| /** |
| * Describes utility functions for parsing CPER into JSON IR. |
| * |
| * Author: Lawrence.Tang@arm.com |
| **/ |
| |
| #include <stdio.h> |
| #include <json.h> |
| #include <libcper/Cper.h> |
| #include <libcper/cper-utils.h> |
| |
| //The available severity types for CPER. |
| const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected", |
| "Informational" }; |
| |
| //Converts the given generic CPER error status to JSON IR. |
| json_object * |
| cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status) |
| { |
| json_object *error_status_ir = json_object_new_object(); |
| |
| //Error type. |
| json_object_object_add(error_status_ir, "errorType", |
| integer_to_readable_pair_with_desc( |
| error_status->Type, 18, |
| CPER_GENERIC_ERROR_TYPES_KEYS, |
| CPER_GENERIC_ERROR_TYPES_VALUES, |
| CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS, |
| "Unknown (Reserved)")); |
| |
| //Boolean bit fields. |
| json_object_object_add( |
| error_status_ir, "addressSignal", |
| json_object_new_boolean(error_status->AddressSignal)); |
| json_object_object_add( |
| error_status_ir, "controlSignal", |
| json_object_new_boolean(error_status->ControlSignal)); |
| json_object_object_add( |
| error_status_ir, "dataSignal", |
| json_object_new_boolean(error_status->DataSignal)); |
| json_object_object_add( |
| error_status_ir, "detectedByResponder", |
| json_object_new_boolean(error_status->DetectedByResponder)); |
| json_object_object_add( |
| error_status_ir, "detectedByRequester", |
| json_object_new_boolean(error_status->DetectedByRequester)); |
| json_object_object_add( |
| error_status_ir, "firstError", |
| json_object_new_boolean(error_status->FirstError)); |
| json_object_object_add( |
| error_status_ir, "overflowDroppedLogs", |
| json_object_new_boolean(error_status->OverflowNotLogged)); |
| |
| return error_status_ir; |
| } |
| |
| //Converts the given CPER-JSON generic error status into a CPER structure. |
| void ir_generic_error_status_to_cper( |
| json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper) |
| { |
| error_status_cper->Type = readable_pair_to_integer( |
| json_object_object_get(error_status, "errorType")); |
| error_status_cper->AddressSignal = json_object_get_boolean( |
| json_object_object_get(error_status, "addressSignal")); |
| error_status_cper->ControlSignal = json_object_get_boolean( |
| json_object_object_get(error_status, "controlSignal")); |
| error_status_cper->DataSignal = json_object_get_boolean( |
| json_object_object_get(error_status, "dataSignal")); |
| error_status_cper->DetectedByResponder = json_object_get_boolean( |
| json_object_object_get(error_status, "detectedByResponder")); |
| error_status_cper->DetectedByRequester = json_object_get_boolean( |
| json_object_object_get(error_status, "detectedByRequester")); |
| error_status_cper->FirstError = json_object_get_boolean( |
| json_object_object_get(error_status, "firstError")); |
| error_status_cper->OverflowNotLogged = json_object_get_boolean( |
| json_object_object_get(error_status, "overflowDroppedLogs")); |
| } |
| |
| //Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order. |
| json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[]) |
| { |
| json_object *result = json_object_new_object(); |
| |
| UINT64 *cur = start; |
| for (int i = 0; i < len; i++) { |
| json_object_object_add(result, names[i], |
| json_object_new_uint64(*cur)); |
| cur++; |
| } |
| |
| return result; |
| } |
| |
| //Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order. |
| json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[]) |
| { |
| json_object *result = json_object_new_object(); |
| |
| UINT32 *cur = start; |
| for (int i = 0; i < len; i++) { |
| json_object_object_add(result, names[i], |
| json_object_new_uint64(*cur)); |
| cur++; |
| } |
| |
| return result; |
| } |
| |
| //Converts a single object containing UINT32s into a uniform struct. |
| void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len, |
| const char *names[]) |
| { |
| UINT64 *cur = start; |
| for (int i = 0; i < len; i++) { |
| *cur = json_object_get_uint64( |
| json_object_object_get(ir, names[i])); |
| cur++; |
| } |
| } |
| |
| //Converts a single object containing UINT32s into a uniform struct. |
| void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len, |
| const char *names[]) |
| { |
| UINT32 *cur = start; |
| for (int i = 0; i < len; i++) { |
| *cur = (UINT32)json_object_get_uint64( |
| json_object_object_get(ir, names[i])); |
| cur++; |
| } |
| } |
| |
| //Converts a single integer value to an object containing a value, and a readable name if possible. |
| json_object *integer_to_readable_pair(UINT64 value, int len, const int keys[], |
| const char *values[], |
| const char *default_value) |
| { |
| json_object *result = json_object_new_object(); |
| json_object_object_add(result, "value", json_object_new_uint64(value)); |
| |
| //Search for human readable name, add. |
| const char *name = default_value; |
| for (int i = 0; i < len; i++) { |
| if ((UINT64)keys[i] == value) { |
| name = values[i]; |
| } |
| } |
| |
| json_object_object_add(result, "name", json_object_new_string(name)); |
| return result; |
| } |
| |
| //Converts a single integer value to an object containing a value, readable name and description if possible. |
| json_object *integer_to_readable_pair_with_desc(int value, int len, |
| const int keys[], |
| const char *values[], |
| const char *descriptions[], |
| const char *default_value) |
| { |
| json_object *result = json_object_new_object(); |
| json_object_object_add(result, "value", json_object_new_int(value)); |
| |
| //Search for human readable name, add. |
| const char *name = default_value; |
| for (int i = 0; i < len; i++) { |
| if (keys[i] == value) { |
| name = values[i]; |
| json_object_object_add( |
| result, "description", |
| json_object_new_string(descriptions[i])); |
| } |
| } |
| |
| json_object_object_add(result, "name", json_object_new_string(name)); |
| return result; |
| } |
| |
| //Returns a single UINT64 value from the given readable pair object. |
| //Assumes the integer value is held in the "value" field. |
| UINT64 readable_pair_to_integer(json_object *pair) |
| { |
| return json_object_get_uint64(json_object_object_get(pair, "value")); |
| } |
| |
| //Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left. |
| json_object *bitfield_to_ir(UINT64 bitfield, int num_fields, |
| const char *names[]) |
| { |
| json_object *result = json_object_new_object(); |
| for (int i = 0; i < num_fields; i++) { |
| json_object_object_add(result, names[i], |
| json_object_new_boolean((bitfield >> i) & |
| 0x1)); |
| } |
| |
| return result; |
| } |
| |
| //Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0. |
| UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[]) |
| { |
| UINT64 result = 0x0; |
| for (int i = 0; i < num_fields; i++) { |
| if (json_object_get_boolean( |
| json_object_object_get(ir, names[i]))) { |
| result |= (0x1 << i); |
| } |
| } |
| |
| return result; |
| } |
| |
| //Converts the given UINT64 array into a JSON IR array, given the length. |
| json_object *uint64_array_to_ir_array(UINT64 *array, int len) |
| { |
| json_object *array_ir = json_object_new_array(); |
| for (int i = 0; i < len; i++) { |
| json_object_array_add(array_ir, |
| json_object_new_uint64(array[i])); |
| } |
| return array_ir; |
| } |
| |
| //Converts a single UINT16 revision number into JSON IR representation. |
| json_object *revision_to_ir(UINT16 revision) |
| { |
| json_object *revision_info = json_object_new_object(); |
| json_object_object_add(revision_info, "major", |
| json_object_new_int(revision >> 8)); |
| json_object_object_add(revision_info, "minor", |
| json_object_new_int(revision & 0xFF)); |
| return revision_info; |
| } |
| |
| //Returns the appropriate string for the given integer severity. |
| const char *severity_to_string(UINT32 severity) |
| { |
| return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown"; |
| } |
| |
| //Converts a single EFI timestamp to string, at the given output. |
| //Output must be at least TIMESTAMP_LENGTH bytes long. |
| void timestamp_to_string(char *out, int out_len, |
| EFI_ERROR_TIME_STAMP *timestamp) |
| { |
| int written = snprintf( |
| out, out_len, |
| "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu+00:00", |
| bcd_to_int(timestamp->Century) % |
| 100, //Cannot go to three digits. |
| bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits. |
| bcd_to_int(timestamp->Month), bcd_to_int(timestamp->Day), |
| bcd_to_int(timestamp->Hours), bcd_to_int(timestamp->Minutes), |
| bcd_to_int(timestamp->Seconds)); |
| |
| if (written < 0 || written >= out_len) { |
| printf("Timestamp buffer of insufficient size\n"); |
| } |
| } |
| |
| //Converts a single timestamp string to an EFI timestamp. |
| void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp) |
| { |
| //Ignore invalid timestamps. |
| if (timestamp == NULL) { |
| return; |
| } |
| |
| sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu+00:00", |
| &out->Century, &out->Year, &out->Month, &out->Day, &out->Hours, |
| &out->Minutes, &out->Seconds); |
| |
| //Convert back to BCD. |
| out->Century = int_to_bcd(out->Century); |
| out->Year = int_to_bcd(out->Year); |
| out->Month = int_to_bcd(out->Month); |
| out->Day = int_to_bcd(out->Day); |
| out->Hours = int_to_bcd(out->Hours); |
| out->Minutes = int_to_bcd(out->Minutes); |
| out->Seconds = int_to_bcd(out->Seconds); |
| } |
| |
| //Helper function to convert an EDK EFI GUID into a string for intermediate use. |
| void guid_to_string(char *out, EFI_GUID *guid) |
| { |
| sprintf(out, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", |
| guid->Data1, guid->Data2, guid->Data3, guid->Data4[0], |
| guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4], |
| guid->Data4[5], guid->Data4[6], guid->Data4[7]); |
| } |
| |
| //Helper function to convert a string into an EDK EFI GUID. |
| void string_to_guid(EFI_GUID *out, const char *guid) |
| { |
| //Ignore invalid GUIDs. |
| if (guid == NULL) { |
| return; |
| } |
| |
| sscanf(guid, |
| "%08x-%04hx-%04hx-%02hhx%02hhx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx", |
| &out->Data1, &out->Data2, &out->Data3, out->Data4, |
| out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4, |
| out->Data4 + 5, out->Data4 + 6, out->Data4 + 7); |
| } |
| |
| //Returns one if two EFI GUIDs are equal, zero otherwise. |
| int guid_equal(EFI_GUID *a, EFI_GUID *b) |
| { |
| //Check top base 3 components. |
| if (a->Data1 != b->Data1 || a->Data2 != b->Data2 || |
| a->Data3 != b->Data3) { |
| return 0; |
| } |
| |
| //Check Data4 array for equality. |
| for (int i = 0; i < 8; i++) { |
| if (a->Data4[i] != b->Data4[i]) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |