Dimm Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOARD_ID, NULL,
ipmiOemGetBoardID,
PRIVILEGE_USER); // Get Board ID
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_MACHINE_CONFIG_INFO, NULL,
ipmiOemSetMachineCfgInfo,
PRIVILEGE_USER); // Set Machine Config Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_START, NULL,
ipmiOemSetPostStart,
PRIVILEGE_USER); // Set POST start
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_END, NULL,
ipmiOemSetPostEnd,
PRIVILEGE_USER); // Set POST End
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPIN_INFO, NULL,
ipmiOemSetPPINInfo,
PRIVILEGE_USER); // Set PPIN Info
#if BIC_ENABLED
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne,
ipmi::cmdSetSystemGuid, ipmi::Privilege::User,
ipmiOemSetSystemGuid);
#else
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_SYSTEM_GUID, NULL,
ipmiOemSetSystemGuid,
PRIVILEGE_USER); // Set System GUID
#endif
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_ADR_TRIGGER, NULL,
ipmiOemSetAdrTrigger,
PRIVILEGE_USER); // Set ADR Trigger
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BIOS_FLASH_INFO, NULL,
ipmiOemSetBiosFlashInfo,
PRIVILEGE_USER); // Set Bios Flash Info
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPR, NULL, ipmiOemSetPpr,
PRIVILEGE_USER); // Set PPR
ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_PPR, NULL, ipmiOemGetPpr,
PRIVILEGE_USER); // Get PPR
/* FB OEM QC Commands */
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour,
CMD_OEM_Q_SET_PROC_INFO, ipmi::Privilege::User,
ipmiOemQSetProcInfo); // Set Proc Info
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour,
CMD_OEM_Q_GET_PROC_INFO, ipmi::Privilege::User,
ipmiOemQGetProcInfo); // Get Proc Info
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour,
ipmi::cmdSetQDimmInfo, ipmi::Privilege::User,
ipmiOemQSetDimmInfo); // Set Dimm Info
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour,
ipmi::cmdGetQDimmInfo, ipmi::Privilege::User,
ipmiOemQGetDimmInfo); // Get Dimm Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DRIVE_INFO, NULL,
ipmiOemQSetDriveInfo,
PRIVILEGE_USER); // Set Drive Info
ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DRIVE_INFO, NULL,
ipmiOemQGetDriveInfo,
PRIVILEGE_USER); // Get Drive Info
/* FB OEM DCMI Commands as per DCMI spec 1.5 Section 6 */
ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI,
ipmi::dcmi::cmdGetPowerReading,
ipmi::Privilege::User,
ipmiOemDCMIGetPowerReading); // Get Power Reading
ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI,
ipmi::dcmi::cmdGetPowerLimit,
ipmi::Privilege::User,
ipmiOemDCMIGetPowerLimit); // Get Power Limit
ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI,
ipmi::dcmi::cmdSetPowerLimit,
ipmi::Privilege::Operator,
ipmiOemDCMISetPowerLimit); // Set Power Limit
ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI,
ipmi::dcmi::cmdActDeactivatePwrLimit,
ipmi::Privilege::Operator,
ipmiOemDCMIApplyPowerLimit); // Apply Power Limit
/* FB OEM BOOT ORDER COMMANDS */
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne,
CMD_OEM_GET_BOOT_ORDER, ipmi::Privilege::User,
ipmiOemGetBootOrder); // Get Boot Order
ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne,
CMD_OEM_SET_BOOT_ORDER, ipmi::Privilege::User,
ipmiOemSetBootOrder); // Set Boot Order
return;
}
} // namespace ipmi