blob: 05c1a5323a911fa075693ce8c88dfc9001425265 [file] [log] [blame]
/**
* Describes functions for converting PCIe CPER sections from binary and JSON format
* into an intermediate format.
*
* Author: Lawrence.Tang@arm.com
**/
#include <stdio.h>
#include <string.h>
#include <json.h>
#include <libcper/base64.h>
#include <libcper/Cper.h>
#include <libcper/cper-utils.h>
#include <libcper/sections/cper-section-pcie.h>
struct aer_info_registers {
UINT32 pcie_capability_header;
UINT32 uncorrectable_error_status;
UINT32 uncorrectable_error_mask;
UINT32 uncorrectable_error_severity;
UINT32 correctable_error_status;
UINT32 correctable_error_mask;
UINT32 aer_capabilites_control;
UINT32 tlp_header_log[4];
};
//Converts a single PCIe CPER section into JSON IR.
json_object *cper_section_pcie_to_ir(void *section)
{
EFI_PCIE_ERROR_DATA *pcie_error = (EFI_PCIE_ERROR_DATA *)section;
json_object *section_ir = json_object_new_object();
//Validation bits.
ValidationTypes ui64Type = { UINT_64T,
.value.ui64 = pcie_error->ValidFields };
//Port type.
if (isvalid_prop_to_ir(&ui64Type, 0)) {
json_object *port_type = integer_to_readable_pair(
pcie_error->PortType, 9, PCIE_ERROR_PORT_TYPES_KEYS,
PCIE_ERROR_PORT_TYPES_VALUES, "Unknown");
json_object_object_add(section_ir, "portType", port_type);
}
//Version, provided each half in BCD.
if (isvalid_prop_to_ir(&ui64Type, 1)) {
json_object *version = json_object_new_object();
json_object_object_add(version, "minor",
json_object_new_int(bcd_to_int(
pcie_error->Version & 0xFF)));
json_object_object_add(version, "major",
json_object_new_int(bcd_to_int(
pcie_error->Version >> 8)));
json_object_object_add(section_ir, "version", version);
}
//Command & status.
if (isvalid_prop_to_ir(&ui64Type, 2)) {
json_object *command_status = json_object_new_object();
json_object_object_add(
command_status, "commandRegister",
json_object_new_uint64(pcie_error->CommandStatus &
0xFFFF));
json_object_object_add(
command_status, "statusRegister",
json_object_new_uint64(pcie_error->CommandStatus >>
16));
json_object_object_add(section_ir, "commandStatus",
command_status);
}
//PCIe Device ID.
char hexstring_buf[EFI_UINT64_HEX_STRING_LEN];
if (isvalid_prop_to_ir(&ui64Type, 3)) {
json_object *device_id = json_object_new_object();
UINT64 class_id = (pcie_error->DevBridge.ClassCode[0] << 16) +
(pcie_error->DevBridge.ClassCode[1] << 8) +
pcie_error->DevBridge.ClassCode[2];
json_object_object_add(
device_id, "vendorID",
json_object_new_uint64(pcie_error->DevBridge.VendorId));
json_object_object_add(
device_id, "deviceID",
json_object_new_uint64(pcie_error->DevBridge.DeviceId));
snprintf(hexstring_buf, EFI_UINT64_HEX_STRING_LEN, "0x%0X",
pcie_error->DevBridge.DeviceId);
json_object_object_add(device_id, "deviceIDHex",
json_object_new_string(hexstring_buf));
json_object_object_add(device_id, "classCode",
json_object_new_uint64(class_id));
json_object_object_add(
device_id, "functionNumber",
json_object_new_uint64(pcie_error->DevBridge.Function));
json_object_object_add(
device_id, "deviceNumber",
json_object_new_uint64(pcie_error->DevBridge.Device));
json_object_object_add(
device_id, "segmentNumber",
json_object_new_uint64(pcie_error->DevBridge.Segment));
json_object_object_add(
device_id, "primaryOrDeviceBusNumber",
json_object_new_uint64(
pcie_error->DevBridge.PrimaryOrDeviceBus));
json_object_object_add(
device_id, "secondaryBusNumber",
json_object_new_uint64(
pcie_error->DevBridge.SecondaryBus));
json_object_object_add(
device_id, "slotNumber",
json_object_new_uint64(
pcie_error->DevBridge.Slot.Number));
json_object_object_add(section_ir, "deviceID", device_id);
}
//Device serial number.
if (isvalid_prop_to_ir(&ui64Type, 4)) {
json_object_object_add(
section_ir, "deviceSerialNumber",
json_object_new_uint64(pcie_error->SerialNo));
}
//Bridge control status.
if (isvalid_prop_to_ir(&ui64Type, 5)) {
json_object *bridge_control_status = json_object_new_object();
json_object_object_add(
bridge_control_status, "secondaryStatusRegister",
json_object_new_uint64(pcie_error->BridgeControlStatus &
0xFFFF));
json_object_object_add(
bridge_control_status, "controlRegister",
json_object_new_uint64(
pcie_error->BridgeControlStatus >> 16));
json_object_object_add(section_ir, "bridgeControlStatus",
bridge_control_status);
}
//Capability structure.
//The PCIe capability structure provided here could either be PCIe 1.1 Capability Structure
//(36-byte, padded to 60 bytes) or PCIe 2.0 Capability Structure (60-byte). There does not seem
//to be a way to differentiate these, so this is left as a b64 dump.
int32_t encoded_len = 0;
char *encoded = NULL;
if (isvalid_prop_to_ir(&ui64Type, 6)) {
char *encoded =
base64_encode((UINT8 *)pcie_error->Capability.PcieCap,
60, &encoded_len);
if (encoded == NULL) {
printf("Failed to allocate encode output buffer. \n");
} else {
json_object *capability = json_object_new_object();
json_object_object_add(capability, "data",
json_object_new_string_len(
encoded, encoded_len));
free(encoded);
json_object_object_add(
section_ir, "capabilityStructure", capability);
}
}
//AER information.
encoded_len = 0;
encoded = NULL;
if (isvalid_prop_to_ir(&ui64Type, 7)) {
json_object *aer_capability_ir = json_object_new_object();
encoded = base64_encode((UINT8 *)pcie_error->AerInfo.PcieAer,
96, &encoded_len);
if (encoded == NULL) {
printf("Failed to allocate encode output buffer. \n");
} else {
json_object_object_add(aer_capability_ir, "data",
json_object_new_string_len(
encoded, encoded_len));
free(encoded);
}
struct aer_info_registers *aer_decode;
aer_decode = (struct aer_info_registers *)&pcie_error->AerInfo
.PcieAer;
json_object_object_add(
aer_capability_ir, "capability_header",
json_object_new_uint64(
aer_decode->pcie_capability_header));
json_object_object_add(
aer_capability_ir, "uncorrectable_error_status",
json_object_new_uint64(
aer_decode->uncorrectable_error_status));
snprintf(hexstring_buf, EFI_UINT64_HEX_STRING_LEN,
"0x%08" PRIX32,
aer_decode->uncorrectable_error_status);
json_object_object_add(aer_capability_ir,
"uncorrectable_error_status_hex",
json_object_new_string(hexstring_buf));
json_object_object_add(
aer_capability_ir, "uncorrectable_error_mask",
json_object_new_uint64(
aer_decode->uncorrectable_error_mask));
json_object_object_add(
aer_capability_ir, "uncorrectable_error_severity",
json_object_new_uint64(
aer_decode->uncorrectable_error_severity));
json_object_object_add(
aer_capability_ir, "correctable_error_status",
json_object_new_uint64(
aer_decode->correctable_error_status));
snprintf(hexstring_buf, EFI_UINT64_HEX_STRING_LEN,
"0x%08" PRIX32, aer_decode->correctable_error_status);
json_object_object_add(aer_capability_ir,
"correctable_error_status_hex",
json_object_new_string(hexstring_buf));
json_object_object_add(
aer_capability_ir, "correctable_error_mask",
json_object_new_uint64(
aer_decode->correctable_error_mask));
json_object_object_add(
aer_capability_ir, "capabilites_control",
json_object_new_uint64(
aer_decode->aer_capabilites_control));
json_object_object_add(
aer_capability_ir, "tlp_header_0",
json_object_new_uint64(aer_decode->tlp_header_log[0]));
json_object_object_add(
aer_capability_ir, "tlp_header_1",
json_object_new_uint64(aer_decode->tlp_header_log[1]));
json_object_object_add(
aer_capability_ir, "tlp_header_2",
json_object_new_uint64(aer_decode->tlp_header_log[2]));
json_object_object_add(
aer_capability_ir, "tlp_header_3",
json_object_new_uint64(aer_decode->tlp_header_log[3]));
json_object_object_add(section_ir, "aerInfo",
aer_capability_ir);
}
return section_ir;
}
//Converts a single CPER-JSON PCIe section into CPER binary, outputting to the given stream.
void ir_section_pcie_to_cper(json_object *section, FILE *out)
{
EFI_PCIE_ERROR_DATA *section_cper =
(EFI_PCIE_ERROR_DATA *)calloc(1, sizeof(EFI_PCIE_ERROR_DATA));
//Validation bits.
ValidationTypes ui64Type = { UINT_64T, .value.ui64 = 0 };
struct json_object *obj = NULL;
//Version.
if (json_object_object_get_ex(section, "version", &obj)) {
json_object *version = obj;
UINT32 minor = int_to_bcd(json_object_get_int(
json_object_object_get(version, "minor")));
UINT32 major = int_to_bcd(json_object_get_int(
json_object_object_get(version, "major")));
section_cper->Version = minor + (major << 8);
add_to_valid_bitfield(&ui64Type, 1);
}
//Command/status registers.
if (json_object_object_get_ex(section, "commandStatus", &obj)) {
json_object *command_status = obj;
UINT32 command = (UINT16)json_object_get_uint64(
json_object_object_get(command_status,
"commandRegister"));
UINT32 status = (UINT16)json_object_get_uint64(
json_object_object_get(command_status,
"statusRegister"));
section_cper->CommandStatus = command + (status << 16);
add_to_valid_bitfield(&ui64Type, 2);
}
//Device ID.
if (json_object_object_get_ex(section, "deviceID", &obj)) {
json_object *device_id = obj;
UINT64 class_id = json_object_get_uint64(
json_object_object_get(device_id, "classCode"));
section_cper->DevBridge.VendorId =
(UINT16)json_object_get_uint64(
json_object_object_get(device_id, "vendorID"));
section_cper->DevBridge.DeviceId =
(UINT16)json_object_get_uint64(
json_object_object_get(device_id, "deviceID"));
section_cper->DevBridge.ClassCode[0] = class_id >> 16;
section_cper->DevBridge.ClassCode[1] = (class_id >> 8) & 0xFF;
section_cper->DevBridge.ClassCode[2] = class_id & 0xFF;
section_cper->DevBridge.Function =
(UINT8)json_object_get_uint64(json_object_object_get(
device_id, "functionNumber"));
section_cper->DevBridge.Device = (UINT8)json_object_get_uint64(
json_object_object_get(device_id, "deviceNumber"));
section_cper->DevBridge.Segment =
(UINT16)json_object_get_uint64(json_object_object_get(
device_id, "segmentNumber"));
section_cper->DevBridge.PrimaryOrDeviceBus =
(UINT8)json_object_get_uint64(json_object_object_get(
device_id, "primaryOrDeviceBusNumber"));
section_cper->DevBridge.SecondaryBus =
(UINT8)json_object_get_uint64(json_object_object_get(
device_id, "secondaryBusNumber"));
section_cper->DevBridge.Slot.Number =
(UINT16)json_object_get_uint64(json_object_object_get(
device_id, "slotNumber"));
add_to_valid_bitfield(&ui64Type, 3);
}
//Bridge/control status.
if (json_object_object_get_ex(section, "bridgeControlStatus", &obj)) {
json_object *bridge_control = obj;
UINT32 bridge_status = (UINT16)json_object_get_uint64(
json_object_object_get(bridge_control,
"secondaryStatusRegister"));
UINT32 control_status = (UINT16)json_object_get_uint64(
json_object_object_get(bridge_control,
"controlRegister"));
section_cper->BridgeControlStatus =
bridge_status + (control_status << 16);
add_to_valid_bitfield(&ui64Type, 5);
}
//Capability structure.
int32_t decoded_len = 0;
UINT8 *decoded = NULL;
json_object *encoded = NULL;
if (json_object_object_get_ex(section, "capabilityStructure", &obj)) {
json_object *capability = obj;
json_object *encoded =
json_object_object_get(capability, "data");
UINT8 *decoded = base64_decode(
json_object_get_string(encoded),
json_object_get_string_len(encoded), &decoded_len);
if (decoded == NULL) {
printf("Failed to allocate decode output buffer. \n");
} else {
memcpy(section_cper->Capability.PcieCap, decoded,
decoded_len);
free(decoded);
}
add_to_valid_bitfield(&ui64Type, 6);
}
decoded = NULL;
encoded = NULL;
//AER capability structure.
if (json_object_object_get_ex(section, "aerInfo", &obj)) {
json_object *aer_info = obj;
encoded = json_object_object_get(aer_info, "data");
decoded_len = 0;
decoded = base64_decode(json_object_get_string(encoded),
json_object_get_string_len(encoded),
&decoded_len);
if (decoded == NULL) {
printf("Failed to allocate decode output buffer. \n");
} else {
memcpy(section_cper->AerInfo.PcieAer, decoded,
decoded_len);
free(decoded);
}
add_to_valid_bitfield(&ui64Type, 7);
}
//Miscellaneous value fields.
if (json_object_object_get_ex(section, "portType", &obj)) {
section_cper->PortType = (UINT32)readable_pair_to_integer(obj);
add_to_valid_bitfield(&ui64Type, 0);
}
if (json_object_object_get_ex(section, "deviceSerialNumber", &obj)) {
section_cper->SerialNo = json_object_get_uint64(obj);
add_to_valid_bitfield(&ui64Type, 4);
}
section_cper->ValidFields = ui64Type.value.ui64;
//Write out to stream, free resources.
fwrite(section_cper, sizeof(EFI_PCIE_ERROR_DATA), 1, out);
fflush(out);
free(section_cper);
}