blob: 1e259e8926c57907ed752a19f830e058920265a8 [file] [log] [blame]
/**
* Describes utility functions for parsing CPER into JSON IR.
*
* Author: Lawrence.Tang@arm.com
**/
#include <stdio.h>
#include <json.h>
#include <libcper/Cper.h>
#include <libcper/cper-utils.h>
//The available severity types for CPER.
const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected",
"Informational" };
//Converts the given generic CPER error status to JSON IR.
json_object *
cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status)
{
json_object *error_status_ir = json_object_new_object();
//Error type.
json_object_object_add(error_status_ir, "errorType",
integer_to_readable_pair_with_desc(
error_status->Type, 18,
CPER_GENERIC_ERROR_TYPES_KEYS,
CPER_GENERIC_ERROR_TYPES_VALUES,
CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
"Unknown (Reserved)"));
//Boolean bit fields.
json_object_object_add(
error_status_ir, "addressSignal",
json_object_new_boolean(error_status->AddressSignal));
json_object_object_add(
error_status_ir, "controlSignal",
json_object_new_boolean(error_status->ControlSignal));
json_object_object_add(
error_status_ir, "dataSignal",
json_object_new_boolean(error_status->DataSignal));
json_object_object_add(
error_status_ir, "detectedByResponder",
json_object_new_boolean(error_status->DetectedByResponder));
json_object_object_add(
error_status_ir, "detectedByRequester",
json_object_new_boolean(error_status->DetectedByRequester));
json_object_object_add(
error_status_ir, "firstError",
json_object_new_boolean(error_status->FirstError));
json_object_object_add(
error_status_ir, "overflowDroppedLogs",
json_object_new_boolean(error_status->OverflowNotLogged));
return error_status_ir;
}
//Converts the given CPER-JSON generic error status into a CPER structure.
void ir_generic_error_status_to_cper(
json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper)
{
error_status_cper->Type = readable_pair_to_integer(
json_object_object_get(error_status, "errorType"));
error_status_cper->AddressSignal = json_object_get_boolean(
json_object_object_get(error_status, "addressSignal"));
error_status_cper->ControlSignal = json_object_get_boolean(
json_object_object_get(error_status, "controlSignal"));
error_status_cper->DataSignal = json_object_get_boolean(
json_object_object_get(error_status, "dataSignal"));
error_status_cper->DetectedByResponder = json_object_get_boolean(
json_object_object_get(error_status, "detectedByResponder"));
error_status_cper->DetectedByRequester = json_object_get_boolean(
json_object_object_get(error_status, "detectedByRequester"));
error_status_cper->FirstError = json_object_get_boolean(
json_object_object_get(error_status, "firstError"));
error_status_cper->OverflowNotLogged = json_object_get_boolean(
json_object_object_get(error_status, "overflowDroppedLogs"));
}
//Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[])
{
json_object *result = json_object_new_object();
UINT64 *cur = start;
for (int i = 0; i < len; i++) {
json_object_object_add(result, names[i],
json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[])
{
json_object *result = json_object_new_object();
UINT32 *cur = start;
for (int i = 0; i < len; i++) {
json_object_object_add(result, names[i],
json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len,
const char *names[])
{
UINT64 *cur = start;
for (int i = 0; i < len; i++) {
*cur = json_object_get_uint64(
json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len,
const char *names[])
{
UINT32 *cur = start;
for (int i = 0; i < len; i++) {
*cur = (UINT32)json_object_get_uint64(
json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single integer value to an object containing a value, and a readable name if possible.
json_object *integer_to_readable_pair(UINT64 value, int len, const int keys[],
const char *values[],
const char *default_value)
{
json_object *result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_uint64(value));
//Search for human readable name, add.
const char *name = default_value;
for (int i = 0; i < len; i++) {
if ((UINT64)keys[i] == value) {
name = values[i];
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Converts a single integer value to an object containing a value, readable name and description if possible.
json_object *integer_to_readable_pair_with_desc(int value, int len,
const int keys[],
const char *values[],
const char *descriptions[],
const char *default_value)
{
json_object *result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_int(value));
//Search for human readable name, add.
const char *name = default_value;
for (int i = 0; i < len; i++) {
if (keys[i] == value) {
name = values[i];
json_object_object_add(
result, "description",
json_object_new_string(descriptions[i]));
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Returns a single UINT64 value from the given readable pair object.
//Assumes the integer value is held in the "value" field.
UINT64 readable_pair_to_integer(json_object *pair)
{
return json_object_get_uint64(json_object_object_get(pair, "value"));
}
//Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
json_object *bitfield_to_ir(UINT64 bitfield, int num_fields,
const char *names[])
{
json_object *result = json_object_new_object();
for (int i = 0; i < num_fields; i++) {
json_object_object_add(result, names[i],
json_object_new_boolean((bitfield >> i) &
0x1));
}
return result;
}
//Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[])
{
UINT64 result = 0x0;
for (int i = 0; i < num_fields; i++) {
if (json_object_get_boolean(
json_object_object_get(ir, names[i]))) {
result |= (0x1 << i);
}
}
return result;
}
//Converts the given UINT64 array into a JSON IR array, given the length.
json_object *uint64_array_to_ir_array(UINT64 *array, int len)
{
json_object *array_ir = json_object_new_array();
for (int i = 0; i < len; i++) {
json_object_array_add(array_ir,
json_object_new_uint64(array[i]));
}
return array_ir;
}
//Converts a single UINT16 revision number into JSON IR representation.
json_object *revision_to_ir(UINT16 revision)
{
json_object *revision_info = json_object_new_object();
json_object_object_add(revision_info, "major",
json_object_new_int(revision >> 8));
json_object_object_add(revision_info, "minor",
json_object_new_int(revision & 0xFF));
return revision_info;
}
//Returns the appropriate string for the given integer severity.
const char *severity_to_string(UINT32 severity)
{
return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
}
//Converts a single EFI timestamp to string, at the given output.
//Output must be at least TIMESTAMP_LENGTH bytes long.
void timestamp_to_string(char *out, int out_len,
EFI_ERROR_TIME_STAMP *timestamp)
{
int written = snprintf(
out, out_len,
"%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu+00:00",
bcd_to_int(timestamp->Century) %
100, //Cannot go to three digits.
bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits.
bcd_to_int(timestamp->Month), bcd_to_int(timestamp->Day),
bcd_to_int(timestamp->Hours), bcd_to_int(timestamp->Minutes),
bcd_to_int(timestamp->Seconds));
if (written < 0 || written >= out_len) {
printf("Timestamp buffer of insufficient size\n");
}
}
//Converts a single timestamp string to an EFI timestamp.
void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp)
{
//Ignore invalid timestamps.
if (timestamp == NULL) {
return;
}
sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu+00:00",
&out->Century, &out->Year, &out->Month, &out->Day, &out->Hours,
&out->Minutes, &out->Seconds);
//Convert back to BCD.
out->Century = int_to_bcd(out->Century);
out->Year = int_to_bcd(out->Year);
out->Month = int_to_bcd(out->Month);
out->Day = int_to_bcd(out->Day);
out->Hours = int_to_bcd(out->Hours);
out->Minutes = int_to_bcd(out->Minutes);
out->Seconds = int_to_bcd(out->Seconds);
}
//Helper function to convert an EDK EFI GUID into a string for intermediate use.
void guid_to_string(char *out, EFI_GUID *guid)
{
sprintf(out, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
}
//Helper function to convert a string into an EDK EFI GUID.
void string_to_guid(EFI_GUID *out, const char *guid)
{
//Ignore invalid GUIDs.
if (guid == NULL) {
return;
}
sscanf(guid,
"%08x-%04hx-%04hx-%02hhx%02hhx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
&out->Data1, &out->Data2, &out->Data3, out->Data4,
out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4,
out->Data4 + 5, out->Data4 + 6, out->Data4 + 7);
}
//Returns one if two EFI GUIDs are equal, zero otherwise.
int guid_equal(EFI_GUID *a, EFI_GUID *b)
{
//Check top base 3 components.
if (a->Data1 != b->Data1 || a->Data2 != b->Data2 ||
a->Data3 != b->Data3) {
return 0;
}
//Check Data4 array for equality.
for (int i = 0; i < 8; i++) {
if (a->Data4[i] != b->Data4[i]) {
return 0;
}
}
return 1;
}