blob: 1fa363a7ef60763322e050a0a7a2f3d7a01cca51 [file] [log] [blame]
#include "writefrudata.hpp"
#include "fru-area.hpp"
#include "frup.hpp"
#include "types.hpp"
#include <host-ipmid/ipmid-api.h>
#include <mapper.h>
#include <systemd/sd-bus.h>
#include <unistd.h>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <exception>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <phosphor-logging/log.hpp>
#include <sdbusplus/server.hpp>
#include <sstream>
#include <vector>
using namespace ipmi::vpd;
using namespace phosphor::logging;
extern const FruMap frus;
extern const std::map<Path, InterfaceMap> extras;
namespace
{
//------------------------------------------------------------
// Cleanup routine
// Must always be called as last reference to fru_fp.
//------------------------------------------------------------
int cleanupError(FILE* fru_fp, fru_area_vec_t& fru_area_vec)
{
if (fru_fp != NULL)
{
std::fclose(fru_fp);
}
if (!(fru_area_vec.empty()))
{
fru_area_vec.clear();
}
return -1;
}
//------------------------------------------------------------------------
// Gets the value of the key from the fru dictionary of the given section.
// FRU dictionary is parsed fru data for all the sections.
//------------------------------------------------------------------------
std::string getFRUValue(const std::string& section, const std::string& key,
const std::string& delimiter, IPMIFruInfo& fruData)
{
auto minIndexValue = 0;
auto maxIndexValue = 0;
std::string fruValue = "";
if (section == "Board")
{
minIndexValue = OPENBMC_VPD_KEY_BOARD_MFG_DATE;
maxIndexValue = OPENBMC_VPD_KEY_BOARD_MAX;
}
else if (section == "Product")
{
minIndexValue = OPENBMC_VPD_KEY_PRODUCT_MFR;
maxIndexValue = OPENBMC_VPD_KEY_PRODUCT_MAX;
}
else if (section == "Chassis")
{
minIndexValue = OPENBMC_VPD_KEY_CHASSIS_TYPE;
maxIndexValue = OPENBMC_VPD_KEY_CHASSIS_MAX;
}
auto first = fruData.cbegin() + minIndexValue;
auto last = first + (maxIndexValue - minIndexValue) + 1;
auto itr =
std::find_if(first, last, [&key](auto& e) { return key == e.first; });
if (itr != last)
{
fruValue = itr->second;
}
// if the key is custom property then the value could be in two formats.
// 1) custom field 2 = "value".
// 2) custom field 2 = "key:value".
// if delimiter length = 0 i.e custom field 2 = "value"
constexpr auto customProp = "Custom Field";
if (key.find(customProp) != std::string::npos)
{
if (delimiter.length() > 0)
{
size_t delimiterpos = fruValue.find(delimiter);
if (delimiterpos != std::string::npos)
fruValue = fruValue.substr(delimiterpos + 1);
}
}
return fruValue;
}
// Get the inventory service from the mapper.
auto getService(sdbusplus::bus::bus& bus, const std::string& intf,
const std::string& path)
{
auto mapperCall =
bus.new_method_call("xyz.openbmc_project.ObjectMapper",
"/xyz/openbmc_project/object_mapper",
"xyz.openbmc_project.ObjectMapper", "GetObject");
mapperCall.append(path);
mapperCall.append(std::vector<std::string>({intf}));
std::map<std::string, std::vector<std::string>> mapperResponse;
try
{
auto mapperResponseMsg = bus.call(mapperCall);
mapperResponseMsg.read(mapperResponse);
}
catch (const sdbusplus::exception::SdBusError& ex)
{
log<level::ERR>("Exception from sdbus call",
entry("WHAT=%s", ex.what()));
throw;
}
if (mapperResponse.begin() == mapperResponse.end())
{
throw std::runtime_error("ERROR in reading the mapper response");
}
return mapperResponse.begin()->first;
}
// Takes FRU data, invokes Parser for each fru record area and updates
// Inventory
//------------------------------------------------------------------------
int updateInventory(fru_area_vec_t& area_vec, sd_bus* bus_sd)
{
// Generic error reporter
int rc = 0;
uint8_t fruid = 0;
IPMIFruInfo fruData;
// For each FRU area, extract the needed data , get it parsed and update
// the Inventory.
for (const auto& fruArea : area_vec)
{
fruid = fruArea->get_fruid();
// Fill the container with information
rc = parse_fru_area((fruArea)->get_type(), (void*)(fruArea)->get_data(),
(fruArea)->get_len(), fruData);
if (rc < 0)
{
log<level::ERR>("Error parsing FRU records");
return rc;
}
} // END walking the vector of areas and updating
// For each Fru we have the list of instances which needs to be updated.
// Each instance object implements certain interfaces.
// Each Interface is having Dbus properties.
// Each Dbus Property would be having metaData(eg section,VpdPropertyName).
// Here we are just printing the object,interface and the properties.
// which needs to be called with the new inventory manager implementation.
sdbusplus::bus::bus bus{bus_sd};
using namespace std::string_literals;
static const auto intf = "xyz.openbmc_project.Inventory.Manager"s;
static const auto path = "/xyz/openbmc_project/inventory"s;
std::string service;
try
{
service = getService(bus, intf, path);
}
catch (const std::exception& e)
{
std::cerr << e.what() << "\n";
return -1;
}
auto iter = frus.find(fruid);
if (iter == frus.end())
{
log<level::ERR>("Unable to get the fru info",
entry("FRU=%d", static_cast<int>(fruid)));
return -1;
}
auto& instanceList = iter->second;
if (instanceList.size() <= 0)
{
log<level::DEBUG>("Object list empty for this FRU",
entry("FRU=%d", static_cast<int>(fruid)));
}
ObjectMap objects;
for (auto& instance : instanceList)
{
InterfaceMap interfaces;
const auto& extrasIter = extras.find(instance.path);
for (auto& interfaceList : instance.interfaces)
{
PropertyMap props; // store all the properties
for (auto& properties : interfaceList.second)
{
std::string value;
decltype(auto) pdata = properties.second;
if (!pdata.section.empty() && !pdata.property.empty())
{
value = getFRUValue(pdata.section, pdata.property,
pdata.delimiter, fruData);
}
props.emplace(std::move(properties.first), std::move(value));
}
// Check and update extra properties
if (extras.end() != extrasIter)
{
const auto& propsIter =
(extrasIter->second).find(interfaceList.first);
if ((extrasIter->second).end() != propsIter)
{
for (const auto& map : propsIter->second)
{
props.emplace(map.first, map.second);
}
}
}
interfaces.emplace(std::move(interfaceList.first),
std::move(props));
}
// Call the inventory manager
sdbusplus::message::object_path objectPath = instance.path;
// Check and update extra properties
if (extras.end() != extrasIter)
{
for (const auto& entry : extrasIter->second)
{
if (interfaces.end() == interfaces.find(entry.first))
{
interfaces.emplace(entry.first, entry.second);
}
}
}
objects.emplace(objectPath, interfaces);
}
auto pimMsg = bus.new_method_call(service.c_str(), path.c_str(),
intf.c_str(), "Notify");
pimMsg.append(std::move(objects));
try
{
auto inventoryMgrResponseMsg = bus.call(pimMsg);
}
catch (const sdbusplus::exception::SdBusError& ex)
{
log<level::ERR>("Error in notify call", entry("WHAT=%s", ex.what()));
return -1;
}
return rc;
}
} // namespace
//----------------------------------------------------------------
// Constructor
//----------------------------------------------------------------
ipmi_fru::ipmi_fru(const uint8_t fruid, const ipmi_fru_area_type type,
sd_bus* bus_type, bool bmc_fru)
{
iv_fruid = fruid;
iv_type = type;
iv_bmc_fru = bmc_fru;
iv_bus_type = bus_type;
iv_valid = false;
iv_data = NULL;
iv_present = false;
if (iv_type == IPMI_FRU_AREA_INTERNAL_USE)
{
iv_name = "INTERNAL_";
}
else if (iv_type == IPMI_FRU_AREA_CHASSIS_INFO)
{
iv_name = "CHASSIS_";
}
else if (iv_type == IPMI_FRU_AREA_BOARD_INFO)
{
iv_name = "BOARD_";
}
else if (iv_type == IPMI_FRU_AREA_PRODUCT_INFO)
{
iv_name = "PRODUCT_";
}
else if (iv_type == IPMI_FRU_AREA_MULTI_RECORD)
{
iv_name = "MULTI_";
}
else
{
iv_name = IPMI_FRU_AREA_TYPE_MAX;
log<level::ERR>("Invalid Area", entry("TYPE=%d", iv_type));
}
}
//-----------------------------------------------------
// For a FRU area type, accepts the data and updates
// area specific data.
//-----------------------------------------------------
void ipmi_fru::set_data(const uint8_t* data, const size_t len)
{
iv_len = len;
iv_data = new uint8_t[len];
std::memcpy(iv_data, data, len);
}
//-----------------------------------------------------
// Sets the dbus parameters
//-----------------------------------------------------
void ipmi_fru::update_dbus_paths(const char* bus_name, const char* obj_path,
const char* intf_name)
{
iv_bus_name = bus_name;
iv_obj_path = obj_path;
iv_intf_name = intf_name;
}
//-------------------
// Destructor
//-------------------
ipmi_fru::~ipmi_fru()
{
if (iv_data != NULL)
{
delete[] iv_data;
iv_data = NULL;
}
}
//------------------------------------------------
// Takes the pointer to stream of bytes and length
// and returns the 8 bit checksum
// This algo is per IPMI V2.0 spec
//-------------------------------------------------
unsigned char calculate_crc(const unsigned char* data, size_t len)
{
char crc = 0;
size_t byte = 0;
for (byte = 0; byte < len; byte++)
{
crc += *data++;
}
return (-crc);
}
//---------------------------------------------------------------------
// Accepts a fru area offset in commom hdr and tells which area it is.
//---------------------------------------------------------------------
ipmi_fru_area_type get_fru_area_type(uint8_t area_offset)
{
ipmi_fru_area_type type = IPMI_FRU_AREA_TYPE_MAX;
switch (area_offset)
{
case IPMI_FRU_INTERNAL_OFFSET:
type = IPMI_FRU_AREA_INTERNAL_USE;
break;
case IPMI_FRU_CHASSIS_OFFSET:
type = IPMI_FRU_AREA_CHASSIS_INFO;
break;
case IPMI_FRU_BOARD_OFFSET:
type = IPMI_FRU_AREA_BOARD_INFO;
break;
case IPMI_FRU_PRODUCT_OFFSET:
type = IPMI_FRU_AREA_PRODUCT_INFO;
break;
case IPMI_FRU_MULTI_OFFSET:
type = IPMI_FRU_AREA_MULTI_RECORD;
break;
default:
type = IPMI_FRU_AREA_TYPE_MAX;
}
return type;
}
///-----------------------------------------------
// Validates the data for crc and mandatory fields
///-----------------------------------------------
int verify_fru_data(const uint8_t* data, const size_t len)
{
uint8_t checksum = 0;
int rc = -1;
// Validate for first byte to always have a value of [1]
if (data[0] != IPMI_FRU_HDR_BYTE_ZERO)
{
log<level::ERR>("Invalid entry in byte-0",
entry("ENTRY=0x%X", static_cast<uint32_t>(data[0])));
return rc;
}
#ifdef __IPMI_DEBUG__
else
{
log<level::DEBUG>("Validated in entry_1 of fru_data",
entry("ENTRY=0x%X", static_cast<uint32_t>(data[0])));
}
#endif
// See if the calculated CRC matches with the embedded one.
// CRC to be calculated on all except the last one that is CRC itself.
checksum = calculate_crc(data, len - 1);
if (checksum != data[len - 1])
{
#ifdef __IPMI_DEBUG__
log<level::ERR>(
"Checksum mismatch",
entry("Calculated=0x%X", static_cast<uint32_t>(checksum)),
entry("Embedded=0x%X", static_cast<uint32_t>(data[len])));
#endif
return rc;
}
#ifdef __IPMI_DEBUG__
else
{
log<level::DEBUG>("Checksum matches");
}
#endif
return EXIT_SUCCESS;
}
///----------------------------------------------------
// Checks if a particular fru area is populated or not
///----------------------------------------------------
bool remove_invalid_area(const std::unique_ptr<ipmi_fru>& fru_area)
{
// Filter the ones that are empty
if (!(fru_area->get_len()))
{
return true;
}
return false;
}
///----------------------------------------------------------------------------------
// Populates various FRU areas
// @prereq : This must be called only after validating common header.
///----------------------------------------------------------------------------------
int ipmi_populate_fru_areas(uint8_t* fru_data, const size_t data_len,
fru_area_vec_t& fru_area_vec)
{
int rc = -1;
// Now walk the common header and see if the file size has atleast the last
// offset mentioned by the common_hdr. If the file size is less than the
// offset of any if the fru areas mentioned in the common header, then we do
// not have a complete file.
for (uint8_t fru_entry = IPMI_FRU_INTERNAL_OFFSET;
fru_entry < (sizeof(struct common_header) - 2); fru_entry++)
{
rc = -1;
// Actual offset in the payload is the offset mentioned in common header
// multiplied by 8. Common header is always the first 8 bytes.
size_t area_offset = fru_data[fru_entry] * IPMI_EIGHT_BYTES;
if (area_offset && (data_len < (area_offset + 2)))
{
// Our file size is less than what it needs to be. +2 because we are
// using area len that is at 2 byte off area_offset
log<level::ERR>("fru file is incomplete",
entry("SIZE=%d", data_len));
return rc;
}
else if (area_offset)
{
// Read 2 bytes to know the actual size of area.
uint8_t area_hdr[2] = {0};
std::memcpy(area_hdr, &((uint8_t*)fru_data)[area_offset],
sizeof(area_hdr));
// Size of this area will be the 2nd byte in the fru area header.
size_t area_len = area_hdr[1] * IPMI_EIGHT_BYTES;
uint8_t area_data[area_len] = {0};
log<level::DEBUG>("Fru Data", entry("SIZE=%d", data_len),
entry("AREA OFFSET=%d", area_offset),
entry("AREA_SIZE=%d", area_len));
// See if we really have that much buffer. We have area offset amd
// from there, the actual len.
if (data_len < (area_len + area_offset))
{
log<level::ERR>("Incomplete Fru file",
entry("SIZE=%d", data_len));
return rc;
}
// Save off the data.
std::memcpy(area_data, &((uint8_t*)fru_data)[area_offset],
area_len);
// Validate the crc
rc = verify_fru_data(area_data, area_len);
if (rc < 0)
{
log<level::ERR>("Err validating fru area",
entry("OFFSET=%d", area_offset));
return rc;
}
else
{
log<level::DEBUG>("Successfully verified area checksum.",
entry("OFFSET=%d", area_offset));
}
// We already have a vector that is passed to us containing all
// of the fields populated. Update the data portion now.
for (auto& iter : fru_area_vec)
{
if ((iter)->get_type() == get_fru_area_type(fru_entry))
{
(iter)->set_data(area_data, area_len);
}
}
} // If we have fru data present
} // Walk common_hdr
// Not all the fields will be populated in a fru data. Mostly all cases will
// not have more than 2 or 3.
fru_area_vec.erase(std::remove_if(fru_area_vec.begin(), fru_area_vec.end(),
remove_invalid_area),
fru_area_vec.end());
return EXIT_SUCCESS;
}
///---------------------------------------------------------
// Validates the fru data per ipmi common header constructs.
// Returns with updated common_hdr and also file_size
//----------------------------------------------------------
int ipmi_validate_common_hdr(const uint8_t* fru_data, const size_t data_len)
{
int rc = -1;
uint8_t common_hdr[sizeof(struct common_header)] = {0};
if (data_len >= sizeof(common_hdr))
{
std::memcpy(common_hdr, fru_data, sizeof(common_hdr));
}
else
{
log<level::ERR>("Incomplete fru data file", entry("SIZE=%d", data_len));
return rc;
}
// Verify the crc and size
rc = verify_fru_data(common_hdr, sizeof(common_hdr));
if (rc < 0)
{
log<level::ERR>("Failed to validate common header");
return rc;
}
return EXIT_SUCCESS;
}
///-----------------------------------------------------
// Accepts the filename and validates per IPMI FRU spec
//----------------------------------------------------
int validateFRUArea(const uint8_t fruid, const char* fru_file_name,
sd_bus* bus_type, const bool bmc_fru)
{
size_t data_len = 0;
size_t bytes_read = 0;
int rc = -1;
// Vector that holds individual IPMI FRU AREAs. Although MULTI and INTERNAL
// are not used, keeping it here for completeness.
fru_area_vec_t fru_area_vec;
for (uint8_t fru_entry = IPMI_FRU_INTERNAL_OFFSET;
fru_entry < (sizeof(struct common_header) - 2); fru_entry++)
{
// Create an object and push onto a vector.
std::unique_ptr<ipmi_fru> fru_area = std::make_unique<ipmi_fru>(
fruid, get_fru_area_type(fru_entry), bus_type, bmc_fru);
// Physically being present
bool present = access(fru_file_name, F_OK) == 0;
fru_area->set_present(present);
fru_area_vec.emplace_back(std::move(fru_area));
}
FILE* fru_fp = std::fopen(fru_file_name, "rb");
if (fru_fp == NULL)
{
log<level::ERR>("Unable to open fru file",
entry("FILE=%s", fru_file_name),
entry("ERRNO=%s", std::strerror(errno)));
return cleanupError(fru_fp, fru_area_vec);
}
// Get the size of the file to see if it meets minimum requirement
if (std::fseek(fru_fp, 0, SEEK_END))
{
log<level::ERR>("Unable to seek fru file",
entry("FILE=%s", fru_file_name),
entry("ERRNO=%s", std::strerror(errno)));
return cleanupError(fru_fp, fru_area_vec);
}
// Allocate a buffer to hold entire file content
data_len = std::ftell(fru_fp);
uint8_t fru_data[data_len] = {0};
std::rewind(fru_fp);
bytes_read = std::fread(fru_data, data_len, 1, fru_fp);
if (bytes_read != 1)
{
log<level::ERR>("Failed reading fru data.",
entry("BYTESREAD=%d", bytes_read),
entry("ERRNO=%s", std::strerror(errno)));
return cleanupError(fru_fp, fru_area_vec);
}
// We are done reading.
std::fclose(fru_fp);
fru_fp = NULL;
rc = ipmi_validate_common_hdr(fru_data, data_len);
if (rc < 0)
{
return cleanupError(fru_fp, fru_area_vec);
}
// Now that we validated the common header, populate various fru sections if
// we have them here.
rc = ipmi_populate_fru_areas(fru_data, data_len, fru_area_vec);
if (rc < 0)
{
log<level::ERR>("Populating FRU areas failed", entry("FRU=%d", fruid));
return cleanupError(fru_fp, fru_area_vec);
}
else
{
log<level::DEBUG>("Populated FRU areas",
entry("FILE=%s", fru_file_name));
}
#ifdef __IPMI_DEBUG__
for (auto& iter : fru_area_vec)
{
std::printf("FRU ID : [%d]\n", (iter)->get_fruid());
std::printf("AREA NAME : [%s]\n", (iter)->get_name());
std::printf("TYPE : [%d]\n", (iter)->get_type());
std::printf("LEN : [%d]\n", (iter)->get_len());
std::printf("BUS NAME : [%s]\n", (iter)->get_bus_name());
std::printf("OBJ PATH : [%s]\n", (iter)->get_obj_path());
std::printf("INTF NAME :[%s]\n", (iter)->get_intf_name());
}
#endif
// If the vector is populated with everything, then go ahead and update the
// inventory.
if (!(fru_area_vec.empty()))
{
#ifdef __IPMI_DEBUG__
std::printf("\n SIZE of vector is : [%d] \n", fru_area_vec.size());
#endif
rc = updateInventory(fru_area_vec, bus_type);
if (rc < 0)
{
log<level::ERR>("Error updating inventory.");
}
}
// we are done with all that we wanted to do. This will do the job of
// calling any destructors too.
fru_area_vec.clear();
return rc;
}