blob: e5f5cf757e57fd63df62c481ca431142e24a1e80 [file] [log] [blame]
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stddef.h"
#include <assert.h>
#include <libcr51sign/cr51_image_descriptor.h>
#include <libcr51sign/libcr51sign.h>
#include <libcr51sign/libcr51sign_internal.h>
#include <libcr51sign/libcr51sign_mauv.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
extern "C"
{
#endif
// True of x is a power of two
#define POWER_OF_TWO(x) ((x) && !((x) & ((x)-1)))
// Maximum version supported. Major revisions are not backwards compatible.
#define MAX_MAJOR_VERSION 1
// Descriptor alignment on the external EEPROM.
#define DESCRIPTOR_ALIGNMENT (64 * 1024)
// SPS EEPROM sector size is 4KiB, since this is the smallest erasable size.
#define IMAGE_REGION_ALIGNMENT 4096
#define MAX_READ_SIZE 1024
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(t) (sizeof(t) / sizeof(t[0]))
#endif
// Values of SIGNATURE_OFFSET shuold be same for all sig types (2048,3072,4096)
#define SIGNATURE_OFFSET offsetof(struct signature_rsa3072_pkcs15, modulus)
#ifndef BUILD_ASSERT
#define BUILD_ASSERT(cond) ((void)sizeof(char[1 - 2 * !(cond)]))
#endif
// Returns the bytes size of keys used in the given signature_scheme.
// Return error if signature_scheme is invalid.
//
static failure_reason get_key_size(enum signature_scheme signature_scheme,
uint16_t* key_size)
{
switch (signature_scheme)
{
case SIGNATURE_RSA2048_PKCS15:
*key_size = 256;
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA3072_PKCS15:
*key_size = 384;
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA4096_PKCS15:
case SIGNATURE_RSA4096_PKCS15_SHA512:
*key_size = 512;
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME;
}
}
// Returns the hash_type for a given signature scheme
// Returns error if scheme is invalid.
failure_reason get_hash_type_from_signature(enum signature_scheme scheme,
enum hash_type* type)
{
switch (scheme)
{
case SIGNATURE_RSA2048_PKCS15:
case SIGNATURE_RSA3072_PKCS15:
case SIGNATURE_RSA4096_PKCS15:
*type = HASH_SHA2_256;
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA4096_PKCS15_SHA512:
*type = HASH_SHA2_512;
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME;
}
}
// Check if the given hash_type is supported.
// Returns error if hash_type is not supported.
static failure_reason is_hash_type_supported(enum hash_type type)
{
switch (type)
{
case HASH_SHA2_256:
case HASH_SHA2_512:
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_HASH_TYPE;
}
}
// Determines digest size for a given hash_type.
// Returns error if hash_type is not supported.
static failure_reason get_hash_digest_size(enum hash_type type, uint32_t* size)
{
switch (type)
{
case HASH_SHA2_256:
*size = LIBCR51SIGN_SHA256_DIGEST_SIZE;
return LIBCR51SIGN_SUCCESS;
case HASH_SHA2_512:
*size = LIBCR51SIGN_SHA512_DIGEST_SIZE;
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_HASH_TYPE;
}
}
// Determines hash struct size for a given hash_type.
// Returns error if hash_type is not supported.
static failure_reason get_hash_struct_size(enum hash_type type, uint32_t* size)
{
switch (type)
{
case HASH_SHA2_256:
*size = sizeof(struct hash_sha256);
return LIBCR51SIGN_SUCCESS;
case HASH_SHA2_512:
*size = sizeof(struct hash_sha512);
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_HASH_TYPE;
}
}
// Checks that:
// - The signing key is trusted
// - The target version is not denylisted
// If validating a staged update, also checks that:
// - The target image family matches the current image family
// - The image type transition is legal (i.e. dev -> *|| prod -> prod) or
// alternatively that the hardware ID is allowlisted
// Assuming the caller has performed following:
// board_get_base_key_index();
// board_get_key_array
// Possible return codes:
// LIBCR51SIGN_SUCCESS = 0,
// LIBCR51SIGN_ERROR_RUNTIME_FAILURE = 1,
// LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR = 3,
// LIBCR51SIGN_ERROR_INVALID_IMAGE_FAMILY = 4,
// LIBCR51SIGN_ERROR_IMAGE_TYPE_DISALLOWED = 5,
static failure_reason validate_transition(const struct libcr51sign_ctx* ctx,
const struct libcr51sign_intf* intf,
uint32_t signature_struct_offset)
{
BUILD_ASSERT((offsetof(struct signature_rsa2048_pkcs15, modulus) ==
SIGNATURE_OFFSET &&
offsetof(struct signature_rsa3072_pkcs15, modulus) ==
SIGNATURE_OFFSET &&
offsetof(struct signature_rsa4096_pkcs15, modulus) ==
SIGNATURE_OFFSET));
// Read up to the modulus.
enum
{
read_len = SIGNATURE_OFFSET
};
uint8_t buffer[read_len];
int rv;
rv = intf->read(ctx, signature_struct_offset, read_len, buffer);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: failed to read signature struct\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
if (*(uint32_t*)buffer != SIGNATURE_MAGIC)
{
CPRINTS(ctx, "%s: bad signature magic\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
if (ctx->descriptor.image_family != ctx->current_image_family &&
ctx->descriptor.image_family != IMAGE_FAMILY_ALL &&
ctx->current_image_family != IMAGE_FAMILY_ALL)
{
CPRINTS(ctx, "%s: invalid image family\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_IMAGE_FAMILY;
}
if (intf->is_production_mode == NULL)
{
CPRINTS(ctx, "%s: missing is_production_mode\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
if (intf->is_production_mode() && (ctx->descriptor.image_type == IMAGE_DEV))
{
CPRINTS(ctx, "%s: checking exemption allowlist\n", __FUNCTION__);
// If function is NULL or if the function call return false, return
// error
if (intf->prod_to_dev_downgrade_allowed == NULL ||
!intf->prod_to_dev_downgrade_allowed())
{
CPRINTS(ctx, "%s: illegal image type\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_DEV_DOWNGRADE_DISALLOWED;
}
}
return LIBCR51SIGN_SUCCESS;
}
// If caller had provided read_and_hash_update call that, otherwise call read
// and then update.
static failure_reason read_and_hash_update(const struct libcr51sign_ctx* ctx,
const struct libcr51sign_intf* intf,
uint32_t offset, uint32_t size)
{
uint8_t read_buffer[MAX_READ_SIZE];
int rv;
int read_size;
if (intf->read_and_hash_update)
{
rv = intf->read_and_hash_update((void*)ctx, offset, size);
}
else
{
if (!intf->hash_update)
{
CPRINTS(ctx, "%s: missing hash_update\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
do
{
read_size = size < MAX_READ_SIZE ? size : MAX_READ_SIZE;
rv = intf->read((void*)ctx, offset, read_size, read_buffer);
if (rv != LIBCR51SIGN_SUCCESS)
{
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
rv = intf->hash_update((void*)ctx, read_buffer, read_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
offset += read_size;
size -= read_size;
} while (size > 0);
}
return rv;
}
// Validates the image_region array, namely that:
// - The regions are aligned, contiguous & exhaustive
// - That the image descriptor resides in a static region
//
// If the array is consistent, proceeds to hash the static regions and
// validates the hash. d_offset is the absolute image descriptor offset
static failure_reason validate_payload_regions(
const struct libcr51sign_ctx* ctx, struct libcr51sign_intf* intf,
uint32_t d_offset, struct libcr51sign_validated_regions* image_regions)
{
// Allocate buffer to accomodate largest supported hash-type(SHA512)
uint8_t magic_and_digest[MEMBER_SIZE(struct hash_sha512, hash_magic) +
LIBCR51SIGN_SHA512_DIGEST_SIZE];
uint8_t dcrypto_digest[LIBCR51SIGN_SHA512_DIGEST_SIZE];
uint32_t byte_count, region_count, image_size, hash_offset, digest_size;
uint32_t i;
uint8_t d_region_num = 0;
int rv;
struct image_region const* region;
if (image_regions == NULL)
{
CPRINTS(ctx, "%s: Missing image region input\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_REGION_INPUT;
}
BUILD_ASSERT((MEMBER_SIZE(struct hash_sha256, hash_magic) ==
MEMBER_SIZE(struct hash_sha512, hash_magic)));
image_size = ctx->descriptor.image_size;
region_count = ctx->descriptor.region_count;
hash_offset = d_offset + sizeof(struct image_descriptor) +
region_count * sizeof(struct image_region);
// Read the image_region array.
if (region_count > ARRAY_SIZE(image_regions->image_regions))
{
CPRINTS(ctx,
"%s: ctx->descriptor.region_count is greater "
"than LIBCR51SIGN_MAX_REGION_COUNT\n",
__FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_REGION_SIZE;
}
rv = intf->read(ctx, d_offset + sizeof(struct image_descriptor),
region_count * sizeof(struct image_region),
(uint8_t*)&image_regions->image_regions);
image_regions->region_count = region_count;
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: failed to read region array\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
// Validate that the regions are contiguous & exhaustive.
for (i = 0, byte_count = 0; i < region_count; i++)
{
region = image_regions->image_regions + i;
CPRINTS(ctx, "%s: region #%d \"%s\" (%x - %x)\n", __FUNCTION__, i,
(const char*)region->region_name, region->region_offset,
region->region_offset + region->region_size);
if ((region->region_offset % IMAGE_REGION_ALIGNMENT) != 0 ||
(region->region_size % IMAGE_REGION_ALIGNMENT) != 0)
{
CPRINTS(ctx, "%s: regions must be sector aligned\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
if (region->region_offset != byte_count ||
region->region_size > image_size - byte_count)
{
CPRINTS(ctx, "%s: invalid region array\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
byte_count += region->region_size;
// The image descriptor must be part of a static region.
if (d_offset >= region->region_offset && d_offset < byte_count)
{
d_region_num = i;
CPRINTS(ctx, "%s: image descriptor in region %d\n", __FUNCTION__,
i);
// The descriptor can't span regions.
if ((ctx->descriptor.descriptor_area_size >
(byte_count - d_offset)) ||
!(region->region_attributes & IMAGE_REGION_STATIC))
{
CPRINTS(ctx,
"%s: descriptor must reside in "
"static region\n",
__FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
}
}
if (byte_count != image_size)
{
CPRINTS(ctx, "%s: invalid image size\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
rv = get_hash_digest_size(ctx->descriptor.hash_type, &digest_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
rv = intf->read(ctx, hash_offset,
MEMBER_SIZE(struct hash_sha256, hash_magic) + digest_size,
magic_and_digest);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: failed to read hash from flash\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
if (*(uint32_t*)magic_and_digest != HASH_MAGIC)
{
CPRINTS(ctx, "%s: bad hash magic\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
rv = intf->hash_init(ctx, ctx->descriptor.hash_type);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: hash_init failed\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
for (i = 0; i < region_count; i++)
{
uint32_t hash_start, hash_size;
region = image_regions->image_regions + i;
if (!(region->region_attributes & IMAGE_REGION_STATIC))
{
continue;
}
hash_start = region->region_offset;
hash_size = region->region_size;
// Skip the descriptor.
do
{
if (i == d_region_num)
{
hash_size = d_offset - hash_start;
if (!hash_size)
{
hash_start += ctx->descriptor.descriptor_area_size;
hash_size = (region->region_offset + region->region_size -
hash_start);
}
}
CPRINTS(ctx, "%s: hashing %s (%x - %x)\n", __FUNCTION__,
(const char*)region->region_name, hash_start,
hash_start + hash_size);
// Read the image_region array.
rv = read_and_hash_update(ctx, intf, hash_start, hash_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
hash_start += hash_size;
} while (hash_start != region->region_offset + region->region_size);
}
rv = intf->hash_final((void*)ctx, (uint8_t*)dcrypto_digest);
if (rv != LIBCR51SIGN_SUCCESS)
{
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
if (memcmp(magic_and_digest + MEMBER_SIZE(struct hash_sha256, hash_magic),
dcrypto_digest, digest_size))
{
CPRINTS(ctx, "%s: invalid hash\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_HASH;
}
// Image is valid.
return LIBCR51SIGN_SUCCESS;
}
// Create empty image_regions to pass to validate_payload_regions
// Support validate_payload_regions_helper to remove image_regions as a required
// input.
static failure_reason
allocate_and_validate_payload_regions(const struct libcr51sign_ctx* ctx,
struct libcr51sign_intf* intf,
uint32_t d_offset)
{
struct libcr51sign_validated_regions image_regions;
return validate_payload_regions(ctx, intf, d_offset, &image_regions);
}
// Wrapper around validate_payload_regions to allow nullptr for image_regions.
// Calls allocate_and_validate_payload_regions when image_regions is nullptr to
// create placer holder image_regions.
static failure_reason validate_payload_regions_helper(
const struct libcr51sign_ctx* ctx, struct libcr51sign_intf* intf,
uint32_t d_offset, struct libcr51sign_validated_regions* image_regions)
{
if (image_regions)
{
return validate_payload_regions(ctx, intf, d_offset, image_regions);
}
return allocate_and_validate_payload_regions(ctx, intf, d_offset);
}
// Check if the given signature_scheme is supported.
// Returns nonzero on error, zero on success
static failure_reason
is_signature_scheme_supported(enum signature_scheme scheme)
{
switch (scheme)
{
case SIGNATURE_RSA2048_PKCS15:
case SIGNATURE_RSA3072_PKCS15:
case SIGNATURE_RSA4096_PKCS15:
case SIGNATURE_RSA4096_PKCS15_SHA512:
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME;
}
}
// Returns size of signature struct size in |size|
// Returns nonzero on error, zero on success
static failure_reason get_signature_struct_size(enum signature_scheme scheme,
uint32_t* size)
{
switch (scheme)
{
case SIGNATURE_RSA2048_PKCS15:
*size = sizeof(struct signature_rsa2048_pkcs15);
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA3072_PKCS15:
*size = sizeof(struct signature_rsa3072_pkcs15);
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA4096_PKCS15:
case SIGNATURE_RSA4096_PKCS15_SHA512:
*size = sizeof(struct signature_rsa4096_pkcs15);
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME;
}
}
static failure_reason get_signature_field_offset(enum signature_scheme scheme,
uint32_t* offset)
{
switch (scheme)
{
case SIGNATURE_RSA2048_PKCS15:
*offset = offsetof(struct signature_rsa2048_pkcs15, signature);
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA3072_PKCS15:
*offset = offsetof(struct signature_rsa3072_pkcs15, signature);
return LIBCR51SIGN_SUCCESS;
case SIGNATURE_RSA4096_PKCS15:
case SIGNATURE_RSA4096_PKCS15_SHA512:
*offset = offsetof(struct signature_rsa4096_pkcs15, signature);
return LIBCR51SIGN_SUCCESS;
default:
return LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME;
}
}
// Validates the signature (of type scheme) read from "device" at
//"raw_signature_offset" with "public_key" over a SHA256/SHA512 digest of
// EEPROM area "data_offset:data_size".
static failure_reason validate_signature(const struct libcr51sign_ctx* ctx,
const struct libcr51sign_intf* intf,
uint32_t data_offset,
uint32_t data_size,
enum signature_scheme scheme,
uint32_t raw_signature_offset)
{
uint8_t signature[LIBCR51SIGN_MAX_SIGNATURE_SIZE];
uint16_t key_size;
uint32_t digest_size;
uint8_t dcrypto_digest[LIBCR51SIGN_SHA512_DIGEST_SIZE];
int rv;
enum hash_type hash_type;
if (!intf->hash_init)
{
CPRINTS(ctx, "%s: missing hash_init\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
rv = get_hash_type_from_signature(scheme, &hash_type);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: hash_type from signature failed\n", __FUNCTION__);
return rv;
}
rv = intf->hash_init(ctx, hash_type);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: hash_init failed\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
rv = read_and_hash_update(ctx, intf, data_offset, data_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: hash_update failed\n", __FUNCTION__);
return rv;
}
if (!intf->hash_final)
{
CPRINTS(ctx, "%s: missing hash_final\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
rv = intf->hash_final((void*)ctx, dcrypto_digest);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: hash_final failed (status = %d)\n", __FUNCTION__, rv);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
rv = get_key_size(scheme, &key_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
rv = intf->read(ctx, raw_signature_offset, key_size, signature);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: failed to read signature (status = %d)\n",
__FUNCTION__, rv);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
if (!intf->verify_signature)
{
CPRINTS(ctx, "%s: missing verify_signature\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
rv = get_hash_digest_size(hash_type, &digest_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
rv = intf->verify_signature(ctx, scheme, signature, key_size,
dcrypto_digest, digest_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: verification failed (status = %d)\n", __FUNCTION__,
rv);
return LIBCR51SIGN_ERROR_INVALID_SIGNATURE;
}
CPRINTS(ctx, "%s: verification succeeded\n", __FUNCTION__);
return LIBCR51SIGN_SUCCESS;
}
// Sanity checks the image descriptor & validates its signature.
// This function does not validate the image_region array or image hash.
//
//@param[in] ctx context which describes the image and holds opaque private
// data for the user of the library
//@param[in] intf function pointers which interface to the current system
// and environment
//@param offset Absolute image descriptor flash offset.
//@param relative_offset Image descriptor offset relative to image start.
//@param max_size Maximum size of the flash space in bytes.
//@param[out] payload_blob_offset Absolute offset of BLOB data in image
// descriptor (if BLOB data is present)
static failure_reason
validate_descriptor(const struct libcr51sign_ctx* ctx,
const struct libcr51sign_intf* intf, uint32_t offset,
uint32_t relative_offset, uint32_t max_size,
uint32_t* const restrict payload_blob_offset)
{
uint32_t max_descriptor_size, signed_size, signature_scheme,
signature_offset;
uint32_t signature_struct_offset, signature_struct_size, hash_struct_size;
int rv;
max_descriptor_size = max_size - relative_offset;
if (max_size < relative_offset ||
max_descriptor_size < sizeof(struct image_descriptor))
{
CPRINTS(ctx, "%s: invalid arguments\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
rv = intf->read(ctx, offset, sizeof(ctx->descriptor),
(uint8_t*)&ctx->descriptor);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: failed to read descriptor\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_RUNTIME_FAILURE;
}
if (ctx->descriptor.descriptor_magic != DESCRIPTOR_MAGIC ||
ctx->descriptor.descriptor_offset != relative_offset ||
ctx->descriptor.region_count == 0 ||
ctx->descriptor.descriptor_area_size > max_descriptor_size ||
ctx->descriptor.image_size > max_size)
{
CPRINTS(ctx, "%s: invalid descriptor\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
if (intf->image_size_valid == NULL)
{
// Preserve original behavior of requiring exact image_size match if no
// operator is provided.
if (ctx->descriptor.image_size != max_size)
{
CPRINTS(ctx, "%s: invalid image size\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
}
else if (!intf->image_size_valid(ctx->descriptor.image_size))
{
CPRINTS(ctx, "%s: invalid image size\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
if (ctx->descriptor.image_type != IMAGE_DEV &&
ctx->descriptor.image_type != IMAGE_PROD &&
ctx->descriptor.image_type != IMAGE_BREAKOUT &&
ctx->descriptor.image_type != IMAGE_TEST &&
ctx->descriptor.image_type != IMAGE_UNSIGNED_INTEGRITY)
{
CPRINTS(ctx, "%s: bad image type\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
// Although the image_descriptor struct supports unauthenticated
// images, Haven will not allow it.
// Haven only supports SHA256 + RSA2048/RSA3072_PKCS15 currently.
signature_scheme = ctx->descriptor.signature_scheme;
rv = is_signature_scheme_supported(signature_scheme);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
rv = is_hash_type_supported(ctx->descriptor.hash_type);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: invalid hash type\n", __FUNCTION__);
return rv;
}
if (ctx->descriptor.descriptor_major > MAX_MAJOR_VERSION ||
ctx->descriptor.region_count > LIBCR51SIGN_MAX_REGION_COUNT)
{
CPRINTS(ctx, "%s: unsupported descriptor\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_UNSUPPORTED_DESCRIPTOR;
}
rv = get_signature_struct_size(signature_scheme, &signature_struct_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
// Compute the size of the signed portion of the image descriptor.
signed_size = sizeof(struct image_descriptor) +
ctx->descriptor.region_count * sizeof(struct image_region);
rv = get_hash_struct_size(ctx->descriptor.hash_type, &hash_struct_size);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
signed_size += hash_struct_size;
if (ctx->descriptor.denylist_size)
{
signed_size += sizeof(struct denylist);
signed_size += ctx->descriptor.denylist_size *
sizeof(struct denylist_record);
}
if (ctx->descriptor.blob_size)
{
*payload_blob_offset = offset + signed_size;
signed_size += sizeof(struct blob);
// Previous additions are guaranteed not to overflow.
if ((ctx->descriptor.blob_size >
ctx->descriptor.descriptor_area_size - signed_size) ||
// Sanity check blob size
(ctx->descriptor.blob_size < sizeof(struct blob_data)))
{
CPRINTS(ctx, "%s: invalid blob size (0x%x)\n", __FUNCTION__,
ctx->descriptor.blob_size);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
signed_size += ctx->descriptor.blob_size;
}
if (signature_struct_size >
ctx->descriptor.descriptor_area_size - signed_size)
{
CPRINTS(ctx,
"%s: invalid descriptor area size "
"(expected = 0x%x, actual = 0x%x)\n",
__FUNCTION__, ctx->descriptor.descriptor_area_size,
signed_size + signature_struct_size);
return LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR;
}
signature_struct_offset = signed_size;
// Omit the actual signature.
rv = get_signature_field_offset(signature_scheme, &signature_offset);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
signed_size += signature_offset;
// Lookup key & validate transition.
rv = validate_transition(ctx, intf, offset + signature_struct_offset);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
return validate_signature(ctx, intf, offset, signed_size, signature_scheme,
offset + signed_size);
}
// Scans the external EEPROM for a magic value at "alignment" boundaries.
//
//@param device Handle to the external EEPROM.
//@param magic 8-byte pattern to search for.
//@param start_offset Offset to begin searching at.
//@param limit Exclusive address (e.g. EEPROM size).
//@param alignment Alignment boundaries (POW2) to search on.
//@param header_offset Location to place the new header offset.
//@return LIBCR51SIGN_SUCCESS (or non-zero on error).
int scan_for_magic_8(const struct libcr51sign_ctx* ctx,
const struct libcr51sign_intf* intf, uint64_t magic,
uint32_t start_offset, uint32_t limit, uint32_t alignment,
uint32_t* header_offset)
{
uint64_t read_data;
uint32_t offset;
int rv;
if (limit <= start_offset || limit > ctx->end_offset ||
limit < sizeof(magic) || !POWER_OF_TWO(alignment))
{
return LIBCR51SIGN_ERROR_INVALID_ARGUMENT;
}
if (!intf->read)
{
CPRINTS(ctx, "%s: missing intf->read\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
// Align start_offset to the next valid boundary.
start_offset = ((start_offset - 1) & ~(alignment - 1)) + alignment;
for (offset = start_offset; offset < limit - sizeof(magic);
offset += alignment)
{
rv = intf->read((void*)ctx, offset, sizeof(read_data),
(uint8_t*)&read_data);
if (rv != LIBCR51SIGN_SUCCESS)
{
return rv;
}
if (read_data == magic)
{
if (header_offset)
{
*header_offset = offset;
}
return LIBCR51SIGN_SUCCESS;
}
}
// Failed to locate magic.
return LIBCR51SIGN_ERROR_FAILED_TO_LOCATE_MAGIC;
}
// Check whether the signature on the image is valid.
// Validates the authenticity of an EEPROM image. Scans for & validates the
// signature on the image descriptor. If the descriptor validates, hashes the
// rest of the image to verify its integrity.
//
// @param[in] ctx - context which describes the image and holds opaque private
// data for the user of the library
// @param[in] intf - function pointers which interface to the current system
// and environment
// @param[out] image_regions - image_region pointer to an array for the output
//
// TODO(aranika) return valid key
//
// @return nonzero on error, zero on success
failure_reason
libcr51sign_validate(const struct libcr51sign_ctx* ctx,
struct libcr51sign_intf* intf,
struct libcr51sign_validated_regions* image_regions)
{
int rv, rv_first_desc = LIBCR51SIGN_SUCCESS;
uint32_t descriptor_offset;
uint32_t payload_blob_offset = 0;
if (!ctx)
{
CPRINTS(ctx, "%s: Missing context\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_CONTEXT;
}
else if (!intf)
{
CPRINTS(ctx, "%s: Missing interface\n", __FUNCTION__);
return LIBCR51SIGN_ERROR_INVALID_INTERFACE;
}
rv = scan_for_magic_8(ctx, intf, DESCRIPTOR_MAGIC, ctx->start_offset,
ctx->end_offset, DESCRIPTOR_ALIGNMENT,
&descriptor_offset);
while (rv == LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: potential image descriptor found @%x\n", __FUNCTION__,
descriptor_offset);
// Validation is split into 3 functions to minimize stack usage.
rv = validate_descriptor(
ctx, intf, descriptor_offset, descriptor_offset - ctx->start_offset,
ctx->end_offset - ctx->start_offset, &payload_blob_offset);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: validate_descriptor() failed ec%d\n",
__FUNCTION__, rv);
}
else
{
rv = validate_payload_regions_helper(ctx, intf, descriptor_offset,
image_regions);
if (rv != LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx, "%s: validate_payload_regions() failed ec%d\n",
__FUNCTION__, rv);
}
else if (ctx->descriptor.image_type == IMAGE_PROD)
{
// Lookup and validate payload Image MAUV against Image MAUV
// stored in the system after checking signature to ensure
// offsets and sizes are not tampered with. Also, do this after
// hash calculation for payload regions to ensure that stored
// Image MAUV is updated (if necessary) as close to the end of
// payload validation as possible
rv = validate_payload_image_mauv(ctx, intf, payload_blob_offset,
ctx->descriptor.blob_size);
if (rv == LIBCR51SIGN_SUCCESS)
{
CPRINTS(ctx,
"%s: Payload Image MAUV validation successful\n",
__FUNCTION__);
return rv;
}
if (rv == LIBCR51SIGN_ERROR_STORING_NEW_IMAGE_MAUV_DATA)
{
CPRINTS(
ctx,
"%s: Payload validation succeeded, but Image MAUV validation "
"failed\n",
__FUNCTION__);
return LIBCR51SIGN_ERROR_VALID_IMAGE_BUT_NEW_IMAGE_MAUV_DATA_NOT_STORED;
}
CPRINTS(ctx, "%s: Payload Image MAUV validation failed\n",
__FUNCTION__);
// In practice, we expect only 1 valid image descriptor in
// payload. If Image MAUV check fails for the payload after
// validating the image descriptor, do not try validating other
// image descriptors
return rv;
}
else
{
return rv;
}
}
// Store the first desc fail reason if any
if (rv != LIBCR51SIGN_SUCCESS && rv_first_desc == LIBCR51SIGN_SUCCESS)
rv_first_desc = rv;
// scan_for_magic_8() will round up to the next aligned boundary.
descriptor_offset++;
rv = scan_for_magic_8(ctx, intf, DESCRIPTOR_MAGIC, descriptor_offset,
ctx->end_offset, DESCRIPTOR_ALIGNMENT,
&descriptor_offset);
}
CPRINTS(ctx, "%s: failed to validate image ec%d\n", __FUNCTION__, rv);
// If desc validation failed for some reason then return that reason
if (rv_first_desc != LIBCR51SIGN_SUCCESS)
return rv_first_desc;
else
return rv;
}
// @func to returns the libcr51sign error code as a string
// @param[in] ec - Error code
// @return error code in string format
const char* libcr51sign_errorcode_to_string(failure_reason ec)
{
switch (ec)
{
case LIBCR51SIGN_SUCCESS:
return "Success";
case LIBCR51SIGN_ERROR_RUNTIME_FAILURE:
return "Runtime Error Failure";
case LIBCR51SIGN_ERROR_UNSUPPORTED_DESCRIPTOR:
return "Unsupported descriptor";
case LIBCR51SIGN_ERROR_INVALID_DESCRIPTOR:
return "Invalid descriptor";
case LIBCR51SIGN_ERROR_INVALID_IMAGE_FAMILY:
return "Invalid image family";
case LIBCR51SIGN_ERROR_IMAGE_TYPE_DISALLOWED:
return "Image type disallowed";
case LIBCR51SIGN_ERROR_DEV_DOWNGRADE_DISALLOWED:
return "Dev downgrade disallowed";
case LIBCR51SIGN_ERROR_UNTRUSTED_KEY:
return "Untrusted key";
case LIBCR51SIGN_ERROR_INVALID_SIGNATURE:
return "Invalid signature";
case LIBCR51SIGN_ERROR_INVALID_HASH:
return "Invalid hash";
case LIBCR51SIGN_ERROR_INVALID_HASH_TYPE:
return "Invalid hash type";
case LIBCR51SIGN_ERROR_INVALID_ARGUMENT:
return "Invalid Argument";
case LIBCR51SIGN_ERROR_FAILED_TO_LOCATE_MAGIC:
return "Failed to locate descriptor";
case LIBCR51SIGN_ERROR_INVALID_CONTEXT:
return "Invalid context";
case LIBCR51SIGN_ERROR_INVALID_INTERFACE:
return "Invalid interface";
case LIBCR51SIGN_ERROR_INVALID_SIG_SCHEME:
return "Invalid signature scheme";
case LIBCR51SIGN_ERROR_INVALID_REGION_INPUT:
return "Invalid image region input";
case LIBCR51SIGN_ERROR_INVALID_REGION_SIZE:
return "Invalid image region size";
case LIBCR51SIGN_ERROR_INVALID_IMAGE_MAUV_DATA:
return "Invalid Image MAUV data";
case LIBCR51SIGN_ERROR_RETRIEVING_STORED_IMAGE_MAUV_DATA:
return "Failed to retrieve Image MAUV data stored in system";
case LIBCR51SIGN_ERROR_STORING_NEW_IMAGE_MAUV_DATA:
return "Failed to store Image MAUV data from payload image into system";
case LIBCR51SIGN_ERROR_STORED_IMAGE_MAUV_DOES_NOT_ALLOW_UPDATE_TO_PAYLOAD:
return "Image MAUV stored in system does not allow payload "
"update";
case LIBCR51SIGN_ERROR_VALID_IMAGE_BUT_NEW_IMAGE_MAUV_DATA_NOT_STORED:
return "Payload image is valid for update but failed to store new Image "
"MAUV in system";
case LIBCR51SIGN_ERROR_STORED_IMAGE_MAUV_EXPECTS_PAYLOAD_IMAGE_MAUV:
return "Image MAUV is expected to be present in payload when stored "
"Image MAUV is present in the system";
case LIBCR51SIGN_NO_STORED_MAUV_FOUND:
return "Client did not find any MAUV data stored in the system";
default:
return "Unknown error";
}
}
#ifdef __cplusplus
} // extern "C"
#endif