blob: 2eb82fa8d024d916139b7a1a7d90fc345e777995 [file] [log] [blame]
/**
* Describes utility functions for parsing CPER into JSON IR.
*
* Author: Lawrence.Tang@arm.com
**/
#include <stdio.h>
#include "json.h"
#include "edk/Cper.h"
#include "cper-utils.h"
//The available severity types for CPER.
const char* CPER_SEVERITY_TYPES[4] = {"Recoverable", "Fatal", "Corrected", "Informational"};
//Converts the given generic CPER error status to JSON IR.
json_object* cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS* error_status)
{
json_object* error_status_ir = json_object_new_object();
//Error type.
json_object_object_add(error_status_ir, "errorType", integer_to_readable_pair_with_desc(error_status->Type, 18,
CPER_GENERIC_ERROR_TYPES_KEYS,
CPER_GENERIC_ERROR_TYPES_VALUES,
CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
"Unknown (Reserved)"));
//Boolean bit fields.
json_object_object_add(error_status_ir, "addressSignal", json_object_new_boolean(error_status->AddressSignal));
json_object_object_add(error_status_ir, "controlSignal", json_object_new_boolean(error_status->ControlSignal));
json_object_object_add(error_status_ir, "dataSignal", json_object_new_boolean(error_status->DataSignal));
json_object_object_add(error_status_ir, "detectedByResponder", json_object_new_boolean(error_status->DetectedByResponder));
json_object_object_add(error_status_ir, "detectedByRequester", json_object_new_boolean(error_status->DetectedByRequester));
json_object_object_add(error_status_ir, "firstError", json_object_new_boolean(error_status->FirstError));
json_object_object_add(error_status_ir, "overflowNotLogged", json_object_new_boolean(error_status->OverflowNotLogged));
return error_status_ir;
}
//Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
json_object* uniform_struct64_to_ir(UINT64* start, int len, const char* names[])
{
json_object* result = json_object_new_object();
UINT64* cur = start;
for (int i=0; i<len; i++)
{
json_object_object_add(result, names[i], json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
json_object* uniform_struct_to_ir(UINT32* start, int len, const char* names[])
{
json_object* result = json_object_new_object();
UINT32* cur = start;
for (int i=0; i<len; i++)
{
json_object_object_add(result, names[i], json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single integer value to an object containing a value, and a readable name if possible.
json_object* integer_to_readable_pair(int value, int len, int keys[], const char* values[], const char* default_value)
{
json_object* result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_int(value));
//Search for human readable name, add.
const char* name = default_value;
for (int i=0; i<len; i++)
{
if (keys[i] == value)
name = values[i];
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Converts a single integer value to an object containing a value, readable name and description if possible.
json_object* integer_to_readable_pair_with_desc(int value, int len, int keys[], const char* values[],
const char* descriptions[], const char* default_value)
{
json_object* result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_int(value));
//Search for human readable name, add.
const char* name = default_value;
for (int i=0; i<len; i++)
{
if (keys[i] == value)
{
name = values[i];
json_object_object_add(result, "description", json_object_new_string(descriptions[i]));
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
json_object* bitfield_to_ir(UINT64 bitfield, int num_fields, const char* names[])
{
json_object* result = json_object_new_object();
for (int i=0; i<num_fields; i++)
{
json_object_object_add(result, names[i], json_object_new_boolean((bitfield >> i) & 0b1));
}
return result;
}
//Converts the given UINT64 array into a JSON IR array, given the length.
json_object* uint64_array_to_ir_array(UINT64* array, int len)
{
json_object* array_ir = json_object_new_array();
for (int i=0; i<len; i++)
json_object_array_add(array_ir, json_object_new_uint64(array[i]));
return array_ir;
}
//Converts a single UINT16 revision number into JSON IR representation.
json_object* revision_to_ir(UINT16 revision)
{
json_object* revision_info = json_object_new_object();
json_object_object_add(revision_info, "major", json_object_new_int(revision >> 8));
json_object_object_add(revision_info, "minor", json_object_new_int(revision & 0xFF));
return revision_info;
}
//Returns the appropriate string for the given integer severity.
const char* severity_to_string(UINT8 severity)
{
return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
}
//Helper function to convert an EDK EFI GUID into a string for intermediate use.
void guid_to_string(char* out, EFI_GUID* guid)
{
sprintf(out, "%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
guid->Data1,
guid->Data2,
guid->Data3,
guid->Data4[0],
guid->Data4[1],
guid->Data4[2],
guid->Data4[3],
guid->Data4[4],
guid->Data4[5],
guid->Data4[6],
guid->Data4[7]);
}
//Returns one if two EFI GUIDs are equal, zero otherwise.
int guid_equal(EFI_GUID* a, EFI_GUID* b)
{
//Check top base 3 components.
if (a->Data1 != b->Data1
|| a->Data2 != b->Data2
|| a->Data3 != b->Data3)
{
return 0;
}
//Check Data4 array for equality.
for (int i=0; i<8; i++)
{
if (a->Data4[i] != b->Data4[i])
return 0;
}
return 1;
}
//Converts the given BCD byte to a standard integer.
int bcd_to_int(UINT8 bcd)
{
return ((bcd & 0xF0) >> 4) * 10 + (bcd & 0x0F);
}