| /** |
| * Describes utility functions for parsing CPER into JSON IR. |
| * |
| * Author: Lawrence.Tang@arm.com |
| **/ |
| |
| #include <stdio.h> |
| #include "json.h" |
| #include "edk/Cper.h" |
| #include "cper-utils.h" |
| |
| //The available severity types for CPER. |
| const char* CPER_SEVERITY_TYPES[4] = {"Recoverable", "Fatal", "Corrected", "Informational"}; |
| |
| //Converts the given generic CPER error status to JSON IR. |
| json_object* cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS* error_status) |
| { |
| json_object* error_status_ir = json_object_new_object(); |
| |
| //Error type. |
| json_object_object_add(error_status_ir, "errorType", integer_to_readable_pair_with_desc(error_status->Type, 18, |
| CPER_GENERIC_ERROR_TYPES_KEYS, |
| CPER_GENERIC_ERROR_TYPES_VALUES, |
| CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS, |
| "Unknown (Reserved)")); |
| |
| //Boolean bit fields. |
| json_object_object_add(error_status_ir, "addressSignal", json_object_new_boolean(error_status->AddressSignal)); |
| json_object_object_add(error_status_ir, "controlSignal", json_object_new_boolean(error_status->ControlSignal)); |
| json_object_object_add(error_status_ir, "dataSignal", json_object_new_boolean(error_status->DataSignal)); |
| json_object_object_add(error_status_ir, "detectedByResponder", json_object_new_boolean(error_status->DetectedByResponder)); |
| json_object_object_add(error_status_ir, "detectedByRequester", json_object_new_boolean(error_status->DetectedByRequester)); |
| json_object_object_add(error_status_ir, "firstError", json_object_new_boolean(error_status->FirstError)); |
| json_object_object_add(error_status_ir, "overflowDroppedLogs", json_object_new_boolean(error_status->OverflowNotLogged)); |
| |
| return error_status_ir; |
| } |
| |
| //Converts the given CPER-JSON generic error status into a CPER structure. |
| void ir_generic_error_status_to_cper(json_object* error_status, EFI_GENERIC_ERROR_STATUS* error_status_cper) |
| { |
| error_status_cper->Type = readable_pair_to_integer(json_object_object_get(error_status, "errorType")); |
| error_status_cper->AddressSignal = json_object_get_boolean(json_object_object_get(error_status, "addressSignal")); |
| error_status_cper->ControlSignal = json_object_get_boolean(json_object_object_get(error_status, "controlSignal")); |
| error_status_cper->DataSignal = json_object_get_boolean(json_object_object_get(error_status, "dataSignal")); |
| error_status_cper->DetectedByResponder = json_object_get_boolean(json_object_object_get(error_status, "detectedByResponder")); |
| error_status_cper->DetectedByRequester = json_object_get_boolean(json_object_object_get(error_status, "detectedByRequester")); |
| error_status_cper->FirstError = json_object_get_boolean(json_object_object_get(error_status, "firstError")); |
| error_status_cper->OverflowNotLogged = json_object_get_boolean(json_object_object_get(error_status, "overflowDroppedLogs")); |
| } |
| |
| //Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order. |
| json_object* uniform_struct64_to_ir(UINT64* start, int len, const char* names[]) |
| { |
| json_object* result = json_object_new_object(); |
| |
| UINT64* cur = start; |
| for (int i=0; i<len; i++) |
| { |
| json_object_object_add(result, names[i], json_object_new_uint64(*cur)); |
| cur++; |
| } |
| |
| return result; |
| } |
| |
| //Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order. |
| json_object* uniform_struct_to_ir(UINT32* start, int len, const char* names[]) |
| { |
| json_object* result = json_object_new_object(); |
| |
| UINT32* cur = start; |
| for (int i=0; i<len; i++) |
| { |
| json_object_object_add(result, names[i], json_object_new_uint64(*cur)); |
| cur++; |
| } |
| |
| return result; |
| } |
| |
| //Converts a single object containing UINT32s into a uniform struct. |
| void ir_to_uniform_struct64(json_object* ir, UINT64* start, int len, const char* names[]) |
| { |
| UINT64* cur = start; |
| for (int i=0; i<len; i++) |
| { |
| *cur = json_object_get_uint64(json_object_object_get(ir, names[i])); |
| cur++; |
| } |
| } |
| |
| //Converts a single object containing UINT32s into a uniform struct. |
| void ir_to_uniform_struct(json_object* ir, UINT32* start, int len, const char* names[]) |
| { |
| UINT32* cur = start; |
| for (int i=0; i<len; i++) |
| { |
| *cur = (UINT32)json_object_get_uint64(json_object_object_get(ir, names[i])); |
| cur++; |
| } |
| } |
| |
| //Converts a single integer value to an object containing a value, and a readable name if possible. |
| json_object* integer_to_readable_pair(UINT64 value, int len, int keys[], const char* values[], const char* default_value) |
| { |
| json_object* result = json_object_new_object(); |
| json_object_object_add(result, "value", json_object_new_uint64(value)); |
| |
| //Search for human readable name, add. |
| const char* name = default_value; |
| for (int i=0; i<len; i++) |
| { |
| if (keys[i] == value) |
| name = values[i]; |
| } |
| |
| json_object_object_add(result, "name", json_object_new_string(name)); |
| return result; |
| } |
| |
| //Converts a single integer value to an object containing a value, readable name and description if possible. |
| json_object* integer_to_readable_pair_with_desc(int value, int len, int keys[], const char* values[], |
| const char* descriptions[], const char* default_value) |
| { |
| json_object* result = json_object_new_object(); |
| json_object_object_add(result, "value", json_object_new_int(value)); |
| |
| //Search for human readable name, add. |
| const char* name = default_value; |
| for (int i=0; i<len; i++) |
| { |
| if (keys[i] == value) |
| { |
| name = values[i]; |
| json_object_object_add(result, "description", json_object_new_string(descriptions[i])); |
| } |
| } |
| |
| json_object_object_add(result, "name", json_object_new_string(name)); |
| return result; |
| } |
| |
| //Returns a single UINT64 value from the given readable pair object. |
| //Assumes the integer value is held in the "value" field. |
| UINT64 readable_pair_to_integer(json_object* pair) |
| { |
| return json_object_get_uint64(json_object_object_get(pair, "value")); |
| } |
| |
| //Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left. |
| json_object* bitfield_to_ir(UINT64 bitfield, int num_fields, const char* names[]) |
| { |
| json_object* result = json_object_new_object(); |
| for (int i=0; i<num_fields; i++) |
| { |
| json_object_object_add(result, names[i], json_object_new_boolean((bitfield >> i) & 0b1)); |
| } |
| |
| return result; |
| } |
| |
| //Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0. |
| UINT64 ir_to_bitfield(json_object* ir, int num_fields, const char* names[]) |
| { |
| UINT64 result = 0x0; |
| for (int i=0; i<num_fields; i++) |
| { |
| if (json_object_get_boolean(json_object_object_get(ir, names[i]))) |
| result |= (0x1 << i); |
| } |
| |
| return result; |
| } |
| |
| //Converts the given UINT64 array into a JSON IR array, given the length. |
| json_object* uint64_array_to_ir_array(UINT64* array, int len) |
| { |
| json_object* array_ir = json_object_new_array(); |
| for (int i=0; i<len; i++) |
| json_object_array_add(array_ir, json_object_new_uint64(array[i])); |
| return array_ir; |
| } |
| |
| //Converts a single UINT16 revision number into JSON IR representation. |
| json_object* revision_to_ir(UINT16 revision) |
| { |
| json_object* revision_info = json_object_new_object(); |
| json_object_object_add(revision_info, "major", json_object_new_int(revision >> 8)); |
| json_object_object_add(revision_info, "minor", json_object_new_int(revision & 0xFF)); |
| return revision_info; |
| } |
| |
| //Returns the appropriate string for the given integer severity. |
| const char* severity_to_string(UINT32 severity) |
| { |
| return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown"; |
| } |
| |
| //Converts a single EFI timestamp to string, at the given output. |
| //Output must be at least TIMESTAMP_LENGTH bytes long. |
| void timestamp_to_string(char* out, EFI_ERROR_TIME_STAMP* timestamp) |
| { |
| sprintf(out, "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu.000", |
| bcd_to_int(timestamp->Century) % 100, //Cannot go to three digits. |
| bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits. |
| bcd_to_int(timestamp->Month), |
| bcd_to_int(timestamp->Day), |
| bcd_to_int(timestamp->Hours), |
| bcd_to_int(timestamp->Minutes), |
| bcd_to_int(timestamp->Seconds)); |
| } |
| |
| //Converts a single timestamp string to an EFI timestamp. |
| void string_to_timestamp(EFI_ERROR_TIME_STAMP* out, const char* timestamp) |
| { |
| //Ignore invalid timestamps. |
| if (timestamp == NULL) |
| return; |
| |
| sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu.000", |
| &out->Century, |
| &out->Year, |
| &out->Month, |
| &out->Day, |
| &out->Hours, |
| &out->Minutes, |
| &out->Seconds); |
| |
| //Convert back to BCD. |
| out->Century = int_to_bcd(out->Century); |
| out->Year = int_to_bcd(out->Year); |
| out->Month = int_to_bcd(out->Month); |
| out->Day = int_to_bcd(out->Day); |
| out->Hours = int_to_bcd(out->Hours); |
| out->Minutes = int_to_bcd(out->Minutes); |
| out->Seconds = int_to_bcd(out->Seconds); |
| } |
| |
| //Helper function to convert an EDK EFI GUID into a string for intermediate use. |
| void guid_to_string(char* out, EFI_GUID* guid) |
| { |
| sprintf(out, "%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x", |
| guid->Data1, |
| guid->Data2, |
| guid->Data3, |
| guid->Data4[0], |
| guid->Data4[1], |
| guid->Data4[2], |
| guid->Data4[3], |
| guid->Data4[4], |
| guid->Data4[5], |
| guid->Data4[6], |
| guid->Data4[7]); |
| } |
| |
| //Helper function to convert a string into an EDK EFI GUID. |
| void string_to_guid(EFI_GUID* out, const char* guid) |
| { |
| //Ignore invalid GUIDs. |
| if (guid == NULL) |
| return; |
| |
| sscanf(guid, "%08x-%04hx-%04hx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx", |
| &out->Data1, |
| &out->Data2, |
| &out->Data3, |
| out->Data4, |
| out->Data4 + 1, |
| out->Data4 + 2, |
| out->Data4 + 3, |
| out->Data4 + 4, |
| out->Data4 + 5, |
| out->Data4 + 6, |
| out->Data4 + 7); |
| } |
| |
| //Returns one if two EFI GUIDs are equal, zero otherwise. |
| int guid_equal(EFI_GUID* a, EFI_GUID* b) |
| { |
| //Check top base 3 components. |
| if (a->Data1 != b->Data1 |
| || a->Data2 != b->Data2 |
| || a->Data3 != b->Data3) |
| { |
| return 0; |
| } |
| |
| //Check Data4 array for equality. |
| for (int i=0; i<8; i++) |
| { |
| if (a->Data4[i] != b->Data4[i]) |
| return 0; |
| } |
| |
| return 1; |
| } |